
 

An Optimal Pricing and Ordering Policy with Trapezoidal-Type
Demand Under Partial Backlogged Shortages
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Abstract: Based on the retail  inventory operation of Heilan Home, this study incorporates the price factor into

inventory  environment  involving  trapezoidal  time-varying  products.  A  joint  pricing  and  ordering  issue  with

deteriorating  items  under  partial  backlogged  shortages  is  firstly  explored  in  a  fixed  selling  cycle.  The

corresponding optimization model  aiming at  maximizing profit  performance of  inventory system is  developed,

the  theoretical  analysis  of  solving  the  model  is  further  provided,  and  the  modelling  frame  generalizes  some

inventory models in the existing studies. Then, a solving algorithm for the model is designed to determine the

optimal price, initial ordering quantity, shortage time point, and the maximum inventory level. Finally, numerical

examples are presented to illustrate the model, and the results show the robustness of the proposed model.
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1　Introduction

In  modern  commercial  activities,  inventory  is  usually
used to smooth the downstream demand and fulfill the
upstream  orders,  which  plays  an  important  role  in
modern  retail  operation.  A  high  product  inventory
usually provides customers a high service level, but not
absolutely.  For  example,  possessing  too  much
inventory  for  ages  may  bring  out  the  threat  of
obsolescence  in  product  style  and  the  substantial
increase in holding costs, simultaneously. On the other
hand, keeping too little inventory may result in the risk
of shortages and profit loss from lost sales. As a result,
it is crucial for retailers to manage inventory efficiently

in today’s business practice.
Pricing is one of the significant characteristics in the

inventory-based  research[1].  Especially  when  customer
demand is fluctuating with time, the importance of the
price characteristic is increased[2]. Trapezoidal demand,
as  a  typical  time-dependent  pattern,  is  described  as
“with  the  advance  of  time,  the  demand  for  the  items
initially  increases,  then  becomes  stable,  and  finally
decreases to a constant or zero”[3, 4]. Nowadays, due to
continuous  renewal  of  technology  and  fierce  business
competition, most short-cycle products basically follow
this  time  trajectory  in  the  terminal  retail  market[5].  In
academia,  many  scholars  have  extensively  explored
inventory  models  considering  trapezoidal-type
demand[6–9].  In  existing  studies[10–12],  the  customer
demand  is  often  characterized  as  a  function  of  time,
stock level or selling price, separately. However, in the
actual  retail  operation,  the  time  and  the  selling  price
ought to be investigated jointly. The reason behind this
observation is that the demand is closely related to the
market  stage  of  the  product,  storage  status,  and  the
selling  price,  namely,  the  customer  demand  may  vary
with  the  time,  and  meanwhile  it  may  also  vary  when
the  selling  price  decreases  or  increases.  Hence,
integrating  the  selling  price  and  trapezoidal-type

 
    Chunming  Xu and Chenchen  Wu are  with  the Institute  of

Operations  Research  and  Systems  Engineering,  College  of
Science,  Tianjin  University  of  Technology,  Tianjin  300384,
China. E-mail: chunmingxu@tjut.edu.cn; wu_chenchen_tjut@
163.com.

    Mingfei  Bai, Qiyue  Wang,  and Yiwei  Wang are  with  the
School  of  Electrical  and  Electronic  Engineering,  Tianjin
University  of  Technology,  Tianjin  300384,  China. E-mail:
mingfeibai_tut@126.com; qiyuewang_tut@126.com;
yiweiwang_tut@126.com.

* To whom correspondence should be addressed.
    Manuscript  received: 2022-12-12;  revised: 2023-03-09;

accepted: 2023-05-04 

TSINGHUA  SCIENCE  AND  TECHNOLOGY
ISSN  1007-0214    08/20   pp1709−1727
DOI:  10 .26599 /TST.2023 .9010040
Volume 29, Number 6, December  2024

 
©  The author(s) 2024. The articles published in this open access journal are distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).



demand, in the inventory system is vital to the real-life
operatio[13, 14].

Our  motivation  stems  from  the  retail  inventory
operation  of  Heilan  Home  (HLA),  who,  as  a  famous
China’s  clothing  retailer,  mainly  runs  menswear
products[15].  Most  products  displayed  in  HLA’s  store
are  seasonal  and  remain  comparatively  fixed  sales
period.  The  basic  customer  demand  fits  well  into  the
trapezoidal  time-varying  distribution.  Specifically,  the
demand will increase with time at the beginning when
potential  buyers  are  attracted  by  the  products  style,
then  keep  steady  once  the  products  style  is  accepted,
and finally  decrease with time till  the end of  the sales
season.  In  price,  HLA  sets  a  unified  selling  price  for
the same menswear style. However, if the product price
increases,  customers  often  turn  to  other  brands,
resulting  in  the  decrease  in  demand.  HLA’s  upstream
manufacturers  adopt  the  made-to-order  mode.  After
coming in contact with HLA’s staffs, we know that the
dilemma  of  HLA  inventory  operation.  On  one  hand,
once  the  retailer’s  inventory  system  is  out  of  stock,
backorders  will  be  produced  by  regional  factories  and
delivered  to  the  store  at  the  end  of  the  replenishment
cycle,  which  often  leads  some  customers  switch  to
similar  products  sold  by  other  retailers.  On  the  other
hand,  if  the initial  order quantity is  too large,  then the
total  holding  costs  increases,  and  unsalable
phenomenon  also  often  occurs.  Therefore,  it  is  very
important  for  HLA  how  to  make  trade-offs  between
shortages  and  the  order  fulfillment.  However,  existing
related  inventory  models  involving  joint  price- and
trapezoidal-dependent demand[13, 14] ignore the impacts
of  this  shortage  factor  and  lost  orders  on  the  target
performance  of  the  inventory  system.  To  the  best  of
our  knowledge,  there  is  no  previous  study  concerning
inventory system optimization that focus on the effects
of  pricing,  trapezoidal-type  demand,  deteriorating
factor,  and  partial  backlogged  shortages  on  the
ordering strategies, simultaneously.

To  cover  this  research  gap,  we  model  a  pricing  and
replenishment  strategy  issue  based  on  the  retail
operation  case  of  HLA.  Specifically,  we  explore  an
inventory  system  aiming  at  maximizing  profit
performance with deteriorating items in a limited sales
cycle,  in  which  the  trapezoidal  time  effect  as  a  basic
demand  rate  is  adopted,  and  customer  demand  is
quantified  as  a  function  of  trapezoidal  time  and  price.
Inventory  system  permits  shortages,  the  unmet
customer  demand  in  this  interim  period  is  partially

backlogged, and the demand backlogged is satisfied at
the  end  of  the  inventory  replenishment  period.  Also,
partial backlogging can generate losses of profits.

The rest of this paper is organized as follows. Section
2  mainly  reviews  the  inventory  literature  on
trapezoidal-type  demand,  inventory  pricing  issue,  and
inventory  shortages.  Section  3  gives  the  problem
description  and  introduces  notations  as  well  as  some
related assumptions. Section 4 models an optimization
problem  and  discusses  the  optimality  of  the  model.
Section  5  lists  special  cases.  Section  6  designs  a
solving algorithm for the optimization model. Section 7
presents  three  numerical  examples  to  show  all  the
possible optimal values in the feasible region. Section 8
provides sensitivity analysis for gaining the robustness
of  the  model  and  managerial  implications.  Section  9
summarizes  the whole study and gives future research
direction.

2　Related Work

The  critical  features  of  this  article  are  the  demand
effect  of  the  trapezoidal  time,  the  pricing  of  products,
and the application of partial backlogging. To highlight
our contribution, three related research directions in the
inventory-based  literature  are  reviewed:  trapezoidal-
type  demand,  inventory  pricing  issue,  and  inventory
shortages.

2.1　Trapezoidal-type demand

In  the  classical  economic  ordering  quantity  (EOQ)
issue, the customer demand is usually characterized by
a constant in the model assumption. However, for some
fad or seasonal products, the demand reflected in each
phase  of  their  lifetime  often  varies  over  time.  For
example,  the  demand  for  these  products  in  the
introduction  and  growth  phase  gradually  increases,
while  the  demand  observed  in  the  mature  phase  is
relatively  stable,  and  thereafter,  the  demand  in  the
decline  phase  decreases  with  time  and  is  gradually
withdrawn  from  the  market.  The  demand  that  fits  the
above-mentioned  time-varying  feature  in  the  product
lifetime  is  often  referred  to  trapezoidal-type  demand,
which  is  more  general  than  other  demand  types
including  constant  demand,  increasing  demand  over
time,  decreasing  demand  over  time,  and  ramp-type
time-varing  demand.  In  the  last  decade,  the  inventory
models  related  to  trapezoidal-type  demand  have
attracted  much  more  attention.  Cheng  and  Wang[3]

firstly  explored  an  inventory  model  for  deteriorating
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items  with  trapezoidal-type  demand  which  considered
a  linearly  piecewise  function  of  the  time.  Based  on  a
generalized  trapezoidal-type  demand,  Cheng  et  al.[4]

further  developed  an  inventory  repelenishment  policy
considering  an  exponential  time-varying  partial
backlogging  rate.  Under  trapezoidal-type  demand
Singh et al.[5] analyzed an EOQ issue with trade credit,
where the product lifetime is asummed to be a random
variable  and  follow  a  generalized  Pareto  distribution.
Later,  Uthayakumar  and  Rameswari[6] extended  an
ordering  problem concerning  trapezoidal-type  demand
to  the  economic  production  ordering  quantity
environment.

