
 

Two-Stage Submodular Maximization Under Knapsack Problem
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Abstract: Two-stage submodular maximization problem under cardinality constraint has been widely studied in

machine  learning  and  combinatorial  optimization.  In  this  paper,  we  consider  knapsack  constraint.  In  this

problem, we give  articles and  categories, and the goal is to select a subset of articles that can maximize

the function . Function  consists of  monotone submodular functions , , and each

 measures the similarity of each article in category . We present a constant-approximation algorithm for this

problem.
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1　Introduction

V n N
m

f j : 2V → R⩾0

j
S ⊆ V

The  problem  we  are  interested  in  is  related  to  the
Combinatorial Representation Problem (CRP). In CRP,
we are given a ground set  of  articles and a set  of

 categories,  and  nonnegative  monotone  submodular
functions  used  to  measure  the  similarity
of  each  article  in  category .  The  goal  is  to  select  a
subset  of articles that best represent the different
categories.  This  problem  can  be  formulated  as  the
following  two-stage  submodular  maximization

problem according to Ref. [2]:
 

max
S∈C1

F (S ) :=
m∑

j=1

max
T∈C2

f j (T ) (1)

C1 ⊆ V C2 ⊆ S
f j

C1 C2

f : 2V → R f (X)+ f (Y) ⩾
f (X∩Y)+ f (X∪Y) f (e | X) ⩾ f (e | Y) X ⊆
Y ⊂ V e ∈ V \Y f (e | X) = f (e∪X)− f (X)

f f (X) ⩽ f (Y)
X ⊆ Y ⊆ V

f (∅) = 0

1
2

(
1− e−1

)
1
2

(
1− e−2

)

k

where  and  are  two  constraint  sets,  and
 is  a  non-negative  monotone  submodular  function.

For example,  may be a cardinality constraint and 
may  be  a  matroid  constraint[2–4].  The  function

 is  said  to  be  submodular  if 
.  That is  for 

 and ,  where .
A set function  is called monotone if  for
all ,  and  it  is  said  to  be  normalized  when

.  There  are  several  papers  considering  the
related  problems.  In  Ref.  [2],  the  authors  used  local
search to design an approximation algorithm and get a

-approximation  ratio.  Recently,  the  authors
in  Ref.  [4]  used  the  replacement  greedy  algorithm  to
achieve  an  improved  approximation  ratio ,
and  the  authors  in  Ref.  [3]  developed  the  first
streaming  and  distributed  algorithms  for  this  problem.
In  addition,  authors  in  Ref.  [5]  considered  the
generalized -matroids  constraint.  Based  on
generalized  submodularity  ratio[6],  authors  in  Ref.  [7]
developed a parameterized streaming algorithm for the
two-stage  submodular  maximization.  In  Ref.  [8],
authors  considered  two-stage  submodular
maximization  based  on  submodularity  curvature[9–11].
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C1

In  Ref.  [12],  authors  considered  the  case  when  the
objective  can  be  negative  and  nonmonotone.  To  the
best of our knowledge, there are no previous results on

 being a knapsack constraint which can be seen as an
extension of the cardinality constraint.

C1

I (S)
k

S ⊆ V
1

2 (k+1)

(
1− e−(k+1)

)

In  this  paper,  we  assume  that  is  a  knapsack
constraint  and  is  the  family  of  the  common
independent  sets  of  a -matroid over  the same ground
set .  Our  contribution  is  to  present  a

-approximation  algorithm  for  this
problem with a new analysis.

The  rest  of  the  paper  is  organized  as  follows.  In
Section 2 we introduce some definitions and properties
of  submodular  function  and  matroid.  In  Section  3,  we
present the algorithms and analysis of Eq. (1). Finally,
we offer concluding remarks in Section 4.

2　Preliminary

V = {1, 2, . . . , n}
I V M = (V, I)

Definition 1    Given a ground set  and
a  family  of  subsets  of ,  a  matroid 
satisfies the following properties:

∅ ∈ I(1) ;
A ⊆ B ∈ I A ∈ I(2) If , then ;
A,B ∈ I | A| < | B|
u ∈ B\A A∪{u} ∈ I

(3)  If  and ,  then  there  exists  an
element  for which .

Next,  we  introduce  some  properties  of  matroid  and
submodular  function.  We  will  need  the  following
matroid property from Ref. [13] later.

M1, M2, . . . , Mk k
V M j

j ∈ {1, 2, . . . , k}
I j

Let  be  arbitrary  matroids  on the
common  ground  set .  For  each  matroid  (with

)  we  denote  the  set  of  its  independent
sets by .

