
 

Enhancing Power Line Insulator Health Monitoring with a Hybrid
Generative Adversarial Network and YOLO3 Solution

Ramakrishna Akella, Sravan Kumar Gunturi*, and Dipu Sarkar

Abstract: In  the critical  field  of  electrical  grid  maintenance,  ensuring the integrity  of  power  line insulators  is  a

primary concern. This study introduces an innovative approach for monitoring the condition of insulators using

aerial surveillance via drone-mounted cameras. The proposed method is a composite deep learning framework

that  integrates  the “You  Only  Look  Once” version  3  (YOLO3)  model  with  deep  convolutional  generative

adversarial  networks  (DCGAN)  and  super-resolution  generative  adversarial  networks  (SRGAN).  The  YOLO3

model  excels  in  rapidly  and  accurately  detecting  insulators,  a  vital  step  in  assessing  their  health.  Its

effectiveness  in  distinguishing  insulators  against  complex  backgrounds  enables  prompt  detection  of  defects,

essential  for  proactive maintenance. This rapid detection is enhanced by DCGAN’s precise classification and

SRGAN’s  image  quality  improvement,  addressing  challenges  posed  by  low-resolution  drone  imagery.  The

framework’s  performance  was  evaluated  using  metrics  such  as  sensitivity,  specificity,  accuracy,  localization

accuracy,  damage  sensitivity,  and  false  alarm  rate.  Results  show  that  the  SRGAN+DCGAN+YOLO3  model

significantly outperforms existing methods, with a sensitivity of 98%, specificity of 94%, an overall accuracy of

95.6%,  localization  accuracy  of  90%,  damage sensitivity  of  92%,  and a  reduced false  alarm rate  of  8%.  This

advanced  hybrid  approach  not  only  improves  the  detection  and  classification  of  insulator  conditions  but  also

contributes substantially to the maintenance and health of power line insulators, thus ensuring the reliability of

the electrical power grid.
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1　Introduction

Regular  inspection  of  electrical  utility  equipment  is
essential  for  maintaining  system  reliability  and
minimizing  disruptions.  Traditional  methods,  such  as

manual  patrolling,  are  time-consuming  and  labor-
intensive. Insulators, crucial for grid protection, require
efficient  and  cost-effective  inspection  techniques[1].
These  insulators,  exposed  to  diverse  environmental
conditions,  face  challenges  such  as  decreased  surface
resistance  and  increased  susceptibility  to  over-voltage
and puncture due to ongoing leakage currents[2, 3]. High
humidity  and  exposure  to  corrosive  environments
further  exacerbate  their  vulnerability,  leading  to
potential  flash-overs[4, 5].  The  failure  of  high-voltage
insulators  can  lead  to  significant  network  outages  and
considerable financial losses.

1.1　Advancements in insulator health monitoring

The necessity  for  efficient  insulator  inspection has led
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to  the  development  of  innovative  monitoring
techniques.  Traditional  manual  inspections,  though
essential, are impractical for extensive and challenging
landscapes.  Thus,  image  classification-based  video
surveillance  has  emerged  as  a  more  effective
monitoring  approach.  Recent  research  has  focused  on
automating  the  assessment  of  high-voltage  insulators.
The  early “Buzz  method”[6],  which  involves  physical
inspection  under  high  voltage,  has  given  way  to  more
advanced  techniques.  These  include  the  analysis  of
partial  discharge-generated  electromagnetic  waves
using  high-frequency  signals  (30–300  MHz)[7].  The
fractal  algorithm  is  now  employed  to  analyze
frequency  spectra  from  fast  fourier  transform  for
detecting insulator defects. Moreover, concerns such as
the  impact  of  algae  fungus  on  outdoor  electrical  grid
insulation  have  been  identified[8].  Recent  proposals
include  a  hybrid  method  combining  wavelet  analysis
with  support  vector  machines  for  monitoring  insulator
health[9],  and similar  techniques have been applied for
detecting  insulation  damages  in  large  generators[10].
The  introduction  of  classifiers  like  naive  Bayes  and
more  advanced  systems  such  as  support  vector
machines  (SVM)  and  random-forest  has  further
enhanced  the  efficiency  of  insulation  damage
detection[11, 12].

1.2　Deep  learning  and  UAVs  in  insulator
monitoring

To  overcome  the  limitations  of  traditional  machine
learning,  deep  learning  algorithms  have  been
introduced for object extraction and classification from
images[13].  Aerial  surveillance  using  unmanned  aerial
vehicles  (UAVs)  has  emerged  as  an  effective  method
for  insulator  health monitoring,  offering advantages in
terms of flexibility, low operation costs, and advanced
computer  vision  for  real-time  analysis[14, 15].  Despite
their  effectiveness,  deep  learning  methods  require
extensive  datasets,  necessitating  various  data
augmentation strategies, such as image modification[16].
Singh et al.[17] presented a computer vision system that
utilized infrared thermal (IRT) cameras to automate the
examination  of  power  line  insulators,  thereby
minimizing  the  requirement  for  dangerous  hand
inspections.  The  system  utilizes  machine  learning,
specifically a Gaussian kernel support vector machine,
to  accurately  categorize  defects  in  insulators  based  on
IRT images. The study conducted by Stefenon et al.[18]

presented  a  novel  hybrid  approach  for  forecasting

failures  in  electric  power  distribution  insulators  by
analyzing  leakage  current  time  series.  Utilizing  the
Christiano–Fitzgerald random walk filter and the group
data-handling  mechanism,  this  method  surpasses
conventional models in terms of accuracy. However, a
primary  limitation  of  the  research  is  its  controlled
laboratory  environment,  which  may  not  fully  capture
the  intricacies  of  the  real  world.  Despite  this,  the
approach  shows  considerable  potential  in  improving
the  reliability  of  power  supply  by  proactively
identifying faults.