Considering  a  generalized  trapezoidal-type  demand
function,  a  time-varying  deterioration  rate,  and  an
extanded  partial  backlogging  rate,  Lin[7] further
proposed  an  integrated  inventory  model  and  gave
sufficient conditions for the global optimal solution of
the  model.  In  a  time-dependent  deterioration  and
backlogging  setting,  Wu  et  al.[16] also  studied  two
ordering issues covering shortages and no shortages for
trapezoidal-type products. More recently, some ralated
studies  with  trapezoidal  demand  have  also  discussed
inventory  replenishment  policies  by  investigating  the
maximum  lifetime[8, 13],  two-warehouse  ordering  and
warehouse  mode  selection[9],  permissible  delay  in
payment[17],  crisp  and  fuzzy  environment[18],  and  one-
time  order  inventory[19].  Howerer,  the  impact  of  the
prcing  factor  on  the  inventory  system  has  not  been
considered in the above-memtioned studies.

2.2　Inventory pricing

In  today’s  business  practice,  customers  in  the
purchasing state are more sensitive to the product price
than  ever  before[11].  Usually,  low-priced  commodities
generate  higher  customer  demand  and  high-priced
commodities result in lower demand, which will affect
the  decision-making  of  inventory  managers  in  ratail
operation. In the existing literature on price-dependent
demand,  linear  price-dependent  demand  is  most
frequently  assumed[1, 20–22].  Subsequent  demand
inclues  logarithmic-concave-type  demand[10, 23],
exponential  price-dependent  demand[2, 11, 24],  power
price-dependent demand[25–27], and so on.

In addition, a lot of recent scholars have also devoted
more attention to the replenishment system considering
price-dependent  demand.  For  example,  focusing  on
ameliorating  items,  Mondal  et  al.[28] investigated  a
deteriorating  issue  concerning  the  price-dependent

demand  and  no  shortages.  Then,  Mishra  et  al.[29]

explored  a  deterministic  ordering  model  for
deteriorating  items  under  selling  price-dependent
demand,  where  holding  cost  is  assumed  to  be  time
dependent.  Considering  a  limited  shelf/display  space,
Teng  and  Chang[30] further  formulated  an  economic
production  quantity  issues  under  deteriorating
enviroment,  in  which  the  customer  demand  is
characterized by the price factor  and on-display stock,
jointly.  Under  the  production  inventory  environment,
Sridevi  et  al.[31] built  a  random  model  under  price-
dependent  demand  and  considered  that  the  production
rate  follows  a  Weibull  distribution.  In  an  inflation
setting,  Rao  and  Rao[32] also  analyzed  an  ordering
issue.  In  their  model,  the  lifetime  is  set  to  be  a
generalized  Pareto  distribution  and  the  delay  in
payments  is  allowed.  More  recently,  taking  into
account  the  credit  financing  and  non-instantaneous
deterioration, Jaggi et al.[33] further generalized a single
inventory  case  to  two  storage  facilities.  For  expired
products, Khan et al.[1] proposed two inventory systems
with  no  shortages  and  partial  backlogged  shortages
under  price-dependent  demand.  However,  previous
researches  on  price-dependent  demand  seldom
considered  the  effects  of  trapezoidal-type  demand
products on inventory ordering decisions.

2.3　Inventory shortages

Inventory  shortages  are  very  common  in  retail
industies.  Within  the  inventory  order  cycle,  holding
cost usually accounts for a large proportion of the total
inventory  cost,  and  therefore,  an  inventory  system
allowing  appropriate  shortages  is  often  less  expensive
to  control  than  that  of  no  any  shortages[34].  Yang
et  al.[35] developed  a  lot-size  ordering  model
considering inflation and shortages. Later, Chu et al.[36]

explored a replenishment policy with a mixture of back
orders  and  lost  sales,  and  discussed  the  optimality  of
the model. Dye et al.[37] further extended the inventory
model  of  Jaggi  et  al.[33] to  any  log-concave  demand
case.  The  common  characteristic  of  the  above-
mentioned  literature  is  that  the  system  starts  with
shortages  but  ends  with  zero  inventory.  By  contrast,
there  is  also  an  inventory  situation  that  starts  with  the
maximum  inventory  but  ends  with  shortages.  For
example,  Dye[38] investigated  a  joint  pricing  and
ordering  inventory  issue  with  time-varying
deteriorating  rate  and  partial  backlogging.  Abad[39]

incorporated  shortages  cost  and  lost  sales  cost  into  a
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lot-size  inventory  model  with  the  pricing.  Moreover,
related  researches  also  dedicated  to  the  inventory
system  with  shortages  facing  the  economic  ordering
quantity problem[40–42].

Generally,  it  is  often  assumed  that  unsatisfied
demand  is  either  completely  lost  or  completely
backlogged  in  existing  literature  on  shortages.
However,  the  partial  backologging  phenomenon  often
occurs  in  some  real-life  situations,  i.e.,  some  loyal
purchasers  still  tend to  wait  although the  waiting time
is  longer,  while  other  impatient  buyers  will  choose  to
go elsewhere.  In recent years,  a lot  of researches have
focused  on  exploring  inventory  ordering  policies  with
shortages  and  partial  backlogging.  For  example,
considering the price and order size, Abad[43] proposed
a  model  concerning  partial  backlogging.  Then,
focusing  on  stock-dependent  demand  rate,  Dye  and
Ouyang[44] developed  an  EOQ  model  under  time-
varying  partial  backlogging.  Based  on  a  production
inventory system, Giri et al.[45] formulated an European
foundation  for  quality  (EPQ)  inventory  model  with
partial  backlogging  and  increasing  demand.  Assuming
that  deteriorating  rate  follows  the  weibull  distribution
and  the  demand  rate  is  exponential  declining,  Pareek
and  Sharma[46] further  investigated  an  inventory
ordering  issuse  with  partial  backlogging.  More

recently, considering exponentially partial backlogging
rate,  Arif[47] explored  an  inventory  replenishment
policy  with  price-dependent  demand.  In  a  two-
warehosue  inventory  setting,  Gupta  et  al.[48] studied  a
retailer’s ordering policy with partial backlogging rate and
time-dependent  deteriorating  under  permissible  delay
in payment.

The  inventory  features  of  existing  studies  are
summarized  in Table  1.  Evidently,  few  scholars
investigate  joint  pricing  and  ordering  strategies  with
trapezoidal-type  demand.  Shah  et  al.[13] developed  a
model  considering  price-sensitive  trapezoidal-type
demand.  However,  their  model  ignores  the  impact  of
the shortages on inventory system. The work by Cheng
and  Wang[3] is  closely  related  to  this  paper  and
particularly worth mentioning. Facing trapezoidal-type
demand  product,  Cheng  and  Wang[3] explored  an
optimal  inventory  issue  and  analyzed  how  customer
demand  influence  the  total  cost  of  the  inventory
system.  However,  it  is  assumed  that  the  customer
demand rate  is  only  described as  a  piecewise  function
of  time,  and the  pricing  issue  is  not  discussed  in  their
model.  In  contrast,  it  is  assumed  that  the  demand  is
depended  on  time  and  price  simultaneously  in  this
paper, and we mainly focus on the impacts of the price
and the time on the average total profit of the inventory

 

Table 1    Review of previous studies.
Reference Shortage Partial backlogging rate Time dependent demand Price dependent demand

Khan et al.[1] Yes Time-varying No Linear
San-José et al.[2] Yes No Power Logit

Cheng and Wang[3] Yes No Trapezoidal No
Cheng et al.[4] Yes Time-varying Trapezoidal No
Singh et al.[5] Yes No Trapezoidal No

Uthayakumar and Rameswari[6] No No Trapezoidal No
Lin[7] Yes Time-varying Trapezoidal No

Wu et al.[8] Yes Time-varying Trapezoidal No
Xu et al.[9] Yes Time-varying Trapezoidal No

Panda et al.[12] Yes Time-varying Stock depend demand Linear
Shah et al.[13] No No Trapezoidal Yes
Wu et al.[16] Yes Time-varying Trapezoidal No

Bhunia and Maiti[49] Yes No Linear No
Yang[50] Yes No Constant No

Skouri et al.[51] Yes Time-varying Ramp No
Agrawal and Banerjee[52] Yes Constant Ramp No

Agrawal et al.[53] Yes Constant Ramp No
Sarkar et al.[54] Yes Time-varying Quadratic No
Panda et al.[55] No No Ramp No
Jaggi et al.[56] Yes Time-varying Linear No

Present Yes Time-varying Trapezoidal Yes
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system.  Moreover,  although  shortages  are  permitted
and  unsatisfied  customer  demand  is  considered  to  be
completely  backlogged  in  their  model,  lost  sales
situation which ties up with inventory performance and
will  increase  the  retailer’s  operation  cost  is  not
considered. In this study, the partial backlogging rate is
considered  to  be  dependent  on  the  customer  waiting
time,  and  the  loss  caused  by  lost  sales  is  incorporated
into the profit performance of the model.

The  main  contributions  of  this  study  are  as  follows.
First,  the  price  factor  is  incorporated  into  inventory
ordering  issues  considering  the  trapezoidal  time  effect
as a basic demand rate, and an inventory replenishment
policy  including  ordering  quantity,  the  maximum
inventory level, selling price, and shortage time point is
characterized. Second, the conditions for obtaining the
optimal  solution  of  the  model  are  provided,  and  the
corresponding  algorithm  for  solving  the  model  is
presented. Third, the robustness and applicability of the
model  are  illustrated.  Fourth,  the  utilization  of  a
multiplicative  demand  form  enlarges  the  application
scope of our inventory model. For example, by setting
the  relevant  model  parameters,  our  model  can  be
applicable to some specific retail settings such as price-
dependent demand, linear time-varying demand, ramp-
type  time-varying  demand,  full  backordering,  no
shortages, among others.

