
 

IIN-FFD: Intra-Inter Network for Face Forgery Detection
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Abstract: Since  different  kinds  of  face  forgeries  leave  similar  forgery  traces  in  videos,  learning  the  common

features from different kinds of forged faces would achieve promising generalization ability of forgery detection.

Therefore, to accurately detect known forgeries while ensuring high generalization ability of detecting unknown

forgeries,  we  propose  an  intra-inter  network  (IIN)  for  face  forgery  detection  (FFD)  in  videos  with  continual

learning. The proposed IIN mainly consists of three modules, i.e., intra-module, inter-module, and forged trace

masking module (FTMM). Specifically, the intra-module is trained for each kind of face forgeries by supervised

learning to extract special features, while the inter-module is trained by self-supervised learning to extract the

common features. As a result, the common and special features of the different forgeries are decoupled by the

two  feature  learning  modules,  and  then  the  decoupled  common  features  can  be  utlized  to  achieve  high

generalization  ability  for  FFD.  Moreover,  the  FTMM  is  deployed  for  contrastive  learning  to  further  improve

detection  accuracy.  The  experimental  results  on  FaceForensic++  dataset  demonstrate  that  the  proposed  IIN

outperforms the state-of-the-arts in FFD. Also, the generalization ability of the IIN verified on DFDC and Celeb-

DF datasets demonstrates that the proposed IIN significantly improves the generalization ability for FFD.

Key words:  deep  learning; information  security; image  classfication; neural  networks; face  forgery; face  forgery

detection

1　Introduction

Recently,  the  face  forgery  technique  has  raised  a
security  issue  in  that  the  human  faces  can  be  easily

tampered  and  replaced  to  spread  malicious
information[1].  This  face  forgery  technique  is  able  to
produce fake faces, which would lead to identity fraud
issues in popular applications such as digital payment,
video  surveillance,  and  video  call.  Accordingly,  there
is  an  urgent  need  to  explore  face  forgery  detection
(FFD)  algorithms  to  detect  whether  the  faces
distributed  on  networks  are  fake  ones  to  protect  the
identity information.

The existing approaches generally  consider  the FFD
as  a  binary  classification  task  that  aims  to  distinguish
real  faces  from fake  ones.  Some researchers  produced
datasets containing multiple forgery methods and adopt
deep  learning-based  detectors  to  distinguish  between
the real and the fake ones[2–4]. Some researchers utilize
generative models to obtain fake faces and detect them
with  deep  learning-based  detectors[5, 6].  CNN-based
methods  are  also  commonly  applied  to  detect  the
suspect regions of the target image[7, 8]. However, these
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approaches generally focus on detecting the fake faces
in  some  known  datasets  consisting  of  the  fake  faces
produced  by  known  forgery  methods.  Consequently,
they are only able to detect  fake faces in these known
datasets, and thus show limited generalization ability of
detecting the fake faces produced by unknown forgery
methods.  That  makes  them  less  appealing  in  practice.
In  practice,  new  kinds  of  face  forgeries  are  emerged
continuously,  and  thus  the  forgery  detection
approaches  should  achieve  high  generalization  ability
to  resist  unknown  forgeries.  Therefore,  it  is  very
necessary  to  improve  the  generalization  ability  to
unknown forgeries.

In  the  literature,  many  approaches  have  been
proposed  to  improve  the  generalization  ability  to
unknown  forgeries.  For  example,  some  recent
approaches[9, 10] use  the  data  augmentation  strategy  to
improve  the  generalization  ability  for  FFD.  Although
data  augmentation  can  improve  generalization  ability
to  some  known  kinds  of  forgeries  in  the  augmented
data,  it  cannot  handle  more  unknown  kinds  of
forgeries.  Meanwhile,  some  approaches[11, 12] learn
intrinsic forgery features to improve the generalization
ability.  However,  the  difference  between  the  data
generated  by  a  variety  of  forgeries  is  quite  large,
leading to poor generalization ability.