M j = (V, I j)
j ∈ {1, 2, . . . , k}

A,B ∈ I j π j B\A→ A \B∪{∅}

Proposition  1 Let  be  a  matroid  for
every .  For  any  two  independent  sets

, there exists a mapping : ,
such that

(A\π j (b))∪b ∈ I j b ∈ B\A(1)  for all ;∣∣∣∣π−1
j (a)

∣∣∣∣ ⩽ 1 a ∈ A\B(2)  for all ;
Ab = {π1 (b), π2 (b), . . . , πk (b)} (A\Ab)∪b ∈

∩k
j=1I j b ∈ B\A
(3) let , then 

 for all .
f

2V → R+ X,Y ⊆ V
Proposition  2 For  any  submodular  function :

 and , we have
  ∑

u ∈ X

( f (Y ∪{u})− f (Y)) ⩾ f (X∪Y)− f (Y).

The next property is from Ref. [14].

f 2V → R+ X, Y ⊆ V {Ti}ℓi=1
Y \X

Proposition  3 Consider  a  monotone  submodular
function : .  Let ,  and  be  a
collection of subsets of , such that each element of

Y \X k appears in at most  of the subsets. Then
 

ℓ∑
i=1

( f (Y)− f (Y \Ti)) ⩽ k ( f (Y)− f (Y ∩X)).

3　Two-Stage  Submodular  Maximization
Subject  to  Knapsack  and  Matroid
Constraints

We  consider  Eq.  (1)  by  offering  an  approximation
algorithm  along  with  its  analysis  in  Sections  3.1  and
3.2, respectively.

3.1　Algorithm

X ADenote the gain of adding set  to the set  as follows:
 

∆
f
j (X, A) = f j (X∪A)− f j (A).

Y ⊆ A
x

Denote  the  gain  of  removing  a  set  and
replacing it with element  as follows:
 

∇ f
j (x, Y, A) = f j ({x}∪A \Y)− f j (A).

A I (x, A) =
{Y ⊆ A : A∪{x} \Y ∈ I}
x

Consider  the  set  and  define  the  set 
. Define the replacement gain of

 as follow:
 

∇ f
j (x, A) =
∆

f
j (x, A), if A∪{x} ∈ I;

max
{

0, max
Y ∈ I (x, A)

∇ f
j (x, Y, A)

}
, otherwise.

Rep f
j (x, A) xLet  be the set that is replaced by ,

 

Rep f
j (x, A) =
∅, if A∪{x} ∈ I;

arg max
Y ∈ I (x, A)

∇ f
j (x, Y, A), otherwise.

S = ∅The  algorithm  starts  with  an  empty  set ,  and
chooses  an  element  with  the  largest  ratio  of  marginal
gain  over  cost  in  every  round.  Property  1  guarantees
the correctness of the our algorithm.

3.2　Analysis

S ∗Define  as the optimal solution of Eq. (1),
 

S ∗ = arg max
c (S ) ⩽ B

m∑
j=1

max
T ∈ I (S )

f j (T ).

S ∗j f jDenote  as the optimal solution of ,
 

S ∗j = arg max
T ∈ I (S ∗)

f j (T ).

Based  on  Algorithm  1,  we  introduce  the  following
notations:
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S●  is the solution obtained by the greedy heuristic;
vi S i = 1, 2, . . . , |S |●  is the i-th unit added to  ( );
S i F (S )

vi S i = ∪i
k=1{vk}

i = 1, 2, . . . , |S | S 0 = ∅ S |S | = S

●  is the set of function  obtained by greedy
algorithm  after  adding  (i.e., ,  for

, with , ); and
T i

j f j (T )

vi S

●  is the set which is chosen by  after adding
 to the set .
We  first  establish  the  following  two  Lemmas  to

bound the increment in each iteration.
i = 1, 2, . . . , |S |+1Lemma 1　For , we have

  ∑
e∈S ∗

m∑
j=1

∇ f
j (e,T i−1

j ) ⩽
B
cvi

m∑
j=1

∇ f
j (vi, T i−1

j ).

3Proof　From Line  of Algorithm 1, we have
 

m∑
j=1

∇ f
j (e,T i−1

j )

ce
⩽

m∑
j=1

∇ f
j (vi,T i−1

j )

cvi

, ∀e ∈ S ∗.

Thus,
  ∑

e∈S ∗

m∑
j=1

∇ f
j (e,T i−1

j ) ⩽
m∑

j=1

∇ f
j (vi,T i−1

j )

∑
e∈S ∗

ce

cvi

⩽

B
cvi

m∑
j=1

∇ f
j (vi,T i−1

j ).