3　Model Description

In  this  section,  we  describe  a  replenishment  issue
involving deteriorating product  based on a  joint  price-
and  trapezoidal-dependent  demand,  and  introduce
necessary model notations and assumptions.

3.1　Problem description

Consider a  continuous review retail  system, where the
retailer  sells  products  kept  in  the  system  to  the  end
customer  in  a  finite  inventory  planning  horizon.  The
retail  replenishment  for  products  is  instantaneous  and
the lead time is zero. When products from the upstream
manufacturer  enter  the  retail  system,  they  are
exhausted  because  of  the  deterioration  and  customer
demand until the inventory level is zero. Retail system
allows  shortages.  The  retailer  is  able  to  forecast
customer  demand  and  determine  the  initial  ordering
quantity according to the demand and shortages. Once
shortages  happen,  backlogged  demand  is  satsified  at
the end of the inventory cycle. Considering the impact
of  the  waiting  time  on  customer  demand,  the  partial

Z (x) = e−δx x

0 < δ < 1

backlogging rate  is  adopted as ,  where  is
the  waiting  time  up  to  the  next  replenishment  and

.  This  implies  that  the  more  cumulative
unsatisfied customers in the waiting line, the more the
amount of lost sales due to shortages. The exponential
backlogging rate is widely used in the literature[4, 9, 49].

3.2　Model notations

The  following  notations  including  model  paremetres,
domain  parameters,  decision  variables,  and  other
variables are listed.

(1) Model parameters
A0 :  denotes the fixed cost per cycle;
c: denotes the unit buying cost;
c1 :  denotes  the unit  handing cost  of  the deteriorated

item;
c2 :  denotes  the  per  unit  inventory  holding  cost  per

unit time;
c3 : denotes the per unit shortage cost per unit time;
c4 : denotes the unit lost sales cost;
T : denotes the length of inventory cycle;
pL :  denotes  the minimum lower bound of  allowable

price;
pU : denotes the maximum upper bound of allowable

price;
I (t): denotes the inventory level;
(2) Domain parameters
D1  denotes a region defined as
D1 =

{
(t1, p)

∣∣∣0 ⩽ t1 ⩽ µ1; pL ⩽ p ⩽ pU
}
;

D2   denotes a region defined as
D2 =

{
(t1, p)

∣∣∣µ1 ⩽ t1 ⩽ µ2; pL ⩽ p ⩽ pU
}
;

D3   denotes a region defined as
D3 =

{
(t1, p)

∣∣∣µ2 ⩽ t1 ⩽ T ; pL ⩽ p ⩽ pU
}
;

D: denotes a region defined as

D =
{
(t1, p)

∣∣∣0 ⩽ t1 ⩽ T ; pL ⩽ p ⩽ pU
}

D =
3∪

i=1
Di, that is .

(3) Decision variables
t1 :  denotes  the  time  point  when  the  system starts  to

be out of stock;
p p ∈ [pL,

pU ]
:  denotes  the  selling  price  each  unit,  and 
;

Qi

Di

:  denotes  the  ordering  amount  per  cycle  for  case
with ;

S i

Di

:  denotes  the  maximum  inventory  level  for  case
with ;

S : denotes the maximum inventory level per cycle in
the entire system;

Q: denotes the total ordering amount per cycle in the
entire system.
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(4) Other variables
APi (·)

Di

: denotes the average total profit for case with
;
AP (·)

D.
:  denotes  the  average  total  profit  in  the  entire

system on 

3.3　Model assumptions

θ (t)
0 < θ (t) < 1

The  items  kept  in  the  system  are  perishable,  and  the
repair  or  replacement  of  deteriorated  items  is  not
considered during the storage period. The deterioration
rate  is  assumed  to  be  time-dependent,  and

.

D(p, t) = A(t)d(p) d(p)
d′(p) < 0 d′′(p) ⩾ 0, 2d′(p)+d′′(p) < 0;

A(t)

The demand rate is  a  general  decreasing function of
the  selling  price  and  varies  trapezoidally  with  time.
Here,  we  adopt ,  where  satisfies

,  and 
Trapezoidal demand  is shown in Fig. 1, that is,
 

A (t) =


a1+b1t, 0 ⩽ t ⩽ µ1;
d0, µ1 ⩽ t ⩽ µ2;

a2−b2t, µ2 ⩽ t ⩽ T ⩽
a2

b2
,

µ1

d0 µ2

d0

where  is  the  time  point  changing  from the  linearly
increasing  demand to  the  constant  demand ,  and 
is  the  time  point  changing  from  to  the  linearly
decreasing demand. This demand function of the price
and the time can be employed to describe a real market
phenomenon:  the  customer demand often decreases  as
the selling price increases, or it may change with time.
The  consideration  of  the  multiplicative  demand
function  is  very  useful  especially  for  deteriorating
items  such  as  seasonal  goods,  clothes,  and  fad
products[23].  In addition, the form of the multiplicative
trapezoidal-type  time  effect  is  assumed  to  be  a  basic
demand  rate,  which  can  essentially  repesent  the
demand trajectory of short-cycle products[3, 6, 7].

Before  the  inventory  system starts,  the  deterioration
of  transporting  goods  and  the  logistics  cost  from  the

supplier to the retail inventory system are ignored.

4　Proposed Model and Model Analysis

The  inventory  model  based  on  the  inventory  behavior
of the system is firstly developed in this section. Then
the  properties  of  the  model  are  analyzed  and  the
optimal solutions to the model are given.

Q
t = 0

I(t) (0, t1)
t = t1

[t1,T ]
Z (T − t) = e−δ(T−t)

I(t) [0,T ]

According  to  the  above  assumptions  and  problem
description,  units  enter  the  system at  the  beginning
of  the  inventory  cycle  (i.e., ).  Beacause  of  the
comprehensive  effects  of  the  customer  demand  and
deterioration,  is depleted gradually in , and it
drops  to  zero  at  time  point .  Shortages  happen
during ,  and the cumulative shortages are partial
backlogged  at  the  rate  of  until  the
end  of  the  inventory  cycle.  Thus,  the  changes  of  the
inventory level  in the closed interval  can be
described as
 

dI (t)
dt
= −A(t)d(p)− θ (t) I (t) , 0 ⩽ t ⩽ t1 (1)

and
 

dI (t)
dt
= −Z (T − t) A(t)d(p), t1 ⩽ t ⩽ T (2)

µ1 µ2 t1 p TConsidering possible values of , , , ,  and ,
three different inventroy cases (see Fig. 2) are explored
as follows.

4.1　Case with D1

[0, t1]
(a1+b1t)d(p)

θ (t) I(t) [0, t1]

In this case, inventory depletion occurs in  due to
both  the  demand  and  the  deterioration

,  and therefore,  during  can  be  described
by
 

dI (t)
dt
= − (a1+b1t)d (p)− θ (t) I (t) , 0 ⩽ t ⩽ t1 (3)

I (t1) = 0Solving Eq. (3) with the boundary condition ,
we have
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Fig. 1    A trapezoidal demand function of t.
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Fig. 2    Feasible region distribution of inventory system.
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I (t) = −d (p)e−
r t

0 θ(x)dx,w t

t1
(a1+b1x)e

r x
0 θ(y)dydx,0 ⩽ t ⩽ t1

(4)

[t1,T ]

I(t) [t1,T ]

In , there is no deteriorating phenomenon in the
system, the inventory depletion happens due to both the
demand  and  the  partial  backlogging,  and  hence,  the
changes  of  during  satisfy  Eqs.  (5)−(7),
respectively.
 

dI (t)
dt
= −Z (T − t) (a1+b1t)d (p) , t1 ⩽ t ⩽ µ1 (5)

 

dI (t)
dt
= −Z (T − t)d0d (p) , µ1 ⩽ t ⩽ µ2 (6)

and
 

dI (t)
dt
= −Z (T − t) (a2−b2t)d (p) , µ2 ⩽ t ⩽ T (7)

I (t1) = 0 I
(
µ−1
)
= I
(
µ+1

)
I
(
µ−2
)
= I
(
µ+2

)Solving  Eqs.  (5)−(7)  with , ,
and , we have
 

I (t) = −d (p)
δ2

e−δT
[
eδt (a1δ+b1δt−b1)−

eδt1 (a1δ+b1δt1−b1)
]
, t1 ⩽ t ⩽ µ1

(8)

 

I (t) =− d (p)d0

δ
e−δT
(
eδt − eδµ1

)
+ I
(
µ−1
)
,

µ1 ⩽ t ⩽ µ2

(9)

and
 

I (t) =− d (p)
δ2

e−δT
[
eδt (a2δ−b2δt+b2)−

eδµ2 (a2δ−b2δµ2+b2)
]
+ I
(
µ−2
)
,

µ2 ⩽ t ⩽ T

(10)

From  Eq.  (4),  the  maximum  inventory  level  can  be
easily calculated as
 

S 1 = I (0) = d (p)
r t1

0 (a1+b1x)e
r x

0 θ(y)dydx (11)

Similarly,  from  Eqs.  (10)  and  (11),  the  total  order
quantity per inventory cycle is expressed as
 

Q1 = S 1− I (T ) (12)

[t1,T ]Moreover, the total quantity of lost sales in  is
calculated as
 

L1 =d (p)
{w µ1

t1
[1−Z (T − t)] (a1+b1t)dt+w µ2

µ1
[1−Z (T − t)]d0dt+

w T

µ2
[1−Z (T − t)] (a2−b2t)dt

} (13)

[0,T ]
To  sum  up,  from  Eqs.  (4)  and  (8)−(13),  the  related

cost and total revenue in  can be calculated as
A0● The setup cost: ;

ET = cQ1● The ordering cost: ;
● The cost of deteriorated items:
DT = c1

[
S 1−

r t1
0 d (p) (a1+b1t)dt

]
;

● The inventory holding cost:
HT = c2

r t1
0 I (t)dt;

● The inventory shortages cost:
BT = −c3

r T
t1

I (t)dt;

OT = c4L1

●  The  opportunity  cost  caused  by  the  lost  sales:
;

● The total sales revenue:
 

F = p
[w t1

0
d (p) (a1+b1t)dt− I (T )

]
.