In this paper, we propose an intra-inter network (IIN)
with a novel continual learning strategy to improve the
generalization  ability  of  FFD.  Specifically,  we
decouple  the  common  and  special  features  of  the
different forgeries by the two feature learning modules.
In  particular,  the  intra-module  is  designed  to  learn
special  features  by  supervised  learning  and  the  inter-
module  is  designed  to  learn  the  common  features  by
self-supervised  learning.  The  inter-module  is  an
auxiliary  module  to  optimize  the  training  of  the  intra-
module.  The  above  feature  decoupling  can  find  the
commonality  between  different  features  for  forgery
detection. Moreover, we design a forged trace masking
module (FTMM) to mask the highly suspected parts of
the  forged  faces  and  use  it  in  contrastive  learning  to
improve  detection  accuracy.  The  process  of  IIN  is
shown in Fig. 1. Our contributions can be concluded as
follows:

●  We  propose  an  intra-inter  network  (IIN)  to
decouple  common  and  special  features  in  different
forgeries. Then, we use two different modules to learn
these  two  features.  The  inter-module  is  designed  to
learn  the  common  features,  while  the  intra-module  is

designed  to  learn  the  special  features.  Feature
decoupling helps the IIN to focus on common features
across  the  features  of  faces  generated  by  different
forgeries  to  improve  the  generalization  ability  for
unknown forgeries.

●  The  self-supervised  learning  strategy,  i.e.,
contrastive  learning,  is  deployed  to  obtain  superior
common  features  to  optimize  the  learning  of  special
features. Therefore the generalization ability of IIN can
be improved for unknown forgeries.

●  A  forged  trace  masking  module  (FTMM)  is
designed. It masks some regions of the face images that
are  more  likely  to  be  forged,  and  uses  the  images
before  and  after  masking  as  two views  for  contrastive
learning.  Maximizing  the  similarity  between  the  input
image and the masked image allows the IIN to focus on
the forgery region, which is beneficial to the detection
accuracy.

2　Related Work

2.1　Face forgery approaches

Early  researches  on  face  forgery  perform  face
swapping  and  expression  migration  using  simple
operations  based  on  neural  networks.  Korshunova
et al.[13] proposed the first face swapping approach for
replacing  a  target  face  with  an  input  face,  which
replaces only the identity (i.e., information to identify a
person) but keeps the expression unchanged. Recently,
Faceshifter[14] has  been  proposed  to  generate  high-
fidelity forgery faces by integrating identity embedding
of  the  input  face  and  the  attribute  embedding  of  the
target face.

Compared  to  face  swapping,  face  reenactment
produces  more  realistic  faces  and  is  therefore  more
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Fig. 1    Training of IIN is individually implemented on four
training  datasets,  which  are  generated  by  four  kinds  of
forgeries  (i.e.,  Deepfake,  Face2Face,  FaceSwap,  and
NeuralTextures),  respectively.  The  parameter  is  deployed
to control the order of training. The generalization ability of
trained  IIN  is  tested  on  unknown  datasets  (i.e.,  Celeb-DF
and DFDC).
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threatening.  Face2Face[15] and  NeuralTexture[16] were
proposed  to  perform  smooth  expression  manipulation.
Face2Face developed a dense photometric consistency
measure  for  facial  expression  tracking  and  achieved
reenactment  through  effective  deformation  transfer.
NeuralTexture  has  achieved  higher  face  fidelity  using
neural  networks.  Fried  et  al.[17] tried  to  modify  the
talking-head  video  to  manipulate  the  speech  content
smoothly.  Suwajanakorn  et  al.[18] realized  the
transformation  from  audio  to  video,  and  successfully
constructed  the  mouth  shape  and  texture  of  the  input
audio to generate the forgery video.

Overall, these face forgery techniques have been able
to produce high-fidelity forged faces to threaten social
security. Therefore, the research on FFD is urgent.

2.2　Face forgery detection

Recently,  many  approaches  have  been  proposed  for
FFD  and  made  great  progress[19, 20].  Early  approaches
mostly extract low-level features as classification clues
to distinguish real faces from forgery ones. Li et al.[21]

detected  forgery  artifacts  by  comparing  texture
differences  around  forged  face  boundaries.  In  some
novel  approaches[22, 23],  high-frequency  details  are
explored  additionally  for  FFD.  Gu  et  al.[24] adopted
both  the  RGB  and  fine-grained  frequency  clues  for
FFD.  Although  these  approaches  can  achieve  superior
accuracy  in  the  known  forgeries,  the  extracted  low-
level  features  limits  their  generalization  ability  to  the
unknown forgeries.