1.3　Limitations of current methods

Most  of  the  methods  mentioned  above  have  the
following limitations:

●  Manual  inspection  involves  much  expense  and
risk.

● The size of the dataset affects the accuracy of deep
learning algorithms.

●  Low-resolution  (LR)  drone  images  reduce  the
detection  efficiency  of  deep-learning-assisted
techniques.

●  The  accuracy  of  detection  and  speed  of  current
deep  learning-based  object-detection  algorithms  are
poor.

The  major  contributions  of  the  current  study  are
fourfold:  (1)  The  resolution  of  low-quality  aerial
images  is  improved  by  using  super-resolution
generative  adversarial  networks  to  increase  the
accuracy.  (2)  The  data  size  problem  is  solved  by
creating  fake  images  using  deep  convolutional
generative  adversarial  networks  (DCGAN).  (3)
Advanced  object  detection  models  to  recognize
damages  in  the  insulator  are  evaluated  and  compared.
(4)  The  highest  detection  rate  is  obtained  using  the
suggested hybrid model. The remainder of the article is
organized  as  follows:  Section  2  explains  about
theoretical  background  of  advanced  deep  learning
models. The implementation of the suggested model is
discussed in Section 3. Section 4 details the experiment
results  and  analysis.  Section  5  summarizes  the  paper
with essential directions for future work.

2　Theoretical Background

Developments  in  computer  vision  have  improved
classification  and  object  detection  efficiencies
significantly,  especially  in  convolutional  neural
networks[19, 20]. Graphical processing systems have also
contributed  greatly  to  convolutional  neural  networks
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(CNN)  applications  by  using  parallel  operations  to
address  data-intensive  operations  issues  in  real-time.
The  proposed  hybrid  detector  consists  of  two  distinct
generative adversarial network models together with an
advanced  object  detection  model  called “You  Only
Look Once” version 3 (YOLO3).

2.1　Generative adversarial network

The  new  advancements  in  data-augmentation  enables
the  generation  of  synthetic  data  from  high-quality
images.  Generative  adversarial  network  (GAN)  is  a
promising  game  theory-inspired  method  of  generating
synthetic  images[21].  Since  GANs  gained  significant
prominence  in  computer  vision,  researchers  started
using  different  GANs to  produce  high-quality  images.
Latest  GAN’s  applications  include  image-to-image
conversion[22],  text-to-image  conversion[23],  and  3D
point  cloud  inpainting[24].  In  this  experiment,  we  used
one of the GAN variants to produce synthetic insulator
images to solve the imbalanced learning problem. Due
to the instability and intractability of the original GAN
model,  over  the  period,  DCGAN  is  frequently  using
with  good  results.  As  shown  in Fig.  1,  DCGAN  has
two  separate  networks,  G  is  a  generator  network,
receiving  random  noise Z as  input  and  generating
images  through  this  noise.  D  is  a  network  of
discriminators that decides whether an image is real or
not.  The  parameter  of  its  information  is X,  which
represents  an  image.  D  production  represents  the
probability of actual photos. In short, the discriminator

is a binary classifier that produces 0 for the fake image
and 1 for the exact image. Here, G and D are typically
non-linear  functions  of  mapping,  such  as
convolutionary neural networks.

2.2　Image super-resolution

UAV  image  capabilities  offer  many  benefits,  but  few
critical  concerns  regarding  image  resolution  must  be
acknowledged.  First,  factors  such  as  the  camera
quality, exposure times, movement, and environment’s
impact  degrade  aerial  image  resolution.  Second,  flight
altitude is often increased to reduce the time required to
take  wide-field  pictures,  resulting  in  low-resolution
images.  Extracting  information  from  low-resolution
images  is  not  reliable,  and  most  decisions  must  be
made  based  on  blurred  images.  Therefore,  the  authors
proposed two models to increase the resolution of low-
quality aerial photos, one with CNN (SRCNN) and the
other  with  GAN  (SRGAN).  The  purpose  for  SRCNN
and  SRGAN  models  is  to  retrieve  finer  textures  from
the picture as we scale it up so that its clarity can not be
affected.  There  are  other  techniques,  such as  Bi-linear
interpolation[25],  that  can  be  used  to  perform  this  job,
but  they  suffer  from  loss  of  image  information  and
smoothing.  From  the  proposed  system,  the  authors
found that the SRGAN has the highest peak signal-to-
noise  ratio  and  produces  a  more  eye-friendly  picture
compared to SRCNN.

2.3　Object detection model

Object detection means to identify objects in the image
and  to  classify  them  by  type.  In  this  work,  we  have
chosen  three  modern  object  detectors:  faster-RCNN,
YOLO2,  and  YOLO3.  Redmon  et  al.[26] suggested  a
novel  object  detection  model  known  as  YOLO:  You
Only Look Once. It transfers the n×n image only once
in a fully convolutional neural network, which makes it
quite fast. Later, it splits the entire image into grids of
size m×m and produces bounding boxes and their class
probabilities.  However,  localization  errors  are  high
because  of  grid  processing,  and  the  accuracy  is  also
low. To resolve the above issues, by adopting a batch-
normalization to the convolution, YOLO2 is suggested
to  improve  detection  efficiency[27].  YOLO2  also
provides  an  anchor-box,  various  levels  of  preparation,
and  high-quality  features.  The  detection  accuracy  for
small  items,  however,  remains  low.  Redmon  and
Farhadi[28] have  thus  introduced  YOLO3,  which  has  a
deep network of convolution layers for better precision.