D1

Thus, the average total profit for case with the closed
region  is expressed by
 

AP1 (p, t1) =
F −HT −BT −OT −DT −ET −A0

T
=

1
T

{
p
[w t1

0
d (p) (a1+b1t)dt− I (T )

]
−

c1

[
S 1−

w t1

0
d (p) (a1+b1t)dt

]
− c [S 1− I(T )]−

c2

w t1

0
I (t)dt+ c3

w T

t1
I (t)dt−

c4d (p)
[w µ1

t1
(a1+b1t) [1−Z (T − t)]dt +w µ2

µ1
d0 [1−Z (T − t)]dt+

w T

µ2
(a2−b2t) [1−Z (T − t)]dt

]
−A0

}

(14)

4.2　Case with D2

I(t) [0, t1]In this case, the changes of  in  are described,
respectively, by
 

dI (t)
dt
= − (a1+b1t)d (p)− θ (t) I (t) ,0 ⩽ t ⩽ µ1 (15)

and
 

dI (t)
dt
= −d0d (p)− θ (t) I (t) , µ1 ⩽ t ⩽ t1 (16)

I
(
µ−1
)
= I
(
µ+1

)
I (t1) = 0

Solving  Eqs.  (15)  and  (16)  with  and
, we have

 

I (t) =−d (p)e−
r t

0 θ(x)dx
{w t

t1
(a1+b1x)e

r x
0 θ(y)dydx+

w µ1

t1
[d0− (a1+b1x)]e

r x
0 θ(y)dydx

}
,

0 ⩽ t ⩽ µ1

(17)

and
 

I (t) =−d (p)d0e−
r t

0 θ(x)dx
w t

t1
e
r x

0 θ(y)dydx,

µ1 ⩽ t ⩽ t1
(18)

[t1,T ] I(t)In ,  the  changes  of  during  this  interval
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satisfy Eqs. (19) and (20).
 

dI (t)
dt
= −Z (T − t)d0d (p) , t1 ⩽ t ⩽ µ2 (19)

and
 

dI (t)
dt
= −Z (T − t) (a2−b2t)d (p) , µ2 ⩽ t ⩽ T (20)

I (t1) = 0
I
(
µ−2
)
= I
(
µ+2

)Solving  Eqs.  (19)  and  (20)  with  and
, we have

 

I (t) = −d (p)d0

δ
[Z (T − t)−Z (T − t1)] , t1 ⩽ t ⩽ µ2 (21)

and
 

I (t) = −d (p)
δ2

e−δT
{
eδt [a2δ−b2 (tδ−1)]−

eδµ2
[
a2δ−b2 (µ2δ−1)

]}
+ I
(
µ−2
)
, µ2 ⩽ t ⩽ T

(22)

From Eq. (17), the maximum inventory level can be
obtained by
 

S 2 = d (p)
{w t1

0
(a1+b1x)e

r x
0 θ(y)dydx+w t1

µ1
[d0− (a1+b1x)]e

r x
0 θ(y)dydx

} (23)

Similarly,  from  Eqs.  (22)  and  (23),  the  total  order
quantity per inventory cycle is computed by
 

Q2 = S 2− I (T ) (24)

[t1,T ]
Moreover,  the  total  quantity  of  lost  sales  during

 is calculated by
 

L2 =d (p)
{w µ2

t1
d0 [1−Z (T − t)]dt+

w T

µ2
(a2−b2t) [1−Z (T − t)]dt

} (25)

D2

Therefore,  the  average  total  profit  with  the  closed
region  can be formulated as
 

AP2 (t1, p) =
1
T

{
p
[w µ1

0
d (p) (a1+b1t)dt+

w t1

µ1
d (p)d0dt− I (T )

]
−

c2

w t1

0
I (t)dt+ c3

w T

t1
I (t)dt−

c4d (p)
{w µ2

t1
[1−Z (T − t)]d0dt+

w T

µ2
[1−Z (T − t)] (a2−b2t)dt

}
−

c1

[
S 2−

w µ1

0
d (p) (a1+b1t)dt−

w t1

µ1
d (p)d0dt

]
−

c [S 2− I (T )]−A0

}

(26)

4.3　Case with D3

I(t) [0, t1]In  this  inventory  case,  the  behaviors  of  in 

satisfy Eqs. (27)−(29).
 

dI (t)
dt
= −d (p) (a1+b1t)− θ (t) I (t) , 0 ⩽ t ⩽ µ1 (27)

 

dI (t)
dt
= −d0d (p)− θ (t) I (t) , µ1 ⩽ t ⩽ µ2 (28)

and
 

dI (t)
dt
= − (a2−b2t)d (p)− θ (t) I (t) , µ2 ⩽ t ⩽ t1 (29)

I
(
µ−1
)
= I
(
µ+1

)
I
(
µ−2
)
=

I
(
µ+2

)
I (t1) = 0

Solving  Eqs.  (27)−(29)  with , 
, and , we have

 

I (t) =−d (p)e−
r t

0 θ(x)dx
{w t

t1
(a1+b1x)e

r x
0 θ(y)dydx+w µ1

t1
[d0− (a1+b1x)]e

r x
0 θ(y)dydx+

w µ2

t1
[(a2−b2x)−d0]e

r x
0 θ(y)dydx

}
,

0 ⩽ t ⩽ µ1

(30)

 

I (t) =−d (p)e−
r t

0 θ(x)dx
{w t

t1
d0e

r x
0 θ(y)dydx+

w µ2

t1
[(a2−b2x)−d0]e

r x
0 θ(y)dydx

}
,

µ1 ⩽ t ⩽ µ2

(31)

and
 

I (t) =−d (p)e−
r t

0 θ(x)dx
w t

t1
(a2−b2x)e

r x
0 θ(y)dydx,

µ2 ⩽ t ⩽ t1
(32)

[t1,T ] I(t)In ,  the inventory behavior of  is  described
by
 

dI (t)
dt
= −Z (T − t) (a2−b2t)d (p) , t1 ⩽ t ⩽ T (33)

I (t1) = 0Solving Eq. (33) with , we have
 

I (t) =− d (p)
δ2

e−δT
{
eδt [a2δ−b2 (tδ−1)] −

eδt1 [a2δ−b2 (t1δ−1)]
}
, t1 ⩽ t ⩽ T

(34)

From Eq. (30), the maximum inventory level can be
gained by
 

S 3 =d (p)
{w t1

0
(a1+b1x)e

r x
0 θ(y)dydx+w t1

µ1
[d0− (a1+b1x)]e

r x
0 θ(y)dydx+

w t1

µ2
[(a2−b2x)−d0]e

r x
0 θ(y)dydx

} (35)

Similarly,  from  Eqs.  (34)  and  (35),  the  ordering
quantity per inventory cycle can be computed by
 

Q3 = S 3− I (T ) (36)

[t1,T ]In addition, the total quantity of lost sales in  is
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calculated by
 

L3 = d (p)
{w T

t1
(a2−b2t) [1−Z(T − t)]dt

}
(37)

D3

Therefore,  the  average  total  profit  for  case  with  the
closed region  is expressed as
 

AP3 (t1, p) =

1
T

{
p
[w µ1

0
d (p) (a1+b1t)dt+

w µ2

µ1
d (p)d0dt

]
+

p
[w t1

µ2
d (p) (a2−b2t)dt− I (T )

]
−

c2

w t1

0
I (t)dt+ c3

w T

t1
I (t)dt−

c4d (p)
{w T

t1
(a2−b2t) [1−Z (T − t)]dt

}
−

c1

[
S 3−

w µ1

0
d (p) (a1+b1t)dt−

w µ2

µ1
d (p)d0dt−

w t1

µ2
d (p) (a2−b2t)dt

]
−

c [S 3− I (T )]−A0

}

(38)

D

Combining  with  the  above  discussion  of  the
inventory profit performance in each case, the average
total  profit  for  this  system  in  the  region  can  be
summarized as
 

AP (t1, p) =


AP1 (t1, p) , (t1, p) ∈ D1;
AP2 (t1, p) , (t1, p) ∈ D2;
AP3 (t1, p) , (t1, p) ∈ D3

(39)

AP1 (t1, p) AP2 (t1, p) AP3 (t1, p)where , ,  and  are
obtained  by  Eqs.  (14),  (26),  and  (38),  respectively.
Then,  the  nonlinear  programming  Model  M  for  this
system can be formulated as below:
 

Model M : max AP (t1, p) ,

s.t., (t1, p) ∈ D and D =
3∪

i=1

Di
(40)

MTo  obtain  the  optimal  solution  to  the  Model ,  we
have the following theorems.

M

AP (t1, p)
f (t1, p) = 0 g (t1, p) = 0 f (t1, p) g (t1, p)

Theorem  4.1　 In  the  Model ,  the  first-order
necessary  criteria  for  maximizing  the  objective
function  is  equivalent  to  the  criteria  that

 and ,  where  and 
can be provided by Eqs. (47) and (58), respectively.