To improve the generalization ability, Li and Lyu[25]

concluded  that  most  existing  face  forgery  approaches
leave the common trace of blending an altered face into
an  existing  background  image,  which  is  the  key  for
generalization  improvement.  Liu  et  al.[26] adopted  the
phase  spectrum  to  detect  common  artifacts  of  face
forgeries for FFD. Miao et al.[27] captured fine-grained
forgery details in the spatial and frequency domains to
improve  the  generalization  ability.  Although  these
approaches  attempt  to  capture  the  common  features
among  different  kinds  of  forgeries,  they  fail  to
decouple  the  common  and  special  features,  limiting
their accuracy, and generalization.

2.3　Continual learning

The continual  learning technique  aims to  learn  certain
parameters  by  employing  a  memory  to  store
information  of  previous  tasks,  which  can  be  broadly
categorized  into  two  groups,  i.e.,  regularization-based

approaches  and  experience  replay  approaches.  In
regularization-based  approaches[28, 29],  memory  stores
previously important parameters and avoids modifying
crucial  parameters  of  previous  tasks  when  training  a
new task. In experience replay approaches[30, 31], partial
samples of the previous task are stored in memory and
applied to the process of training a new task.

Recently,  some  researchers  try  to  design  deep  fake
detection  algorithms  using  continual  learning.  Khan
and Dai[32] proposed a video transformer with face UV
texture  map  for  deepfake  detection  to  improve
detection  accuracy.  Kim et  al.[33] designed a  continual
learning  framework  with  knowledge  distillation  and
apply it  to deep fake detection. In summary, we argue
that  most  of  the  existing  approaches  fail  to  decouple
the common and special  features across a  sequence of
tasks. Different from those approaches, we propose the
IIN to decouple the common and special features with
continual  learning  to  resolve  the  generalization
problem of FFD.

3　Approach

In this paper, we propose an IIN, which learns both the
common  features  and  special  features  from  different
tasks.  That  allows  it  to  achieve  higher  accuracy  and
generalization  in  a  continual  learning  framework.  The
proposed  IIN  mainly  includes  the  two  modules,  i.e.,
intra-module and inter-module. (1) The inter-module is
dedicated  to  learning  common,  task-agnostic  features
for  guiding  the  intra-module;  (2)  the  intra-module
learns  special,  task-accessable  features  and
consolidates  the  knowledge  from  the  inter-module  by
using the labelled data in the current task.

K

The  two  modules  of  the  IIN  work  in  parallel.  First,
the  inter-module  learns  the  unlabeled  samples  in  a
fixed  size  memory  to  optimize  self-supervised
learning (SSL) loss. At the same time, the inter-module
learns  the  common  features,  which  can  also  help  the
intra-module  optimize  the  learning  of  the  special
features. Second, the objective of the intra-module is to
optimise a supervised learning (SL) loss using labelled
samples  in  the  current  task.  Due  to  the  general
knowledge  gained  from  the  inter-module,  the  intra-
module  can  adapt  faster  to  the  coming  samples  for
higher  accuracy.  Moreover,  the  encoders  of  both
modules  have  the  same  structure  and  the  features
learned  by  both  sides  can  be  easily  fused  for  feature
interaction.
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3.1　Forged trace masking module

Existing  forgeries  methods  generally  adopt  manual
operations  or  neural  networks  to  generate  fake  faces.
The quality of different regions of generated fake face
is  different,  and  lower  quality  regions  have  higher
possibility  of  being  fake  regions.  To  efficiently  and
accurately  detect  the  forgery  regions,  it  is  reasonable
for  the  neural  network  to  focus  more  on  the  lower
quality  regions,  i.e.,  forgery  regions  with  higher
suspicion.  Therefore,  in  the  proposed  approach,  we
select  the  forgery  regions  with  high  suspicion  for
learning the detection network.

The main idea of the forged trace masking module is
to  mask  the  high  suspected  regions  and  make  the
masked  image  closer  to  the  original  for  contrastive
learning. The FTMM is shown in Fig. 2. We take a pre-
trained  extractor  to  calculate  the  gradients  of  the
original  image  and  select  the  highest  gradient  regions
to  mask  them.  The  masking  process  can  be  described
as follows:
 

Im = r · Io (1)
r Io

Im

where  represents  the  forgery  suspicion  regions, 
and  represent the original image and masked image,
respectively. The masked and original images are given

as  two  views  for  contrastive  learning.  The  only
difference  between  the  two  views  is  the  masked
regions, and making them closer allows the network to
pay  more  attention  to  the  masked  regions  to  achieve
higher classification accuracy.