 

 
Fig. 1    DCGAN architecture.
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To resolve the vanishing gradient problem, it utilizes a
residual  hop  relationship.  YOLO3  estimates  boxes  on
three  separate  scales  then  obtain  attributes  from  those
scales as used in the pyramid network function[29]. The
network’s  prediction  result  is  a  bounding  box,  object
score, and class prediction. This process helps YOLO3
to monitor objects of various sizes. Therefore, YOLO3
is  appropriate  for  precision  and  speed  object
recognition applications.

3　Proposed Work

This  section  discusses  the  working  of  a  suggested
hybrid model for state evaluation of the insulators with
the  aid  of  the  block  diagram,  as  shown  in Fig.  2.
Firstly, the source image data-set is applied to an image
processing  unit  where  blurred  images  are  separated
from  clear  photos.  We  used  the  Laplace  distribution
variance  to  distinguish  the  blurry  low-resolution  from
clear  high-resolution  (HR)  images.  To  improve  the
contrast  between  the  adjacent  image  details,  the
Laplace  operator  selects  a  second-degree  image
differential. Essentially, the operator is initially used to
modify  the  picture  and  then  to  ascertain  the  variance.
The boundary is more appropriate in clear pictures,  so
that  the  difference  increases  considerably.  In  contrast,
edge  information  is  comparatively  smaller  in  blurred

images, so is the distinction. Whereas if the variance is
much  smaller  than  the  stated  threshold,  the  image  is
classified as  blurry.  Otherwise,  the provided picture is
referred  to  as  clear.  Thus  the  surveillance  photos  are
subdivided  into  blurred  and  clear  groups  of  images.
These  blurry  pictures  are  employed  as  inputs  to  the
SRGAN,  transforming  them  into  images  with  super-
resolution.  Finally,  the  converted  images  are  added  to
the  original  image  data  collection  used  as  a  new
database for  further  analysis.  Next,  a  new image data-
set  is  used  as  DCGAN  training  input  to  create  fake
images.  These  photos  are  merged  with  the  previous
clearer  images  to  create  a  complete  dataset  of  the
image.  The  manual  annotation  process  begins  after
obtaining  the  final  image  dataset  and  locates  the
desired  insulator  objects.  The  annotated  images  are
given as training data for the YOLO3 object detection
model. The input images have now been resized to 416
×  416  to  quicken  the  learning  job.  The  Darknet-53
extract  attributes  of  insulator  damages  when  fed  with
resized  images.  The  feature-pyramid-network  (FPN)
approach  produces  predictions  across  three  separate
stages.  Mostly,  the  bounding  box  parameters,  object
performance measure, and classification type are found
in YOLO3 forecasts. As shown in Fig. 3, the method of
removing  low  confidence  boxes  is  considered  to  be  a

 

 
Fig. 2    Block schematic of the proposed model.
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non-maximum  suppression  process.  Next,  under
several  thresholds,  YOLO3 selects  the  connectors  that
cover  the subject  of  ground-truth,  and then gives  each
bounding box and associated positioning classification.

3.1　Deep learning models for super-resolution

The  advanced  deep  learning  models  such  as  SRCNN
and  SRGAN  are  chosen  to  transform  low-resolution
images  into  high-resolution  ones.  The  following
subsections provide a detailed description of the above-
said models.
3.1.1　SRCNN
Dong  et  al.[30] have  introduced  a  novel  deep  learning
model  called SRCNN, which addresses  low-resolution
image problems.  Usually,  the above model  consists  of
three processes: (1) Extraction of patches: This method
selects  patches  from  the  blurred  image  P  (low-
resolution)  and  describes  each  patch  as  higher-order
vector  space.  These  vectors  are  composed  of  a  set  of
characteristic  maps  that  are  equivalent  to  the  vector
dimension.  The  convolution  product  contains  the
attributes, and the rectified linear unit obtains the final
picture of the primary convolution level. (2) Non-linear
mapping:  This  procedure  maps  every  higher-ordered
vector  onto  another  non-linear  higher-ordered  vector.
Intuitively, each mapped vector is another set of feature
maps comprised of these vectors. (3) Rebuilding: Here,
the  convolution  layer  integrates  all  super-resolution
frames  generated  to  create  a  super-resolution  model,
the  resultant  image  performance  of  the  SRCNN
network.  As  a  loss  function,  the  mean  squared  error
(MSE) considered from Ref. [30] is used.
3.1.2　SRGAN
The SRGAN architecture  includes  two parts  generator
and  discriminator,  identical  to  GAN  architecture,
where the generator produces certain results dependent
on  the  distribution  of  probability  and  discriminator
attempts  to  guess  weather  data  from  input  dataset  or

generator. The generator and discriminator architecture
used  in  this  analysis  are  derived  from  Ref.  [31].
Generator  always attempts  to  refine the data  produced
such  that  the  discriminator  can  be  fooled.  The
generator contains a residual network instead of a deep
convolution network. The residual networks are simple
to  train  and  enable  them  to  be  considerably  deeper  to
achieve  better  performance.  That  is  because  the
residual network used a form of connection called skip
connections.  The  residual  blocks,  which  derive  from
ResNet,  are  presented  in  architecture.  Two
convolutionary  layers  are  used  inside  the  residual
block, supported by normalization structures and ReLU
as  an  activation,  with  a  tiny  3×3  kernels  and  64
characteristic  vectors.  The  resolution  of  the  source
images  is  enhanced  with  two  guided  sub-pixel
convolution  layers.  Instead  of  using  a  fixed  value  for
an  alpha  parameter  like  LeakyReLU,  this  generator
architecture  also  uses  parametric-ReLU  (activation
function).  It  learns  the  parameters  of  the  rectifier
adaptively  and  increases  the  precision  at  a  negligible
extra  computational  expense.  A  high-resolution  image
is  under-sampled  to  a  low-resolution  picture
throughout the training.