Proof　Refer to proof in Appendix 1.
Theorem  4.1  suggests  that  the  optimality  of  this

model depends not only on the unit purchasing cost and
the costs  incurred by storage,  shortages and lost  sales,
but  also  on  the  trapezoidal  time  and  the  price.  These

findings  are  essentially  different  from  previous
researches[3, 7],  in  which  only  the  model  with  the
trapezoidal  time-varying  demand  is  investigated  from
the  perspective  of  inventory  operation  cost  and  the
impact of selling price on the ratail inventory system is
not considered.

F (t1) = f (t1, p) p

Next,  we  will  formally  characterize  the  solutions  to
Eqs.  (47)  and  (58).  By  using  Eq.  (47),  define

 for  any  given  selling  price .  The
following proposition can be obtained.

p F (t1)
t1 ∈ [0,T ] .

Proposition 4.1　For any given selling price , 
is a monotonically decreasing function in 

Proof　Refer to proof in Appendix 2. ■
p

F(0) = p(1− e−δT )+ c3Te−δT + c4(1−
e−δT )− c(1− e−δT ) > 0 F(T ) = −c1(e

r T
0 θ(y)dy−1)−

c2
r T

0 [e
r T

0 θ(y)dy+
r t

0 θ(x)dx]dt− c[e
r T

0 θ(y)dy−1] < 0

t1 F (t1) = 0
t1 p

p
t1 f (t1, p) = 0 t1

p

t1 = t1(p)
f (t1, p) = 0

p
dt1
dp
= − ∂ f (t1, p)/ ∂p
∂ f (t1, p)/ ∂t1

=

−1− e−δ(T−t1)

F′(t1)
> 0. t1 = t1(p)

G (p) = g (t1(p), p)

From Proposition 4.1, for any given selling price , it
is easy to verify that 

 and 
.  By  the

intermediate value theorem, there exists  a  unique time
point  satisfying .  Thus,  a  judgment  can  be
made  based  on  the  relationship  between  and :  for
any  given  selling  price ,  there  exists  a  unique  time
point  satisfying ,  which  implies  that 
can  be  uniquely  determined  as  a  function  of ,  and
thus,  the  function  relationship  between  them  can  be
described  as .  In  addition,  taking  the  implicit
derivative of two sides of the equation  with

respect  to ,  we  have 

 Substituting  into  Eq.  (58)
and  denoting ,  we  obtain  the
following result.

d′(p)[α (t1)+ pγ (t1)]+d(p)γ (t1) <
0 G (p)

p ∈
(
pL, pU

)
α (t1) γ (t1)

Proposition 4.2　If 
 holds,  then  is  a  monotonically  decreasing

function  in ,  where  and  can  be
provided by Eqs. (56) and (57), respectively.

Proof　Refer to proof in Appendix 3. ■

α (t1)+ pγ (t1)

δ γ (t1)

d′(p)[α (t1)+ pγ (t1)]+d(p)γ (t1) <
0 G(p)

p

In general, once the system is out of stock, shortages
not  only  affect  initial  orders,  but  also  reduce
customers’ loyalty  to  the  brand.  Thus,  the  cost  of
shortages in actual operation is significantly larger than
other  inventory  costs[35, 39].  In  this  case, 
is usually greater than 0. While in reality, the value of

 is  usually  small,  thus  is  very  close  to  0.  As  a
result,  without  losing  generality,  we  provide  an
sufficient  assumption 

,  which  implies  that  is  usually  a  monotonically
decreasing  function  of  in  this  inventory  system
considering shortages.
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G (p) p ∈
[
pL, pU

]
Theorem  4.2　 For , ,  the  optimal

results are characterized as follows:
G
(
pL
)
⩽ 0

(t∗1, p
∗) AP (t1, p) p∗ = pL

t∗1 = t#1
1 f

(
t1, pL

)
= 0

(1)  If ,  then  there  exists  a  unique  solution
pair  that  maximizes ,  where ,
and  is the solution of .

G
(
pU
)
⩾ 0

(t∗1, p
∗) AP (t1, p) p∗ = pU

t∗1 = t#2
1 f

(
t1, pU

)
= 0

(2)  If ,  then there  exists  a  unique solution
pair  that  maximizes ,  where ,
and  is the solution of .

G
(
pL
)
> 0 G

(
pU
)
< 0

(t∗1, p
∗) AP (t1, p)

(t∗1, p
∗) f (t1, p) = 0

g (t1, p) = 0

(3)  If  and ,  then  there  exists  a
unique  solution  pair  that  maximizes ,
where  is  the  solution  of  equations 
and .

Proof　Refer to proof in Appendix 4. ■

M
Theorem  4.2  gives  the  proof  the  existence  and

uniqueness  of  the  optimal  solution  to  Model  and
indicates  that  for  high-priced  products,  the  input  of
more  shortages  is  not  good  for  the  profit  performance
of  this  system.  Similarly,  for  low-priced  products,  the
behavior  of  less  shortages  is  not  beneficial  to  the
average  total  profit.  In  addition,  if  the  pricing  is  not
restricted by the external retail market, the retailer may
gain more profit by adopting moderate shortages.

M (t∗1, p
∗)

AP (t1, p)
D

Theorem  4.3　 In  the  Model ,  let  be  the
optimal solution that maximizes  in the region

, we have
(t∗1, p

∗) ∈ D1 AP(t∗1, p
∗) = AP1(t∗1, p

∗)(1) If , then ;
(t∗1, p

∗) ∈ D2 AP(t∗1, p
∗) = AP2(t∗1, p

∗)(2) If , then ;
(t∗1, p

∗) ∈ D3 AP(t∗1, p
∗) = AP3(t∗1, p

∗)(3) If , then .

5　Special Case

M
The following models in the existing studies are taken
as special cases of Model .

p = 0 c = 0 θ (t) = θ d(p) = 1
Z (x) = 1 M

(1)  When , , , ,  and
, then Model  is simplified as that in Cheng

and Wang[3].
p = 0 c = 0 θ (t) = θ d(p) = 1 Z (x) = 1

a1 = 0 b1 = D0 a2 = D0µ b2 = 0 µ1 = µ < µ2

M

(2)  When , , , , ,
, , , , and , then

model  is the same as that in Ref. [57].
p = 0 c = 0 θ (t) = abtb−1 d(p) = 1

Z (x) = 1 a1 = 0 b1 = D0 a2 = D0µ b2 = 0
µ1 = µ < µ2 M

(3)  When , , , ,
, , , , ,  and

,  then  Model  is  reduced  to  that  in  Ref.
[58].

p = 0 c = 0 θ (t) = abtb−1 d(p) = 1

Z (x) =
1

1+δx
a1 = 0 b1 = D0 a2 = D0µ b2 = 0

µ1 = µ < µ2 M

(4)  When , , , ,

, , , , ,  and
, then  is simplified as that in Ref. [59].

Integrate the findings of Theorem 4.1 to Theorem 4.3
mentioned  above,  a  solving  algorithm  is  formulated.

(t∗1, p
∗) AP(t∗1, p

∗)
M

The  optimal  solution  pair  and  in
Model  are gained by using the following algorithm.

6　Algorithm 1
 
 

Algorithm 1　Solving algorithm for the optimization model
Input: The values of exogenous variables and initial variables.

(t∗1, p
∗) AP(t∗1, p

∗)Output: The optimal pair  and .

p = pL t1 = t#1
1 t#1

1
f
(
t1, pL

)
= 0

　1: Put  into Eq. (47) to get , where  is the
solution of . Jump to Step 4.

p = pU t1 = t#2
1 t#2

1
f
(
t1, pU

)
= 0

　2: Put  into Eq. (47) to get , where  is the
solution of . Jump to Step 4.

G(pL) = g(t#1
1 , p

L)
G(pU ) = g(t#2

1 , p
U )

　3: Judge the signs of  and
. One of three possible cases is executed as

follows.

G(pL) ⩽ 0 t∗1 = t#1
1 p∗ = pL.　　(1) If , then , 

G(pU ) ⩾ 0 t∗1 = t#2
1 p∗ = pU .　　(2) If , then , 

G(pL) > 0 G(pU ) < 0
f (t1, p) = 0 g (t1, p) = 0

(t∗1, p
∗)

　　(3) If  and , then the equations
 and  are solved by the Newton-Raphson

method, get .

(t∗1, p
∗) AP(t∗1, p

∗)　4: Determine the optimal pair  and .(
t∗1, p

∗
)
∈ D1

(
t∗1, p

∗
)

S ∗ = S 1(t∗1, p
∗) Q∗ = Q1(t∗1, p

∗)
AP(t∗1, p

∗) = AP1(t∗1, p
∗)

　　(1) If , then put  into Eqs. (11), (12),
and (14), get the optimal , , and

;(
t∗1, p

∗
)
∈ D2

(
t∗1, p

∗
)

S ∗ = S 2(t∗1, p
∗) Q∗ = Q2(t∗1, p

∗)
AP(t∗1, p

∗) = AP2(t∗1, p
∗)

　　(2) If , then put  into Eqs. (23), (24),
and (26), get the optimal , , and

;(
t∗1, p

∗
)
∈ D3

(
t∗1, p

∗
)

S ∗ = S 3(t∗1, p
∗) Q∗ = Q3(t∗1, p

∗)
AP(t∗1, p

∗) = AP3(t∗1, p
∗)

　　(3) If , then put  into Eqs. (35), (36),
and (38), get the optimal , , and

.
 

7　Numerical Example

t1
p

D.

D.