■
i = 1, 2, . . . , |S |+1Lemma 2　For , we have

 

B
cvi

m∑
j=1

∇ f
j (vi,T i−1

j ) ⩾

m∑
j=1

∑
e∈S ∗j\T

i−1
j

(
∆

f
j (e,T i−1

j )−

∆
f
j (Ae, {e}∪T i−1

j \Ae)
)
.

Proof　Lemma 1 implies that
  ∑

e∈S ∗

m∑
j=1

∇ f
j (e,T i−1

j ) ⩽
B
cvi

m∑
j=1

∇ f
j (vi,T i−1

j ).

πt : S ∗j \T i−1
j →

T i−1
j \S ∗j ∪{∅} t ∈ {1, 2, . . . , k} (T i−1

j \Ae)∪
{e} ∈ ∩k

t=1It, Ae = {π1 (e), π2 (e), . . . , πk (e)}

From Property 1, there exist mappings 
 ( ),  such  that 

 where .
Therefore,
  ∑

e∈S ∗

m∑
j=1

∇ f
j (e,T i−1

j ) =
m∑

j=1

∑
e∈S ∗

∇ f
j (e,T i−1

j ) ⩾

m∑
j=1

∑
e∈S ∗j\T

i−1
j

∇ f
j (e,T i−1

j ) ⩾

m∑
j=1

∑
e∈S ∗j\T

i−1
j

(
f j ({e}∪T i−1

j \Ae)− f j (T i−1
j )

)
=

m∑
j=1

∑
e∈S ∗j\T

i−1
j

(
f j ({e}∪T i−1

j \Ae)−

f j ({e}∪T i−1
j )+ f j ({e}∪T i−1

j )− f j (T i−1
j )

)
=

m∑
j=1

∑
e∈S ∗j\T

i−1
j

(
∆

f
j (e,T i−1

j )− (
f j ({e}∪T i−1

j )−

f j ({e}∪T i−1
j \Ae)

))
=

m∑
j=1

∑
e∈S ∗j\T

i−1
j

(
∆

f
j (e,T i−1

j )−

∆
f
j (Ae, {e}∪T i−1

j \Ae)
)
,

∇ f
j (e,T i−1

j ) ⩾ 0 S ∗j \T i−1
j ⊆ S ∗

∇ f
j (e,T i−1

j )

where  the  first  inequality  follows  because
 and ,  and  the  second  is

due to Property 1 and the definition of . ■
i = 1, 2, . . . , |S |+1

m∑
j=1

∑
e∈S ∗j\T

i−1
j

(
∆

f
j (e,T i−1

j )−∆ f
j (Ae, {e}∪T i−1

j \Ae)
)
⩾

m∑
j=1

(
f j (S ∗j)−

(k+1) f j (T i−1
j )

)
.

Lemma  3　 For ,  we  have

Ar
e = {π1 (e), π2 (e), . . . , πr (e)}

r = 1, 2, . . . , k A0
e = ∅ Ak

e = Ae

Proof　 Denote ,  for
 and , . We have

 

 

g

Ø
Ø Ø Ø Ø

Rep

…

…

≤

;
;

;

;

;

;

;

≤ ≤

≤

≤

≤
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∆
f
j (Ae, {e}∪T i−1

j \Ae) =

f j ({e}∪T i−1
j )− f j ({e}∪T i−1

j \Ae) =

f j ({e}∪T i−1
j )− f j ({e}∪T i−1

j \ {π1 (e),π2 (e), . . . ,πk (e)}) =
k∑

r=1

(
f j ({e}∪T i−1

j \Ar−1
e )− f j ({e}∪T i−1

j \Ar
e)
)
⩽

k∑
r=1

(
f j (T i−1

j \Ar−1
e )− f j (T i−1

j \Ar
e)
)
=

f j (T i−1
j )− f j (T i−1

j \Ae) = ∆ f
j (Ae,T i−1

j \Ae),

f jwhere the inequality is from the submodularity of .
So we have

 

m∑
j=1

∑
e∈S ∗j\T

i−1
j

(
∆

f
j (e,T i−1

j )−∆ f
j (Ae, {e}∪T i−1

j \Ae)
)
⩾

m∑
j=1

∑
e∈S ∗j\T

i−1
j

(
∆

f
j (e,T i−1

j )−∆ f
j (Ae,T i−1

j \Ae)
)
.

Property 2 implies that
  ∑

e∈S ∗j\T
i−1
j

∆
f
j (e,T i−1

j ) =

∑
e∈S ∗j\T

i−1
j

(
f j ({e}∪T i−1

j )− f j (T i−1
j )

)
⩾

f j (S ∗j ∪T i−1
j )− f j (T i−1

j ).