The  architecture  of  the  generator  then  aims  to  up-
sample  the  picture  from  low-resolution  to  super-
resolution.  The  picture  is  then  transferred  into  the
discriminator,  the  discriminator,  which  attempts  to
differentiate  between  a  super-resolution  and  an  HR
image and produce the adversarial loss that then back-
propagated  into  the  architecture  of  the  generator.
Discrimination  between  actual  HR  images  and
produced  SR  images  is  the  role  of  the  discriminator.
The architecture of the discriminator used in this paper
is  identical  to  the  architecture  of  DCGAN  with
LeakyReLU  as  activation.  Eight  convolutional  layers
of 3×3 filtering kernels are used in the network, rising
from  64  to  512  kernels  by  a  factor  of  2.  Strided
convolutions  are  used  every  time  the  characteristics
count is doubled to decrease the image resolution. Two
thick  layers  and  a  LeakyReLU  added  between  the
resulting  512  attribute  maps  and  a  last  sigmoid
activation unit are followed to achieve a likelihood for
classification.  The  perpetual  loss  function  is  used  in
SRGAN, which is the weighted total of the adversarial
and  content  losses  since  it  is  needed  to  ascertain  the
generator’s  performance.  We  followed  the  concept  of
perceptual  loss  from  C.  Ledig  et  al.[31] In  the  current
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Fig. 3    Non-maximum suppression process.
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work,  the  pixel  wise  MSE  loss  is  measured  by  using
the following equation:
 

lSR
MSE =

1
r2WH

rW∑
j=1

rW∑
k=1

(IHR
j,k −GθG(ILR) j,k)2 (1)

lSR
MSE

IHR
j,k

Gθ GθG(ILR) j,k

where  lSR  MSE  is  the  pixel-wise  mean  squared
error  loss  for  super-resolution,  quantifying  the
discrepancy  between  the  high-resolution  images
produced  by  the  generator  and  the  actual  high-
resolution  images.  The  upscaling  factor, r,  determines
the  enlargement  of  the  low-resolution  input  images
(ILR)  dimensions  to  generate  super-resolution  images.
W and H denote the width and height,  respectively,  of
the  highresolution  images  (IHR),  used  for  normalizing
the loss calculation. The indices j and k iterate over the
width and height of the upsampled image, ensuring the
loss  is  computed  across  each  pixel  by  comparing  the
pixel  value  at  position  (j, k)  in  the  actual  high-
resolution image,  , against the corresponding pixel
value  in  the  super-resolution  image  generated  by  the
generator  ( ), .  The  squared  term  ensures
the  error  is  positive  and  emphasizes  larger
discrepancies  between  the  generated  and  actual  high-
resolution images.

3.2　DCGAN

GAN, an advanced neural network, often tries to learn
about  the  distribution  of  raw  data.  The  system
generator  (G)  establishes  a  mapping  correlation
between  the  Gaussian  distribution  and  the  actual
distribution  of  results  following  the  direction  of  a
discriminatory  network  (D).  Deep  convolutionary
generative adversarial networks is one of GAN’s most
popular  and  useful  network  maps,  consisting  of
convolution  stages  with  no  fully-connected  or  max-
pooling  layers.  It  employs  convolution  layers  and
conversion  for  down-sampling  and  up-sampling  to
facilitate  network  training  from  model  structure
optimization.

LD(θ,ϕ)

LG(θ,ϕ)

In GAN networks’ training, two contrasting D and G
networks  have  specific  weights  and  bias  sets.  By
improving  its  parameters,  the  discriminator’s
optimization  mechanism  minimizes  its  loss  function

.  Likewise, G associated  optimization  method
is constructed by changing its parameter sets to reduce
its loss function . The generator’s purpose is to
learn  how to  distribute  original  data  and  then  produce
samples  as  close  as  possible  to  the  actual
representation.  The  generator  input  is  random  noise

Z = (Z1,Z2, ...,Zm)
G(Z) = (G(z)1,G(z)2, ...,G(z)m)

G G

,  and  network  output  is  integrated
sample  order .  The
discriminator D goal is to detect whether the input data
are the original data X or ’s output series (Z). If the
input is the actual X, D gives one as output. Otherwise,
it  provides  0  output.  GAN’s  loss  is  as  expressed  in
Eq. (2), and the purpose of its optimization is given in
Formula (3).
 