In order to further illustrate the model from numerical
study,  three  examples  are  implemented.  Specifically,
the  first  numerical  example  illustrates  the  case  when
the constraints on the inventory shortage time point 
and  the  selling  price  are  loose,  i.e.,  the  optimal
solution  pair  exists  within  the  feasible  region  The
other  two  examples  consider  that  the  optimal  solution
solution  pair  happens  at  the  boundary  point  of  the
feasible region 

A0 = $200/
order c = $20/unit c1 = $3/unit c2 = $10/unit/week c3 =

$30/unit/week c4 = $25/unit d0 = 130 units µ1 =

6 weeks µ2 = 10 weeks T = 12 weeks a1 = 100 a2 =

220 b1 = 5 b2 = 9 pL = $100/unit pU = $120/unit

Example  7.1 In  this  example,  the  values  of  the
exogenous  parameters  are  set  as  follows: 

, , , , 
, ,  , 

 ,  ,  , , 
, , , , ,
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Z (T − t) = e−0.1(T−t) d(p) = a−bp = 200−1.5p
θ (t) = mt = 0.065t

, ,  and
.

pL = 100 pU = 120

f
(
t1, pL

)
= 0 f

(
t1, pU

)
= 0

t#1
1 = 5.5391 t#2

1 = 5.6483. G(pL)
G(pU ) G(pL) = g(5.5391,100) = 52 218.9046 > 0

G(pU ) = g(5.6483,120) = −21 678.8431 < 0

f (t1, p) = 0 g (t1, p) = 0 p∗ = 114.1498
t∗1 = 5.6172 (t∗1, p

∗) = (5.6172,114.1498) ∈
D1 (5.6172,114.1498)

S 1(5.6172,
114.1498) = 27 860.94 units Q1(5.6172,114.1498) =
45 019.27 units AP1(5.6172,114.1498) = $56 881.34

S ∗ = 27 860.94 units
Q∗ = 45 019.27 units

AP∗ = $56 881.34

According  to  the  algorithm  provided  in  Section  5,
initialize  the  values  of  and .  By
solving  and ,  we  have

 and  Compute  and
.  Since 

and ,  using
the  Newton-Raphson  method  to  solve  equations

 and , we have  and
.  Noting  that 

, substitue  into Eqs. (12) and (14)
and  compute  the  function  values  of 

 , 
  and ,

and  thus  we  have  the  maximum  inventory  level
 ,  the  optimal  order  quantity
 ,  and  the  optimal  average  total

profit  (see Fig.  3).  In  this  example,

(t∗1, p
∗)

D.
Fig.  4 shows  that  the  optimal  solution  pair 
occurs at an interior point of the feasible region 

c = $24/unit c1 = $3.6/unit c2 = $12/unit/week
c3 = $36/unit/week c4 = $30/unit

Example  7.2 Consider  the  following  parameter
values: , , ,

 and , the values of the
remaining exogenous parameters are the same as those
in Example 7.1.

f
(
t1,100

)
= 0 f

(
t1,120

)
= 0 t#1

1 =

5.4413 t#2
1 = 5.5391. G(pL) = g(5.4413,100) =

86 919.3325 > 0 G(pU ) = g(5.5391,120) =
13 376.4301 > 0 p∗ = pU = 120 t∗1 = t#2

1 = 5.5391(
t∗1, p

∗
)

S ∗ = 18 815.49
units Q∗ = 30 846.30 units
AP∗ = $12 501.89

(t∗1, p
∗)
D.

Initialize  the  parameter  values  of  the  model.  By
solving  and , we have 

 and  Since 
 and 

,  and .
Substituing  into  Eqs.  (23),  (24),  and  (26),  we
have  the  maximum  inventory  level 

, the optimal  , and the optimal
 (see Fig.  5).  In  this  example, Fig.  6

shows that the optimal solution pair  occurs at an
upper boundary set of the feasible region 

Example  7.3 The  following  parameter  values  are
 

A
P

 (
×

10
4 )

 
Fig. 3    Average  total  profit  as  a  function  of t1 and p for
Example 7.1.
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Fig. 4    Contour  graph  of  optimal  profit  with t1 and p for
Example 7.1.
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Fig. 5    Average  total  profit  as  a  function  of t1 and p for
Example 7.2.
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Fig. 6    Contour  graph  of  optimal  profit  with t1 and p for
Example 7.2.
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c = $14/unit c1 = $2.1/unit c2 = $7/unit/week
c3 = $21/unit/week c4 = $17.5/unit
used: , , ,

, ,  the  values  of  the
remaining exogenous parameters are the same as those
in Example 7.1.

f (t1,100) = 0 f (t1,120) = 0
t#1
1 = 5.7635 t#2

1 = 5.8954. G(pL) =
g(5.7635,100) = −48.4140 < 0 G(pU ) = g(5.8954,
120) = −74 752.0922 < 0 p∗ = pL = 100 t∗1 = t#1

1 =

5.7635 S ∗ =
51103.10 units Q∗ = 80 417.51 units

AP∗ = $173 129.01

(t∗1, p
∗)

D.

Similarly, by solving  and ,
we  have  and  Since 

 and 
,  and 

.  Hence,  the  maximum  inventory  level  is 
 ,  the  optimal  ,  and

the  optimal  (see Fig.  7).  In  this
example, Fig.  8 shows  that  the  optimal  solution  pair

 occurs  at  a  lower  boundary  set  of  the  feasible
region 

8　Sensitivity Analysis

The  model  parameters  in  the  above  numerical
examples in Section 7 are all regarded as static value. It
is  crucial  for  inventory managers  to know the impacts

θ d0 a b T a1 a2 b1

b2 µ1 µ2

of  the  dynamic  model  parameters  on  the  optimal
solution.  In  view  of  this,  sensitivity  analysis  is
performed by varying one of , , , , , , , ,

, ,  and  while  keeping  other  exogenous  values
fixed. The values of the parameters used in this section
are the same as those in Example 7.1.

From Table 2, the robustness of the optimal solution
can be easily observed as follows.

p∗

b1 b2 µ1 µ2

a b T d0 a1 a2

(1)  The  optimal  is  insensitive  to  the  exogenous
parameters , , ,  and ,  but  it  is  more sensitive
to , , and  than , , and .

t∗1
T

(2)  The  optimal  is  slightly  sensitive  to  the
exogenous  parameter ,  but  it  is  nearly  insensitive  to
others exogenous parameters.

S ∗

µ1 µ2 d0

b1 b2 a b a1 a2

T

(3)  The  optimal  is  insensitive  to  the  exogenous
parameters  and , but it is slightly sensitive to ,

,  and ,  and  particularly  sensitive  to , , , ,
and .

Q∗

µ1 d0 b1

b2 θ a b T a1 a2 µ2

(4)  The  optimal  is  insensitive  to  the  exogenous
parameter ,  but  it  is  slightly sensitive to , ,  and

, and very sensitive to , , , , , , and .
AP∗

µ1 d0 b1

b2 a b T a1 a2 µ2

(5)  The optimal  is  insensitive to  the exogenous
parameter ,  but  it  is  slightly sensitive to , ,  and

, and highly sensitive to , , , , , and .
M

a
T b

T

On the whole, it can be inferred that the model  is
nearly  robust.  However,  it  can  also  be  found  that  the
basic  demand  scale  parameter ,  the  replenishment
cycle ,  and  the  price  coefficient  have  significant
impacts  on  the  total  average  profit  compared  to  other
exogenous  parameters.  In  practice,  for  the  potential
market  demand,  inventory  managers  may  use  some
effective  methods  such  as  moving  average  and
exponential  smoothing  to  improve  the  accuracy  of
demand  forecasting  according  to  the  empirical  data,.
For  the  replenishment  cycle ,  inventory  managers
could  choose  the  corresponding  cost-volume-profit
analysis to evaluate whether to fine-tune it.

9　Conclusion

In  today’s  retail  market,  the  customer  demand  is
closely related to  the market  stage of  the product,  and
thus  the  coordination  of  the  pricing,  time-varying
factor,  shortages,  and  the  order  fulfillment  in  the
deteriorating  inventory  is  not  only  essential  but  also
utile.  Our  motivation  stems  from  the  investigation  of
HLA’s  inventory  operation.  Taking  both  pricing  and
trapezoidal-type  demand  into  consideration,  our  study
focuses on an inventory issue for deteriorating items in
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Fig. 7    The average total profit as a function of t1 and p for
Example 7.3.
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Fig. 8    Contour  graph  of  optimal  profit  with t1 and p for
Example 7.3.
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Table 2    Sensitivity analysis for Example 7.1.
Parameter Value −30% −20% −10% 0% 10% 20% 30%

θ

p∗ 111.3741 112.3791 113.3004 114.1498 114.9369 115.6694 116.3539
t∗1 6.2253 5.9995 5.7982 5.6172 5.4534 5.3042 5.1676

S ∗ 33 638.4234 31 520.4681 29 600.5431 27 860.9420 26 278.2206 24 832.4289 23 506.6451
Q∗ 51 867.8679 49 427.5850 47 146.0262 45 019.2717 43 034.9318 41 180.6204 39 444.6212

AP∗ 76 697.8511 69 119.3201 62 576.4232 56 881.3417 51 887.1228 47 478.3934 43 563.4415

d0

p∗ 111.6722 112.5482 113.3726 114.1498 114.8838 115.5781 116.2359
t∗1 5.6038 5.6086 5.6130 5.6172 5.6211 5.6248 5.6283

S ∗ 31 304.6197 30 091.1478 28 945.0795 27 860.9420 26 833.8404 25 859.3831 24 933.6187
Q∗ 47 288.0139 46 512.1712 45 756.4244 45 019.2717 44 299.3551 43 595.4437 42 906.4195