3.2　Inter-module

3.2.1　Structure

Va K
Vb

The  inter-module  is  responsible  for  capturing  the
common  features  between  the  different  forgery  tasks
and  using  them to  guide  the  learning  of  intra-module.
As  shown  in Fig.  3,  the  inter-module  receives  two
different views for contrastive learning. The first  view

 is  the  original  image  provided  by  memory  and
the second view  is the masked image from FTMM.
Since  samples  of  past  tasks  are  stored  in  memory
allows  the  model  to  learn  new  knowledge  while
reviewing  previous  knowledge  to  acquire  connections
between tasks.
3.2.2　Loss function

Linter

The  obtained  two  views  are  applied  to  optimize  a
contrastive  loss  by  training  a  self-supervised
encoder.  To  minimize  computational  resources  while
obtaining  common  features,  we  choose  the  SimSiam
loss[34] as  our  self-supervised  optimization  objective
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Fig. 2    Forged trace masking module (FTMM) uses an extractor to calculate the gradients of the original image for masking
the highly suspected regions.
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Fig. 3    Training of IIN, in which the memory mixes samples from the current and previous tasks, and feeds them to the IIN.
FTMM calculates the highly suspected regions of samples from memory and masks them for contrastive learning. The inter-
module and intra-module work simultaneously, and are linked by feature fusion. The final forgery features will be applied to
both location detection and classification in FFD.
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Za Zb

for the following advantages compared to the previous
self-supervised  loss:  (1)  for  negative  samples,  no
additional  memory  space  is  required  (MOCO[35]),  (2)
no need for two duplicate networks (BYOL[36]), and (3)
no  requirement  for  handcrafted  pretext  loss
(RotNet[37]). The two views  and  are fed to inter-
module to obtain two features, i.e.,  and . Then, a
prediction MLP head transforms the output of one view
and  compares  it  to  the  other  view.  The  loss  of  inter-
module is defined as
 

Linter =
1
2

(D(Pa,ψ(Zb))+D(Pb,ψ(Za))) (2)

P ψ(·)
D(·)

where  is the output of the predictor,  is  the stop
gradient  operation,  and  is  the  negative  cosine
similarity,
 

D(Pa,Zb) = − Pa

∥Pa∥2
· Zb

∥Zb∥2
(3)

∥·∥2 l2where  is -norm.  SimSiam  applies  the  same
weights  to  construct  two  sets  of  features  for
comparison.  Moreover,  stopping  the  gradient
propagation on one side of each set allows the network
to  implicitly  alternate  in  updating  the  two  sets  of
parameters.

3.3　Intra-module

3.3.1　Structure
To  obtain  both  forgery  location  and  classification,  we
choose  UNet[38] as  the  architecture  for  the  intra-
module.  As  shown  in Fig.  3,  UNet  extracts  forgery
feature  in  its  encoder  layers  and  produces  the  forgery
location by concatenating the multi-scale features in its
decoder  layers.  Previous  works[39, 40] have
demonstrated  that  both  the  low-level  and  high-level
features are critical in FFD.

{ci}Li=1
L x

L
{si}Li=1

The  intra-module  is  responsible  for  learning  the
special features for the current task under the guidance
of  the  inter-module.  To  make  the  intra-module  more
easily  adaptable  to  the  feature  guidance  of  the  inter-
module,  we mix the  coming data  and memory data  as
training  data  for  the  intra-module.  At  the  feature
extraction  stage,  two  structurally  identical  encoders
fuse  the  feature  maps  of  the  corresponding  layers.
Specifically,  let  be  the  feature  maps  extracted
from  the  inter-module's  layers  on  the  image .
Correspondingly,  intra-module  utlizes  layers  to
extract  features  maps .  Feature  fusion  can  be
expressed as follows:
 

si = ξi(s′i−1) (4)

 

s′i = si⊗ ci, i = (0,1, ...,L) (5)