L(D,G) =Ex∼Pdata(x)[log D(x)]+
Ez∼Pz(z)[log(1−D(G(z)))] (2)

 

minG maxDL(D,G) (3)
L(D,G)

Ex∼Pdata(x)[logD(x)]

Pdata(x)
Ez∼Pz(z)[log(1−D(G(z)))]

Pz(z)

Equation  (2)  defines  the  loss  function  of  a
generative  adversarial  network,  consisting  of  two
terms. The first term, , represents the
expected  log-likelihood  for  the  discriminator D to
correctly  identify  real  data  samples x drawn  from  the
data  distribution .  The  second  term,

,  represents  the  expected  log-
likelihood  for  the  discriminator  to  incorrectly  classify
fake data samples produced by the generator G.  These
fake  samples  are  generated  from  noise  variables z
drawn  from  the  noise  distribution .  The
discriminator’s  goal  is  to  maximize  this  loss  function
by  assigning  the  correct  labels  to  both  real  and  fake
samples,  while the generator’s goal  is  to minimize the
second term of the loss by generating samples that are
indistinguishable from real data.

Formula  (3)  summarizes  the  adversarial  training
objective, where the generator G aims to minimize the
loss  function L(D, G)  against  an  adversary,  the
discriminator D,  that  seeks  to  maximize  it.  This
minmax  game  leads  to  the  training  of  both  the
generator  to  produce  data  resembling  the  real  data
distribution,  and  the  discriminator  to  distinguish
between real and generated data effectively.

For the training of Generator networks, the objective
is  to  maximize  the  probability  of  the  discriminator
being  fooled  into  believing  that  the  generated  data  is
real. This goal translates into minimizing the following
objective, as depicted in Formula (4):
 

min
G

Ez∼Pz(z)[log(1−D(G(z)))] (4)

D(G(z))

This  Formula  represents  the  generator’s  effort  to
produce data that the discriminator will classify as real,
or  in  other  words,  to  make  as  close  to  1  as
possible.

When training the discriminator D,  the loss function
is divided into two parts:  one that  deals  with real  data
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G

G

samples and another that pertains to the data generated
by  the  generator .  For  real  data  samples X,  the
discriminator’s output D(X) is optimized to be close to
1,  indicating  that  it  recognizes  the  data  as  real.
Conversely,  for  the  fake  data  generated  by ,  the
discriminator  aims  to  output  values  close  to  0,
indicating  its  recognition  of  the  data  as  fake.  The
optimization function capturing both these objectives is
presented in Formula (5):
 

MaxD Ex∼Pdata(x)[log D(x)]+Ez∼Pz(z)[log(1−D(G(z)))]
(5)

Ex∼Pdata(x)[logD(x)]
Ez∼Pz(z)[log(1−D(G(z)))]

This  equation  encapsulates  the  discriminator’s  dual
objective:  correctly  identifying  real  data  as  real
(maximizing ) and generated data as
fake (maximizing ), as outlined
in Goodfellow et al.[19].

3.3　YOLO3: Object detection model

Object detection is detecting objects in a digital image
of  a  particular  class  inside  a  frame.  A  recent  deep
learning  technique,  Selective-search,  has  been  used  in
models such as R-CNN and fast R-CNN to reduce the
bounding  box  count.  Multi-stage  scanning  of  images
using  window-like  sliding  methods  is  another
technique called over feat. On the other hand, YOLO3
tackles the problem of target  identification differently.
This  design  uses  an  input  image  only  once  during  the
entire  process.  A  single-shot  detector  is  another
algorithm for object recognition, but it is much slower
than YOLO3 and also failed to  detect  smaller  objects.

Tx,Ty,Tw,Th

(bx,by) (Cx,Cy)
bh bw

The YOLO family is a set of in-depth learning models
designed  to  recognize  objects  quickly.  A  functional
neural  net,  formerly  known  as  a  GoogleNet,  later
updated as a Darknet,  splits  an input image into a cell
grid. The bounding box and object classification for all
type  of  objects  are  precisely  predicted  as  shown  in
Fig.  4.  To estimate  boxes  on  different  scales,  YOLO3
uses the FPN process.  It  employs a  specific  collection
of  convolution  plus  extra  layers  known  as  residual-
layers  to  perform  the  prediction  process  and  handles
the  complete  image’s  characteristics  to  find  each least
bounding-box.  FPN  calculates  the  implementation  of
full  training  for  every  class  of  bounding  boxes,  those
with  average  precision  and  outstanding  performance.
The  YOLO3  process  begins  by  dividing  the  input
inspection picture into N × N segments and inserting a
bounding box anchor for any ground-based truth on the
map.  Each  bounding  box  specifies  four  attributes
( )  for  the  model  network.  The  method  of
bounding  box  generation  is  considered  from Ref  [32].
A  method  is  then  implemented  to  predict  four  co-
ordinates:  the  two  middle  co-ordinate  points  of  the
bounding  box ,  the  grid ,  the  bounding
box height , and the width .

The calculation of the Intersection-over-Union (IoU)
metric,  which is a standard measure for evaluating the
accuracy  of  object  detection  models,  is  based  on
comparing  the  areas  of  the  smallest  bounding
rectangles  for  detected  objects  and  their  ground-truth
counterparts. This comparison is concisely expressed in

 

 
Fig. 4    YOLO3 configuration.
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Eq. (6), sourced from Ref. [32]:
 

IOU =
area(BBdt∩BBgt)
area(BBdt∪BBgt)

(6)

In  this  equation,  IOU  quantifies  the  overlap  between
the detected bounding box (BBdt) and the ground-truth
bounding  box  (BBgt).  The  numerator  represents  the
area of overlap between the two bounding boxes, while
the denominator accounts for the total area covered by
both bounding boxes, excluding the overlap. Thus, the
IoU metric effectively measures the difference between
the  bounding  box  detected  by  the  object  detection
model and the actual  ground-truth bounding box,  with
values  closer  to  1  indicating  higher  accuracy  in
detection.