AP∗ 66 306.1953 62 960.6396 59 825.0179 56 881.3417 54 113.6275 51 507.6244 49 050.5846

a

p∗ - 100.7940 107.4691 114.1498 120.0000 120.0000 120.0000
t∗1 - 5.5436 5.5809 5.6172 5.6483 5.6483 5.6483

S ∗ - 8301.0427 17 957.0550 27 860.9420 39 175.6098 58 763.4147 78 351.2196
Q∗ - 13 597.3861 29 211.1984 45 019.2717 62 942.8369 94 414.2554 125 885.6739

AP∗ - 5 296.4208 24 217.9159 56 881.3417 103 214.6704 154 830.3390 206 446.0075

b

p∗ 120.0000 120.0000 120.0000 114.1498 108.0762 103.0183 100.0000
t∗1 5.6483 5.6483 5.6483 5.6172 5.5842 5.5561 5.5391

S ∗ 72 474.8782 54 845.8537 37 216.8293 27 860.9420 20 731.9435 13 790.3292 4703.8726
Q∗ 116 444.2483 88 119.9717 59 795.6951 45 019.2717 33 704.3270 22 536.3449 7711.5746

AP∗ 190 961.3070 144 507.2053 98 053.1036 56 881.3417 29 282.4810 12 098.0981 2591.3652

T

p∗ 100.4370 104.5290 109.1893 114.1498 119.2649 120.0000 -
t∗1 4.8087 5.1377 5.4034 5.6172 5.7891 5.9009 -

S ∗ 35 544.8016 35 091.7991 32 414.4931 27 860.9420 21 774.2955 21 513.4733 -
Q∗ 54 171.8097 55 225.9428 51 929.0991 45 019.2717 35 255.4897 34 886.8527 -

AP∗ 177 021.9856 135 550.6437 93 264.5765 56 881.3417 29 257.5777 8297.5554 -

a1

p∗ 116.8378 115.8160 114.9283 114.1498 113.4616 112.8489 112.2997
t∗1 5.6315 5.6261 5.6214 5.6172 5.6135 5.6102 5.6072

S ∗ 17 888.5572 21 146.5469 24 475.0905 27 860.9420 31 293.9763 34 766.3212 38 271.7635
Q∗ 31 125.6548 35 740.2632 40 372.6119 45 019.2717 49 677.6427 54 345.7177 59 021.9228

AP∗ 34 284.2061 41 586.2758 49 133.7747 56 881.3417 64 794.1495 72 845.0140 81 012.4055

a2

p∗ - 118.5584 116.0087 114.1498 112.7343 111.6203 110.7208
t∗1 - 5.6407 5.6271 5.6172 5.6096 5.6035 5.5987

S ∗ - 13 480.7082 20 488.8131 27 860.9420 35 464.9366 43 225.7105 51 097.4411
Q∗ - 24 704.1087 34 815.7945 45 019.2717 55 280.3524 65 579.9337 75 906.5106

AP∗ - 24 592.1429 40 104.5482 56 881.3417 74 469.7768 92 610.2692 111 143.2895

b1

p∗ 114.3786 114.3005 114.2243 114.1498 114.0771 114.0060 113.9365
t∗1 5.6184 5.6180 5.6176 5.6172 5.6168 5.6164 5.6160

S ∗ 26 366.9648 26 864.5023 27 362.5004 27 860.9420 28 359.8109 28 859.0916 29 358.7695
Q∗ 42 755.6418 43 509.7920 44 264.3402 45 019.2717 45 774.5727 46 530.2299 47 286.2306

AP∗ 53 583.7982 54 681.2075 55 780.4096 56 881.3417 57 983.9438 59 088.1588 60 193.9320

b2

p∗ 113.5506 113.7372 113.9365 114.1498 114.3786 114.6245 114.8897
t∗1 5.6140 5.6150 5.6160 5.6172 5.6184 5.6197 5.6212

S ∗ 32 364.4343 30 860.0487 29 358.7695 27 860.9420 26 366.9648 24 877.2999 23 392.4865
Q∗ 51 828.8147 49 556.1771 47 286.2306 45 019.2717 42 755.6418 40 495.7364 38 240.0162

AP∗ 66 858.5300 63 520.0916 60 193.9320 56 881.3417 53 583.7982 50 303.0021 47 040.9204
µ1 p∗ 114.2072 114.2102 114.1736 114.1498 114.1727 114.2377 114.3365

(to be continued)
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a  fixed  selling  cycle,  where  the  system  allows
shortages and partial backlogging rate is quantitatively
described  as  a  decreasing  function  concerning  the
waiting  time.  The  existence  and  uniqueness  of  the
optimal  solution  to  the  model  is  discussed,  and  a
solving  algorithm  for  the  model  is  designed  to
determine  the  optimal  price,  initial  ordering  quantity,
shortage time point, and the maximum inventory level.
Numerical  examples  are  presented  to  show  all  the
possible  optimal  values  in  the  feasible  region.
Sensitivity  analysis  is  tested  to  illustrate  the  model
robustness and its application.

There  still  exist  some  limitations  in  this  paper.  For
future  research,  an  inventory  model  with  the  variable
inventory  cycle  will  be  considered.  Moreover,  some
epochal  inventory  features  such  as  stochastic  demand,
product  promotion,  trade  credit,  investment  in
shopping  experience,  and  environmental  regulation,
will also be incorporated in this research.

Appendix

Appendix 1: Proof of Theorem 4.1.
t1 p M
AP (t1, p)

APi (t1, p) i = 1 2 3
t1 p

To determine the optimal  and  in the Model , for
each  branch  function  of ,  we  take  the  first-
order  derivative of  ( , , )  with respect
to  and  respectively as follows:
 

∂AP1 (t1, p)
∂t1

=
d (p) (a1+b1t1) f (t1, p)

T
(A1)

 

∂AP2 (t1, p)
∂t1

=
d (p)d0 f (t1, p)

T
(A2)

 

∂AP3 (t1, p)
∂t1

=
d (p) (a2−b2t1) f (t1, p)

T
(A3)

 

∂AP1 (t1, p)
∂p

=
d′ (p) K1 (t1)+

[
d (p)+ pd′ (p)

]
M1 (t1)

T
(A4)

 

∂AP2 (t1, p)
∂p

=
d′ (p) K2 (t1)+

[
d (p)+ pd′ (p)

]
M2 (t1)

T
(A5)

 

∂AP3 (t1, p)
∂p

=
d′ (p) K3 (t1)+

[
d (p)+ pd′ (p)

]
M3 (t1)

T
(A6)

where
 

f (t1, p) =p[1−Z(T − t1)]− c1

[
e
r t1

0 θ(y)dy−1
]
−

c2

[w t1

0
e
r t1

0 θ(y)dy−
r t

0 θ(x)dxdt
]
+

c3

[w T

t1
Z (T − t)dt

]
+ c4 [1−Z (T − t1)]−

c
[
e
r t1

0 θ(y)dy−Z (T − t1)
]

(A7)

 

K1 (t1) = −

c1

[
S 1

d (p)
−

w t1

0
(a1+b1t)dt

]
− c

d (p)
[S 1− I(T )]−

c2

d (p)

w t1

0
I (t)dt+

c3

d (p)

w T

t1
I (t)dt−

c4

[w µ1

t1
(a1+b1t) [1−Z (T − t)]dt +

w µ2

µ1
d0 [1−Z (T − t)]dt +

w T

µ2
(a2−b2t) [1−Z (T − t)]dt

]

(A8)

 

K2 (t1) = − c2

d (p)

w t1

0
I (t)dt+

c3

d (p)

w T

t1
I (t)dt−

c4

{w µ2

t1
[1−Z (T − t)]d0dt +

w T

µ2
[1−Z (T − t)] (a2−b2t)dt

}
−

c1

[
S 2

d (p)
−

w µ1

0
(a1+b1t)dt−

w t1

µ1
d0dt
]
−

c
d (p)

[S 2− I (T )]

(A9)

Table 2    Sensitivity analysis for Example 7.1. (continued)

Parameter Value −30% −20% −10% 0% 10% 20% 30%
t∗1 5.6175 5.6175 5.6173 5.6172 5.6173 5.6177 5.6182
S ∗ 28 249.0113 27 996.3534 27 868.7458 27 860.9420 27 828.9121 27 738.0663 27 600.0244
Q∗ 45 474.0383 45 154.7482 45 023.2138 45 019.2717 44 992.7828 44 923.0317 44 830.6454

AP∗ 57 084.9703 56 759.5240 56 793.3938 56 881.3417 56 787.7487 56 531.2290 56 163.9295

µ2

p∗ 114.7002 114.6958 114.3365 114.1498 114.2072 113.6684 112.0067
t∗1 5.6201 5.6201 5.6182 5.6172 5.6175 5.6146 5.6056

S ∗ 27 091.1101 27 097.2975 27 600.0244 27 860.9420 28 249.0113 30 028.1787 33 861.5935
Q∗ 46 127.7908 44 756.9377 44 830.6454 45 019.2717 45 474.0383 48 125.3635 54 267.1845

AP∗ 57 360.8399 55 242.1872 56 163.9295 56 881.3417 57 084.9703 62 137.9513 76 706.9519
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K3 (t1) = − c2

d (p)

w t1

0
I (t)dt+

c3

d (p)

w T

t1
I (t)dt−

c4

{w T

t1
(a2−b2t) [1−Z (T − t)]dt

}
 

K3 (t1) = − c2

d (p)

w t1

0
I (t)dt+

c3

d (p)

w T

t1
I (t)dt−

c4

{w T

t1
(a2−b2t) [1−Z (T − t)]dt

}
−

c1

[
S 3

d (p)
−

w µ1

0
(a1+b1t)dt −

w µ2

µ1
d0dt−

w t1

µ2
(a2−b2t)dt

]
−

c
d (p)