ξi(·) i s′i−1 s′i
i−1 i
s′L

L
s′L

where  is  the  layer  of  intra-module,  and 
are  the  fused  feature  maps  of  layer  and ,
respectively.  The  final  fused  features  can  be
obtained  after  layers  propagation.  Extracted  feature

 are  applied  for  both  forgery  location  detection  and
classification.
3.3.2　Loss function

M̃

For  location  detection,  the  decoder  of  UNet  performs
an  up-sampling  operation  to  produce  a  forgery  mask

.  We use Diceloss loss function has been applied to
perform the detection of forgery location,
 

Lloc = 1−
2
∣∣∣M∩ M̃

∣∣∣
|M|+

∣∣∣M̃∣∣∣ (6)

M M̃where  is  the  label  mask  and  is  the  predicted
forgery mask.

In  the  forgery  classification,  we  apply  a  forgery
classification module consisting of a set of simple fully
connected  layers  to  distinguish  forgery  faces.  The
binary  cross  entropy  loss  is  adopted  to  optimize  the
parameters of the model,
 

Lcls = −(c · log(c̃))+ (1− c) · log(1− c̃) (7)
c c̃where  is  the  class  label  and  is  the  predicted  class

label.

m {x,c}
h

To  recall  knowledge  of  previous  tasks,  we  create  a
mini memory  to store samples and labels  for a
past task . We simultaneously train the data from the
current  task  and  a  past  task  to  achieve  experience
replay  (ER).  The  experience  replay  loss  can  be
expressed as follows:
 

Lexp =
1
|m|

|m|∑
i=1

BCE(c̃i,ci)+KL(c̃i||c̃h) (8)

BCE(·) KL(·)
c̃h

h

where  is the binary cross entropy loss,  is
the  KL-divergence, and   is  the  prediction  of  intra-
module at the end of task .

Lloc Lcls LexpThree losses, , , and  are adopted to train
the  intra-module,  and  we set  three  balance  parameters
to  regulate  the  training  process.  During  the  training
process, the balancing parameters will be automatically
updated to achieve higher accuracy with the update of
network parameters. In our experiments, we implement
an  effective  automatic  balancing  strategy  (ABS)[41] to
optimize the balancing parameters. The final loss of the
intra-module can be expressed as follows:
 

Lintra =
1

2µ2
1

Lloc+
1

2µ2
2

Lcls+
1

2µ2
3

Lexp+ logµ1µ2µ3 (9)
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µ1 µ2 µ3where , , and  are optimizable parameters.

4　Experiment

×

Datasets: The  FaceForensic++(FF++)  is  made  up  of
1000  real  videos  and  4000  forged  videos  constructed
from  four  kinds  of  forgeries:  DeepFake  (DF),
Face2Face  (F2F),  FaceSwap  (FS),  and  NeuralTexture
(NT).  Each  kind  of  forgeries  contains  1000  fake
videos,  which  can  be  divided  into  three  parts:  700
training  videos,  200  validation  videos,  and  100  test
videos.  DFDC[42],  Celeb-DF[43],  DeeperForensics-1.0
(DF-1.0)[44], and FaceShifter (Shifter)[45] are adopted as
unknown  approaches  to  test  generalization  ability.
There  are  2500  real  and  2500  fake  videos  in  DFDC,
178 real  and 340 fake videos in  the Celeb-DF, 50 000
real  and 10 000 fake  videos  in  DF-1.0  and  1000  real
and  1000  fake  videos  in  Shifter.  For  each  video  we
have  taken  images  at  20  second  intervals  to  make  up
the  image  datasets  and  all  images  are  resized  to
128 128.

Implementation  details: The  proposed  IIN  is
trained  on  the  NVIDIA  GTX  GeForce  3090  GPU
platform,  which  is  paired  with  24  GB  memory.  All
experiments  were  implemented  using  the  Pytorch
framework. We choose the UNet as the architecture for
intra-module  to  detect  forgery  location.  For  the
encoders of the IIN, we use the EfficientNet-b0 as the
backbone  network.  The  training  process  is  performed
end-to-end,  updating  the  parameters  of  IIN  for  10
epochs.  We  adopt  Adam  for  our  optimizer  with  the

10−2 10−6

µ1 µ2 µ3

learning rate ranged from  to .  Moreover, the
parameter , ,  and  are  finally  set  to  be  0.3015,
0.3561, and 0.3387 when the network converges stably.
The  predicted  classification  accuracy  and  location
masks  are  reported.  The  link  of  the  souce  code  is:
https://github.com/QihuaZZ/AIMSGroup-IIN/.