Network structure of YOLO3. The critical YOLO3
configuration  adopts  the  Darknet-53  structure,  as
shown  in Fig.  4.  This  model  is  a  fusion  of  YOLO2,
ResNet,  and  Darknet-19.  So,  YOLO3  essentially  uses
convolution  kernels  of  1×1  and  3×3  and  several
associated  shortcut  compositions.  Initially,  the  input
inspection picture is processed, then its size is reduced
to 416×416 and then converted using YOLO3.

(1) Two layers of convolution type are composed of
the  first  segment.  The  source  image’s  dimension  is
3×416×416,  and  the  kernel  sizes  are  3×3×32  and
3×3×64. After completion of the convolution phase, the
output match type is decreased to 64×208×208.

(2) Three layers of convolution consist of the second
section,  supported by a residual  stage.  The kernel  size
is  1×1×32,  3×3×64,  and  3×3×128,  and  with  the
subsequent  completion  of  the  convolution  phase,  the
output picture is limited to 104×104×128.

(3) Next,  the  third  division  comprises  of  five
convolution layers,  including two residual  type layers.
The  kernel  scale  is  1×1×64,  3×3×128,  and  3×3×256,
and  after  the  convolution  phase,  the  output  function
estimate is decreased to 52×52×256.

(4) 17  convolution  layers  with  eight  residual  layers
are composed of the fourth segment. The kernel size is
1×1×128,  3×3×256,  and  3×3×512,  and  after
completion  of  the  convolution  task,  the  output  map  is
decreased to 26×26×512.

(5) Eight  residual  layers,  along  with  17  convolution
layers, are used in the fifth layer. The size of the kernel
is  1×1×256,  3×3×512,  and  3×3×1024.  After  the
convolution  procedure  has  been completed,  the  output
feature map is diminished to 13×13×1024.

(6) Eight convolution layers and four residual layers

are composed of the sixth segment.  The convolution’s
sizes  are  1×1×512  and  3×3×1024,  the  convolution
stage  is  completed,  and  the  output  map  remains  the
same.

(7) The  last  segment  is  made  up  of  three  prediction
networks.  At  three  different  points,  YOLO3  forecasts
rectangular  boxes  and  then  extracts  the  features  of
these  scales.  A  10×10×(3×(4+1+2),  tensor  for  four
least  bounding  box  corrections,  one  object  projection,
and two classifiers are estimated.

Training. YOLO3  network  training  is  divided  into
three  stages.  In  phase  1,  the  surveillance  image  (size:
5280×2970)  taken  by  the  monitoring  device  is
extremely  broad  to  be  the  system’s  input.  Thus,  the
image  dimension  is  reduced  to  416×416,  to  accelerate
the  process  of  preparation.  In  phase  2,  VOC2007’s
dataset pattern is used to label good and bad insulators.
Finally, Step 3 initializes the network parameters of the
YOLO3  model  and  trains  the  network  to  acquire
variables to recognize specified objects.

Essential parameters. This article presents a further
investigation  of  the  selection  of  three  principal
parameters.  Batch  size:  Whenever  the  more  extensive
the batch size, the faster it  is to prepare. However, we
cannot raise the value perpetually because of hardware
constraints,  so the authors tried out four separate sizes
8,  16,  64,  and  128,  respectively.  When  64,  16,  and  8
batch  sizes  were  selected  during  the  preparation
process, we wouldn’t lose any power; consequently, we
picked  64  as  the  batch  size  based  on  the  reasons
mentioned above.  Weight  decay:  We fixed the  correct
learning pace and then adjusted the decay model from a
constant  value  (0.01)  to  the  final  estimate  (0.0005)  so
that  over-fitting  can  be  avoided.  Ignore-thresh:  The
IOU threshold value specifies the sum of IOUs applied
in  the  loss  calculation.  If  the  predefined  threshold  is
lower,  it  results  in  under-fit  and  causes  over-fitting  if
the  predefined  threshold  is  high.  The  threshold  value
for  disregard  is  then  set  to  0.65  based  on  the  above
statement  and  the  case  concerned.  For  classification
loss,  YOLO3  uses  a  discrete  cross-entropy  loss  for
each  set  during  analysis,  eliminating  the  MSE  widely
used  in  previous  versions.  The  loss  factor  being  used
conduct the YOLO3 workout is as follows:
 

Loss(sm) =
−log2(sm), if gm = 1;
−log2(1− sm), if gm = 0

(7)

sm ∈ [0,1]When m shows  the  sample’s  count,   
represents  the  value  of  the  object  predicted  by  the
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mLoss(sm)

system,  which  calculates  the  expected  likelihood  that
the  sample  will  damage  the  WT  turbine  blade.
Besides,  the  truth  of  the  land  is  indicated  by .  It
should  be  noted  that  when  the  observation  of 
applies  to  the  object  class,  is  inferred.
Network  variables  are  trained,  i.e., ,  by
minimizing losses for all samples.

4　Result and Discussion

4.1　Hardware configuration

The  personal  computer’s  general  requirements  in  this
analysis are Intel(R) Xeon(R) CPU E5-2780, NVIDIA
1080  RTX  as  GPU,  primary  frequency  2.80  GHz.
Operating  software  is  an  open  source  Ubuntu  16.04,
and Tensorflow is the algorithm development platform.