Property 3 implies that
  ∑

e∈S ∗j\T
i−1
j

∆
f
j (Ae,T i−1

j \Ae) =

∑
e∈S ∗j\T

i−1
j

(
f j (T i−1

j )− f j (T i−1
j \Ae)

)
⩽

k
(

f j (T i−1
j )− f j (T i−1

j ∩S ∗j)
)
⩽ k f j (T i−1

j ).

Together, we have
 

m∑
j=1

∑
e∈S ∗j\T

i−1
j

(
∆

f
j (e,T i−1

j )−∆ f
j (Ae, {e}∪T i−1

j \Ae)
)
⩾

m∑
j=1

(
f j (S ∗j ∪T i−1

j )− (k+1) f j (T i−1
j )

)
⩾

m∑
j=1

(
f j (S ∗j)− (k+1) f j (T i−1

j )
)
.

■
According  to  Lemmas  2  and  3,  we  have  the

following corollary.
i = 1, 2, . . . , |S |+1Corollary 1　For , we have

 

B
cvi

m∑
j=1

∇ f
j (vi,T i−1

j ) ⩾
m∑

j=1

(
f j (S ∗j)− (k+1) f j (T i−1

j )
)
.

Xi−1 =
∑m

j=1 f j (T i−1
j )

X∗ =
∑m

j=1 f j (S ∗j)
For convenience, we denote  and

.  According  to  the  Corollary  1,  we
have
 

Xi−Xi−1 ⩾
cvi

B
(X∗− (k+1)Xi−1) (2)

∀i = 1, 2, . . . , |S |+1
X∗ ⩾ (k+1)Xi

Lemma  4　 ,  if  we  assume
, then we have

 

(k+1)cvi ⩽ B, ∀i = 1, 2, . . . , |S |+1.

j ⩽ | S |+1 (k+1)cv j > B
Proof　 Suppose  for  contradiction  that  there  exists

, such that , then
 

X j ⩾
cv j

B
(X∗− (k+1)X j−1)+X j−1 >

1
k+1

(X∗− (k+1)X j−1)+X j−1 =
1

k+1
X∗,

which contradicts the assumption. ■
S FTheorem 1　Algorithm 1 returns a set , such that

 

F (S F) ⩾
1

2 (k+1)

(
1− e−(k+1)

)
F (S ∗).

Proof　We consider two cases.
t X∗ < (k+1)XtCase  1　 if  there  exists ,  such  that ,

then
 

F (S F) ⩾ F (Xt) ⩾
1

k+1
F (S ∗).

∀i = 1, 2, . . . , |S |+1Case 2　 , we have
 

X∗ ⩾ (k+1)Xi.

Rearranging Inequality (2), we obtain
 

1
k+1

X∗−Xi

1
k+1

X∗−Xi−1

⩽ 1−
(k+1)cvi

B
.

Therefore,
 

1
k+1

X∗−X|S |+1 ⩽
|S |+1∏
i=1

(
1−

(k+1)cvi

B

)
1

k+1
X∗ ⩽

|S |+1∏
i=1

e−
(k+1)cvi

B
1

k+1
X∗ = e−

|S |+1∑
i=1

(k+1)cvi

B
1

k+1
X∗ ⩽

e−
(k+1)B

B
1

k+1
X∗ = e−(k+1) 1

k+1
X∗ (3)

which is equivalent to
 

X|S |+1 ⩾
1

k+1

(
1− e−(k+1)

)
X∗,

X0 = 0
where  the  first  inequality  in  Formula  (3)  follows  that

,  the  second  inequality  in  Formula  (3)  holds
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1− x ⩽ e−x∑|S |+1
i=1 cvi > B

because , and the third inequality in Formula
(3) is due to .

From Algorithm 1, we also have
 

X|S |+1−X|S | ⩽
m∑

j=1

(
f j (T |S |j ∪{v|S |+1})− f j (T |S |j )

)
⩽

m∑
j=1

(
f j ({v|S |+1})− f j (∅)

)
=

m∑
j=1

(
f j ({v|S |+1})

)
⩽

m∑
j=1

f j ({u∗}),

f j

where  the  first  inequality  is  due  to  Line  14  of
Algorithm 1 and the second inequality follows from the
submodularity of .

Hence,
 

m∑
j=1

f j ({u∗})+X|S | ⩾ X|S |+1 ⩾
1

k+1

(
1− e−(k+1)

)
X∗,

implying that
 

max


m∑

j=1

f j ({u∗}),X|S |

 ⩾ 1
2 (k+1)

(
1− e−(k+1)

)
X∗. ■

4　Conclusion

In  this  paper,  we  consider  two-stage  submodular
maximization  problem  under  knapsack  constraint
which  can  be  seen  as  a  generalizati  on  of  cardinality
constraint， and  we  present  a  constant  approximation
algorithm for this problem with a new analysis.
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