4.1　Accuracy evaluation on FF++

t

With the  rule  of  training one forgery for  one task,  the
training  order  of  the  forgeries  in  FaceForensic++  is
arranged  as  (1)  DF,  (2)  F2F,  (3)  FS,  and  (4)  NT.  For
different  task  identifier ,  the  forged  location
predictions  for  these  forgeries  are  shown  in Fig.  4.
Moreover, the AUC evaluation for these four forgeries
is shown in Fig. 5a.

K

Lexp

m

As  shown  in Fig.  5a,  it  is  clear  to  see  that  IIN
performs the  highest  AUC on the  forgery  faces  of  the
current  task.  That  indicates  that  the  model  can  easily
achieve  excellent  performance  in  the  intra-task
condition.  After  training  the  first  task,  the  model  can
hardly  detect  the  forgery  faces  of  the  later  tasks.
However,  when  the  training  of  the  last  task  is
completed,  the  performance of  the  model  improved in
the  cross-task  condition.  The  main  reason  for  this  is
that the model replay experience from previous tasks to
avoid  catastrophic  forgetting.  Specifically,  the  inter-
module  receives  the  mixed  data  from  memory  to
extract  the  common  features  of  different  forgeries  to
guide  the  learning  of  the  intra-module.  Moreover,  the
experience replay loss  is optimized by learning the
data  from  mini  memory .  Thus,  IIN  can  learn  the
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intrinsic  commonality  between  different  forgeries  to
avoid catastrophic forgetting.

4.2　Generalization  evaluation  on  unknown
forgeries

t

To  evaluate  the  performance  of  the  IIN  on  unknown
forgery  datasets,  the  Celeb-DF,  DFDC,  DF-1.0,  and
shifter  are  also  employed  to  test  the  generalization
ability  for  different  task  identifier .  The  AUC  values
for the four datasets are shown in Fig. 5b.

t
From Fig. 5b, it is clear that the AUC values for the

four  datasets  increase  as  the  task  identifier  changes.
IIN  requires  the  data  from  multiple  forgeries  to  learn
common  and  special  features  to  obtain  commonality
between  different  kinds  of  forgeries  to  improve
generalization  ability.  Thus,  after  completing  the  last
task, the model gains strong inference, leading to high
accuracy  for  unknown  forgeries.  Moreover,  we
compare  the  final  generalization  accuracy  with  the
previous forgeries as shown in Table 1. Obviously, our
approach  achieves  the  highest  detection  accuracy  in
both the unknown forgery datasets.

4.3　Data distribution for datasets in FF++

To  further  demonstrate  the  commonality  between  the
datasets in FF++. We adopt Adam[52] for our optimizer
with the learning rate and apply t-distributed stochastic
neighbor  embedding  (t-SNE)[53] to  reduce  the
dimensionality  of  the  samples  of  the  four  datasets  in
FF++ to observe the data distribution. From Fig. 6, the
data distribution of the four datasets is highly coincided
in  a  small  region,  which  indicates  that  there  could  be
commonality features among them. The learning of the
commonality  allows  the  model  to  focus  more  on  the

common features between the datasets, thus improving
the generalization to unknown datasets
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Table 1    Generalization comparisons with state of the arts.
(%)

Approach Celeb-DF DFDC DF-1.0 Shifter
MesoInception[46] 50.24 49.87 50.58 51.36
Face artifacts[18] 57.32 60.27 58.74 60.48

Head pose[47] 54.60 56.18 58.29 56.30
Xception+Reg[48] 71.20 70.48 69.79 71.21

LRNet[49] 57.40 59.26 59.17 58.80
Xception[46] 65.50 67.40 68.39 66.76
MTD-Net[40] 70.12 72.38 71.42 70.70

Schwarcz chellappa[50] 67.44 67.30 68.13 68.42
Yu et al.[51] 74.20 70.09 67.14 72.18

Video transformer[32] 70.18 68.37 71.39 72.69
CoReD[33] 74.68 72.46 70.62 69.89

IIN 75.44 74.16 73.39 74.69

 

 
Fig. 6    Data distribution for datasets in FF++.
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4.4　Robustness to unseen perturbations

Since  images  on  social  media  are  susceptible  to
processing, designing robust forgery detectors to resist
common perturbations is  necessary.  After  we train the
IIN on the FF++ dataset, this trained detector is applied
to  detect  FF++ samples  with  multiple  perturbations  to
evaluate  robustness.  These  perturbations  include:
changes  in  saturation,  changes  in  contrast,  adding
blockwise  distortions,  adding  white  Gaussian  noise,
blurring,  pixelating,  and  applying  video  compression.
The robustness comparisons are shown in the Table 2.