4.2　Dataset

No  public  datasets  for  insulator  groups  are  available.
As a consequence, the authors have experimented with
own private dataset. The proposed model is based on a
private  dataset  containing  1000  drone-captured
insulator  photographs.  For  which  700  photos  have  a
good  insulator.  The  remaining  300  images  contain  a
bad insulator as an object. From the dataset, 75% of the
photographs  are  employed  for  training  purposes,  and
25% are  used  for  validation  purposes.  The  detailed
class distribution of the pictures is shown in Table 1.

4.3　Methodology

In  this  section,  a  detailed  overview  of  the  proposed
hybrid  model  for  insulator  damage  identification  is
provided.  The  approach  combines  SRGAN,  DCGAN,
and YOLO3 for object detection. The hyperparameters,
training  procedures,  and  solutions  to  challenges
encountered  during  implementation  are  presented.
Figure  5 illustrates  the  comprehensive  data  flow steps
implemented  in  the  innovative  insulator  monitoring
system.  Each  step  is  strategically  designed  to  enhance
the  efficiency  and  accuracy  of  monitoring  power  line
insulators,  ensuring  the  reliability  of  the  electrical
power  grid.  The  process  encompasses  real-world  data
acquisition  through  aerial  surveillance,  advanced  pre-

processing  techniques  for  image  refinement,  and  the
utilization of cutting-edge deep learning models.

4.4　Model hyperparameters and training details

Table  2 summarizes  the  hyperparameters  and  training
details  for  each  component  of  the  hybrid  model.
Careful  selection of  these values was made to achieve
optimal performance.

4.5　Training procedures for each component

The  training  procedures  for  each  component  are
outlined  in Table  3,  including  data  preprocessing,
augmentation, and convergence criteria.

4.6　Evaluation of super-resolution image models

In  this  study,  the  authors  used  two  advanced  deep
learning based super-resolution models  for  assessment

 

Table 1    Insulator class distribution.
Model Class-good Class-bad Total

YOLO3 500 300 800
SRGAN+YOLO3 600 400 1000

SRGAN+DCGAN+YOLO3 1600 1400 3000

 

 
Fig. 5    Integrated  data  flow  for  innovative  insulator
monitoring system.

 

Table 2    Hybrid  model  hyperparameters  and  training
details.

Component Learning
rate

Batch
size

Activation
function Epochs

DCGAN 0.0002 64 LeakyReLU 200
YOLO3 0.001 16 LeakyReLU 150
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and  comparison.  The  most  common  metric  used  to
calculate  a  super-resolution  model’s  outcome  is  the
PSNR:  peak  signal  to  noise  ratio.  When  assessing
image  reconstruction,  this  metric  is  used  because  it
compares  how  close  an  image  is  by  the  mean  square
error to another and is expressed in decibels.
 

PSNR = 10log10

{ R2

MSE

}
(8)

where R is  the  maximum  size  that  pixels  will  take  in
the image format used, which is normally 1 or 255. The
maximum  value  is  255  in  this  instance.  MSE  is  the
mean square error which is to be compared between the
two images. The resemblance between the two images
is  calculated  by  the  structural  similarity  (SSIM).
Further information on this parameter can be found in Ref. [33].
The  outcome  is  a  value  between −1  and  1,  where,  1
indicates  that  the  two  images  are  identical. Table  4
shows  the  comparison  of  two  super-resolution  models
with respect to PSNR (dB) and SSIM. From the table,
it  is  clear  that  the  SRGAN  is  performing  better  than
SRCNN.  The  super-resolution  image  output  for  the
suggested two models is seen in Fig. 6. Figures 7 and 8
display  the  loss  curves  obtained  after  the  training  and

testing  process  for  the  generator  and  discriminator,
respectively.

4.7　Evaluation of DCGAN

The  authors  focused  on  creating  synthetic  insulator
images  with  GAN  for  data  augmentation  to  increase
small datasets and improve efficiency on classification
tasks  using  deep  learning.  The  fake  insulator  images
generated  using  DCGAN  is  illustrated  in Fig.  9.
However,  traditional  augmentation  methods  were  also
performed to demonstrate the efficacy of the proposed
DCGAN.  Operations  such  as  movement,  rotation,  and
brightness  improvement  were  involved  in  the  popular
augmentation  process  we  used  in  this  work.  As  the
training  set  and  validation  set  of  the  deep  neural
network,  we  use  the  original  images  and  the  created
images  as  seen  in Fig.  9. Table  5 shows  the
experimental  results.  The  average  accuracy  of
recognition  using  training  samples  augmented  by
DCGAN is approximately 11% higher than that of the
common method of  augmentation.  The results  suggest
that  DCGAN  is  improving  the  accuracy  of  the
classifier to some degree. The loss curves of generator
and discriminator for 5000 epochs is shown in Fig. 10.

4.8　Performance  comparison  of  object  detecting
models

The  latest  models  for  object  detection  include  faster
RCNN,  YOLO2,  and  YOLO3.  We  employed  these
deep  learning  models  to  conduct  experiments  and
evaluate their accuracy in our proposed work.

In our analysis, we considered three cases:
(1)  The  sole  use  of  the  object  detection  model

(YOLO3).  (2)  Combining  the  super-resolution  model
(SRGAN)  with  the  object  detection  model  (YOLO3).
(3)  Implementing  a  hybrid  model,  which  extends  the
second  case.  Here,  we  introduced  a  fake  image

 

Table 3    Training procedures for each component.