In Table  2,  it  is  clear  that  IIN  outperforms  other
approaches in resisting multiple common perturbations.
Obviously,  the  accuracy  of  methods  except  IIN
decreases  significantly  when  detecting  images  with
perturbations  affecting  high-frequency  content
including  blur,  pixelation,  and  compression.  Gaussian
noise  has  the  greatest  impact  on  the  prediction
accuracy of the detector due to the fact that it severely
disrupts key recognition features of the face. Moreover,
both  video  transformer  and  CoReD  are  vulnerable  to
the  block-wise  distortions  because  they  do  not
preprocess  the  input  image  making  the  trained  model
unable to cope with the perturbation. For IIN, the input
image is subjected to FTMM to mask the high suspect
region  to  achieve  image  enhancement,  and  then  the
masked  image  and  the  original  image  are  fed  into  the
inter-module  for  contrastive  learning  to  obtain  more

comprehensive features. Thus, IIN can easily resist the
block-wise  distortions  while  maintaining  high
generalization.

4.5　Generalization evaluation of different training
orders of datasets in FF++

In continual learning, multi-tasks are learned in a time
order.  During  the  training  process  of  IIN,  each  task  is
responsible  for  training  one  dataset  in  FF++,  and  the
training  order  of  different  datasets  may  affect  the
generalization ability.

We train the IIN in four different dataset orders and
evaluate  the  generalization  ability  on  Celeb-DF  and
DFDC  with  the  trained  models.  From Table  3,  it  is
clear that  the model trained with four different dataset
orders  all  achieve  high  generalization  ability  on  both
Celeb-DF  and  DFDC.  That  is  because  the  memory
stores  the  data  from  past  tasks,  and  the  inter-module
can extract the commonality between these mixed data
to  improve  the  generalization  ability.  Thus,  IIN  can
keep  high  generalization  ability  regardless  of  the
training order of datasets.

We also evaluate the generalization ability of the IIN
trained  with  the  mixture  of  all  face  forgeries  in  FF++
without  continual  learning.  Although  its  accuracy  is
similar  compared  to  IIN  trained  with  continual
learning,  it  requires  a  mixed  dataset  of  all  face
forgeries for each training process. However, the model
trained by continual learning only needs to train a new

 

Table 2    Robustness to unseen perturbations.
(%)

Approach Clean Saturation Contrast Block Noise Blur Pixel Compress
Xception[46] 99.81 99.32 98.63 99.24 53.82 60.27 74.25 62.13
LRNet[49] 99.72 96.51 88.67 99.27 58.66 63.71 65.73 73.34

MTD-Net[40] 99.85 97.87 95.23 96.18 63.24 58.53 74.16 81.47
Yu et al.[51] 99.84 98.63 97.74 94.46 58.74 72.14 89.67 84.92

Video transformer[32] 99.66 87.64 97.89 78.12 65.43 68.98 69.86 69.89
CoReD[33] 99.82 89.29 98.19 83.25 68.38 72.87 76.57 75.44

IIN 99.88 99.82 99.37 99.68 72.16 88.94 83.89 90.67

 

Table 3    Generalization evaluation of four different training orders and the mixture of all face forgeries in FF++.
(%)

Test dataset
Training order

Order 1 Order 2 Order 3 Order 4 No order
DF F2F FS NT F2F FS NT DF FS NT DF F2F NT DF F2F DF Mixture of all

Celeb-DF 75.44 73.72 74.63 75.16 73.46
DFDC 74.16 73.23 73.79 73.28 72.18
DF-1.0 74.47 73.68 73.12 72.15 73.74
Shifter 75.86 75.49 73.67 74.18 70.89
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task  on  the  new  forgery  dataset  thus  reducing  the
training  cost.  Face  forgery  algorithms  progress
continuously,  and  face  forgery  detection  algorithms
need  to  progress  continuously  accordingly,  so  a
continuous learning framework is very applicable.

4.6　Ablation study

To  gain  a  deeper  understanding  of  IIN,  we  discuss
three  of  its  main  factors  that  can  affect  accuracy,  i.e.,
the inter-module for commonality learning, the FTMM
for forged regions masking, and the ABS for parameter
balancing.
4.6.1　Effect of inter-module and FTMM
The  inter-module  is  designed  for  obtaining  the
common  features  by  self-supervised  learning.  In  the
inter-module,  unlabeled  data  is  utilized  for  training  to
obtain  comprehensive  common  features  to  guide  the
learning  of  the  special  features  to  improve  the
generalization ability. The FTMM is designed to mask
highly  suspected  regions  of  the  original  image.
Contrastive learning among the masked image and the
original  image  is  implemented  so  that  IIN  can  pay
more  attention  on  the  forged  regions  to  improve  the
detection  accuracy.  Here  we  conduct  the  ablation
experiment  to  prove  their  effectiveness.  As  listed  in
Table  4,  the  experimental  results  on  known  forgeries
and unknown forgeries  that  both the Inter-module and
FTMM have positive effect on our scheme.
4.6.2　Effect of ABS

µ1 µ2 µ3
The  ABS  is  utilized  to  automatically  select  the
balancing  parameters , ,  and .  We  train  IIN
with  ABS  for  10  epochs.  From Fig.  7,  our  model
achieves  better  generalization  ability  by  implementing
ABS.

4.7　Limitation

In this paper we propose an IIN by feature decoupling
to  improve  the  generalization  ability.  However,  our
approach  still  has  the  following  limitation.  Although

we  innovate  on  feature  decoupling  and  achieve  high
generalization ability, the selection of training data has
a significant impact on generalization ability. There is a
large  gap  between  the  forgeries  in  different  forgery
datasets.  If  the  training  data  comes  from  multiple
datasets,  there  may  not  be  similar  modification  traces
between the different forgeries, so it is difficult for the
network  to  extract  their  common  features  resulting  in
low generalization ability.

Nevertheless,  we  believe  the  proposed  IIN  can  be  a
useful strategy to improve the generalization ability of
FFD.  Meanwhile,  we  hope  that  the  shortcomings
exposed  by  this  work  will  contribute  to  the
advancement  of  the  field  and  give  rise  to  innovative
thinking.

5　Conclusion

In  this  paper,  a  novel  FFD  approach  based  on  inter-
intra  network  by  continual  learning  is  proposed  to
improve  the  generalization  ability.  First,  the  intra-
module  works  as  a  backbone  module  to  learn  the
special  features of  the forgery samples within the task
to obtain both detection accuracy and forgery location.
Meanwhile,  considering  that  different  forgeries  may
leave  similar  forgery  traces,  the  inter-module  is  also
designed  to  capture  those  common features  across  the
tasks to improve the generalization ability of the IIN to
unknown  forgeries.  These  two  modules  work
simultaneously  and  the  inter-module  guides  the  intra-
module  to  learn  superior  forgery  features  by  feature
fusion. Moreover, the FTMM is designed to mask high
suspected  regions  of  the  forgery  faces  sampled  from
the memory, the masked image, and the original image
are  fed  together  into  the  inter-module  for  contrastive
learning, allowing the IIN to focus more on the forgery
regions  for  higher  detection  accuracy.  Extensive
experiments  show  that  our  approach  achieves  high
generalization  ability  to  unknown  forgeries  as  well  as
high detection accuracy to known forgeries.

 

Table 4    Ablation study of inter-module and FTMM.
(%)

Model setting
Dataset

Known forgery Unknown forgery
Intra-module Inter-module FTMM DF F2F FS NT Celeb-DF DFDC DF-1.0 Shifter

√ 96.74 96.03 97.24 96.19 72.36 71.19 69.43 70.84
√ √ 97.31 96.87 96.39 96.58 75.44 74.16 73.39 74.69
√ √ 99.16 99.48 98.84 99.73 71.61 72.25 69.44 70.16
√ √ √ 99.23 99.19 99.13 99.28 75.37 74.68 74.12 73.86
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