Component Data pre-
processing Augmentation Convergence

criteria

SRGAN Resize to
128×128 None 100 epochs

DCGAN Resize to
128×128

Data
augmentation 200 epochs

YOLO3 Resize to
YOLO3 input None 150 epochs

 

Table 4    Comparison of super-resolution models.
Parameter SRCNN SRGAN

PSNR (dB) 27.24 29.78
SSIM 0.814 0.872

 

 
Fig. 6    From left to right direction: original image, SRCNN output, and SRGAN output.
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generator  (DCGAN) between SRGAN and YOLO3 to
address data imbalance issues.

As  described  above,  we  conducted  a  performance
comparison  of  these  three  object  detection  models
using  our  private  insulator  dataset.  The  results  clearly
indicate that YOLO3 outperforms the other two models
in  terms  of  sensitivity,  specificity,  and  accuracy.
Table  6 provides  a  comprehensive  comparison  of  the
latest  object  detection  models,  including  a  baseline
model.  The  table  also  includes  the  average  processing

time  per  image  (APTI)  for  each  model,  along  with
other  standard  metrics.  These  results  underscore  that
YOLO3  not  only  offers  the  fastest  performance  but
also  achieves  the  highest  accuracy  among  object
detection models.

Following  the  implementation  of  the  three  cases
mentioned above, we conducted a comparison based on
standard  deep  learning  parameters,  including
sensitivity,  specificity,  and  accuracy,  as  presented  in
Table  7.  Additionally,  we  extended  our  evaluation  to
include  parameters  such  as  localization  accuracy,
damage severity  assessment,  and false  alarm rate.  The
table  clearly  demonstrates  that  our  proposed  hybrid
model,  SRGAN+DCGAN+YOLO3,  exhibits
significantly  improved  sensitivity,  specificity,  and
accuracy compared to the other classifiers.

Furthermore,  the  SRGAN+DCGAN+YOLO3  model
shows  superior  performance  in  localization  accuracy,
indicating  a  more  precise  identification  of  damage
locations. In terms of damage severity assessment, this
model  demonstrates  a  higher  capability  in  correctly
determining the severity of insulator damage, which is
crucial  for  practical  maintenance  and  repair
prioritization.  The  false  alarm  rate  for  the  proposed
model  is  also  notably  lower,  suggesting  a  reduced
likelihood  of  misidentifying  healthy  insulators  as
damaged.  These  additional  parameters  underscore  the
robustness  of  the  SRGAN+DCGAN+YOLO3  model,
making  it  a  more  reliable  and  effective  tool  for
insulator damage detection in practical applications.

Finally,  the  results  of  our  proposed hybrid approach
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Fig. 7    Generator loss curves.
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Fig. 8    Discriminator loss curves.

 

Real images

Fake images

 
Fig. 9    Real image samples (left) and fake images (right).
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are depicted in Fig. 11, where you can observe the test
images  along  with  their  corresponding  output  images,
including bounding boxes, and class names.

5　Conclusion

In  this  study,  we  propose  a  hybrid  model  for
identifying  insulator  damage  in  aerial  images,  aiming

to  overcome  existing  limitations  in  the  field.  Our
approach  integrates  three  crucial  components  to
achieve this goal. Firstly, we employ image processing
techniques in conjunction with SRGAN to detect  low-
resolution  images  and  enhance  them  into  high-
resolution  counterparts.  This  step  is  essential  for
improving  the  quality  of  the  input  data.  Secondly,  we
address data imbalance challenges by incorporating an
advanced  DCGAN,  which  generates  synthetic  images.
This  helps  create  a  more  balanced  dataset  for  training
and  enhances  the  model’s  ability  to  detect  insulator
damage  effectively.  Thirdly,  we  harness  the  power  of
deep  learning  through  the  YOLO3  model,  which  is
applied  to  the  surveillance  images  for  insulator  health
detection. This deep learning-based approach enhances
the  accuracy  and  reliability  of  the  detection  process.
Our  extensive  experimentation  demonstrates  the
effectiveness  of  the  proposed  approach.  Notably,  the
SRGAN  outperforms  SRCNN,  achieving  the  highest
peak  signal-to-noise  ratio.  Furthermore,  the  hybrid
solution,  denoted  as  SRGAN+DCGAN+YOLO3,
exhibits  an  impressive  95.6% detection  accuracy,
showcasing its superior performance compared to other
implemented  classifiers.  Looking  ahead,  our  future
research  endeavors  will  focus  on  expanding  the

 

Table 5    Comparison of augmentation models.
Model No. of synthetic images Accuracy

Standard methods 1000 75.3%
DCGAN 1000 86.5%
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Fig. 10    Loss  curves  for  generator  (G)  and  discriminator
(D) of DCGAN.

 

Table 6    Comparison of state-of-the-art object detection models.
Model Sensitivity (%) Specificity (%) Accuracy (%) APTI

Faster RCNN 84 81 88.6 0.72
YOLO2 92.2 83.6 89.3 0.54
YOLO3 92.4 91 90.5 0.33

Baseline model 88 76 82.5 0.65

 

Table 7    Comparison of implemented classifiers.
Model Sensitivity Specificity Accuracy Localization accuracy Damage severity False alarm rate

Only YOLO3 90% 81 86.9% 80% 82% 15%
SRGAN+YOLO3 96.6% 85% 92% 85% 87% 12%

SRGAN+DCGAN+YOLO3 98% 94% 95.6% 90% 92% 8%
Baseline model 88% 76% 82.5% 75% 78% 18%

 

 
Fig. 11    YOLO3 output images.
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training  dataset  by  incorporating  more  aerial  samples.
Additionally, we plan to explore further advancements
in  image  enhancement  techniques  and  automate
annotations to  maximize the potential  of  our  proposed
framework.
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