[S 3− I (T )]

(A10)

 

M1 (t1) =
w t1

0
(a1+b1t)dt+

e−δT

δ2

[
eδT (a2δ−b2δT +b2)−b2eδµ2 −

b1eδµ1 − eδt1 (a1δ+b1δt1−b1)
] (A11)

 

M2 (t1) =
w µ1

0
(a1+b1t)dt+

d0(t1−µ1)+
e−δT

δ2

[
eδT (a2δ−b2δT +b2) −

b2eδµ2 −d0δeδt1
] (A12)

and
 

M3 (t1) =
w µ1

0
(a1+b1t)dt+

w µ2

µ1
d0dt+

w t1

µ2
(a2−b2t)dt+

e−δT

δ2

{
eδT [a2δ−b2 (δT −1)] −

eδt1 [a2δ−b2 (δt1−1)]
} (A13)

∂APi (t1, p)
∂t1

i = 1

2 3
∂APi (t1, p)
∂t1

a1+b1µ1 =

d0 = a2−b2µ2
∂AP (t1, p)
∂t1

D

∂AP (t1, p)
∂t1

=
1
T

D(p, t1) f (t1, p)

D(p, t1) > 0
∂AP (t1, p)
∂t1

= 0

f (t1, p) = 0.
∂APi (t1, p)
∂p

i = 1 2 3

∂APi (t1, p)
∂p

Next, we explore the properties of  ( ,
, ).  It  is  easy  to  see  from  Eqs.  (41)−(43)  that

 has  similar  function  structure.  From  the
assumptions  mentioned  in  Section  3.3  that 

,  we  easily  derive  that  the  function

 is  continuous  in  domain  and  can  be

integratedly  written  as .

Since , then  is  just
equivalent  to  Furthermore,  we  investigate

the properties of  ( , , ). It’s not hard

to  find  from  Eqs.  (44)−(46)  that  also  has
similar  function  behavior.  For  the  purpose  of
integrating  these  equations,  we  firstly  analyze  the

Ki (t1) Mi (t1) i = 1 2
3
lim

t1→µ
−
1

K1 (t1) = lim
t1→µ

+
1

K2 (t1) lim
t1→µ

−
2

K2 (t1) = lim
t1→µ

+
2

K3 (t1)

lim
t1→µ

−
1

M1 (t1) = lim
t1→µ

+
1

M2 (t1) lim
t1→µ

−
2

M2 (t1) =

lim
t1→µ

+
2

M3 (t1)

functional characteristics of  and  ( , ,
).  It  is  easy  to  check  from  Eqs.  (48)−(53)  that

, ,

,  and 

. Letting
 

K (t1) =


K1 (t1) , 0 ⩽ t1 ⩽ µ1;
K2 (t1) , µ1 ⩽ t1 ⩽ µ2;
K3 (t1) , µ2 ⩽ t1 ⩽ T

(A14)

and
 

M (t1) =


M1 (t1) , 0 ⩽ t1 ⩽ µ1;
M2 (t1) , µ1 ⩽ t1 ⩽ µ2;
M3 (t1) , µ2 ⩽ t1 ⩽ T

(A15)

K (t1) M (t1)
[0,T ]

Ki (t1) < 0 Mi (t1) > 0 i = 1 2 3
t1 ∈ [0,T ] K (t1) < 0 M (t1) > 0

K′1(t1) = (a1+b1t1)α(t1) K′2(t1) = d0α(t1) K′3(t1) =
(a2−b2t1)α(t1),

we can gain that  and  are continuous on the
interval .  Also,  it  is  easy  to  see  from  Eqs.
(48)−(53)  that  and , , , .
Hence, for , we have  and .
Addtionally,  from  Eqs.  (48)−(50),  we  can  derive

, ,  and 
 where

 

α (t1) =− e
r t1

0 θ(y)dy
[
c+ c2

w t1

0
e−

r t
0 θ(x)dxdt+ c1

]
+

e−δ(T−t1) [c+ c3 (T − t1)− c4]+ c1+ c4

(A16)

lim
t1→µ

−
1

K′1(t1) = lim
t1→µ

+
1

K′2(t1) lim
t1→µ

−
2

K′2(t1) =

lim
t1→µ

+
2

K′3(t1), K (t1)

(0,T ) K′ (t1) =
A(t1)α (t1) M (t1)

(0,T )
M′ (t1) = A(t1)γ (t1)

Noting  and 

 we thus gain  is differentiable on the

interval  and can be integrately written as 
.  Similarly,  we  also  derive  that  is

differentiable  on  the  interval  and  can  be  written
as , where
 

γ (t1) = 1− e−δ(T−t1) (A17)

K (t1) M (t1)
∂AP (t1, p)
∂p

∂AP (t1, p)
∂p

=
1
T

g (t1, p) ,

As  a  result,  from  the  properties  of  and 

defined  above,  can  also  be  written  as

 where
 

g (t1, p) = d′ (p) K (t1)+
[
d (p)+ pd′ (p)

]
M (t1) (A18)

∂AP (t1, p)
∂p

= 0

g (t1, p) = 0.
which  implies  that  is  equivalent  to

This ends with the proof of Theorem 4.1.
Appendix 2: Proof of Proposition 4.1.

F (t1) t1
F′(t1) = −c[θ (t1)e

r t1
0 θ(y)dy−δe−δ(T−t1)]− c1θ (t1)e

r t1
0 θ(y)dy−

c2[θ (t1)e
r t1

0 θ(y)dy r t1
0 e

r t
0 −θ(x)dxdt+1]− c3e−δ(T−t1)[1−δ(T−

t1)]−δ(c4+ p)e−δ(T−t1)

The  first-order  derivative  of  concerning  is

. From the assumption mentioned
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dF(t1)
dt1

< 0 F (t1)

t1 ∈ (0,T ).

before,  we  easily  derive .  Hence,  is  a
strictly decreasing function in 

This ends with the proof of Proposition 4.1.
Appendix 3: Proof of Proposition 4.2.

G(p)

p
dG (p)

dp
=
∂g (t1, p)
∂t1

dt1
dp
+
∂g (t1, p)
∂p

.

dG (p)
dp

= A(t1){d′(p)[α (t1)+

pγ (t1)]+d(p)γ (t1)}dt1
dp
+d′′(p)K(t1)+[2d′(p)+pd′′(p)]M(t1).

d′(p)[α (t1)+ pγ (t1)]+d(p)γ (t1) < 0 A(t1) >

0
dt1
dp
> 0,K(t1) < 0 M(t1) > 0

d′′(p) ⩾ 0 2d′(p)+ pd′′(p) < 0
dG (p)

dp
< 0 G (p)

p

The first-order derivative of  concerning selling

price  is  After

simplication,  we  have 

 
When , since 

, ,  and ,  using  the  basical
assumptions  and ,  it  can

be  derived  that .  Hence,  is  a
monotonically decreasing function of .

This ends the proof Proposition 4.2.
Appendix 4: Proof of Theorem 4.2.

∂AP (t1, p)
∂p

=
g (t1, p)

T
=

G (p)
T
<

G(pL)
T
⩽ 0,

t1 AP (t1, p)
p ∈
(
pL, pU

)
p∗ = pL p∗ = pL

dAP(t1, pL)
dt1

= 0

t∗1 = t#1
1 f

(
t1, pL

)
= 0

d2AP(t1, pL)
d2t1

|t1=t∗1
=

f ′
(
t∗1, p

L
)

T
< 0 (t∗1, p

∗)

M

(1)  From  Eq.  (26),  combining  with  Proposition  4.3,

we  have 
which implies that for any given ,  is strictly
decreasing  in .  Hence,  the  optimal  selling
price .  Substituting  into  Eq.  (26),  it  is

clear  from  that  there  exists  a  unique

solution  satisfying .  Furthermore,

, and therefore, 

is the unique optimal solution of Model .
∂AP (t1, p)
∂p

=
g (t1, p)

T
= 0

G (p)
T
>

G(pU )
T
⩾

0, t1 AP (t1, p)
p ∈
(
pL, pU

)
p∗ = pU

p∗ = pU

dAP(t1, pU )
dt1

= 0 t∗1 = t#2
1

f
(
t1, pU

)
= 0

d2AP(t1, pU )
d2t1

|t1=t∗1
=

f ′
(
t∗1, p

U
)

T
< 0

(t∗1, p
∗)

M

(2) Similarly, 
 which  shows  that  for  any  given ,  is

strictly  increasing  in .  Thus, .
Substituting  into  Eq.  (26),  it  is  clear  from

 that there exists a unique solution 

satisfying .  Moreover, 

,  and  therefore,  second-order  sufficient

conditions  indicate  that  is  the  unique  optimal
solution of Model .

G
(
pL
)
> 0 G

(
pU
)
< 0

p = p∗ G (p)
p = p∗

f (t1, p∗)
t1 = t∗1 F(t1)

(3)  When ,  then ,  intermediate
value  theorem  indicates  that  there  exists  a  unique
solution  such that  =  0.  Then,  substituting

 into  Eq.  (26)  and  combining  with  Proposition
4.1,  it’s  also  not  hard  to  find  from  =  0  that
there exists a unique solution  such that  = 0

p = p∗for a given .

∂2AP (t1, p)

∂t2
1

∣∣∣∣∣∣∣
(t∗1,p

∗)

=
D (t1, p)

T

∂ f (t1, p)
∂t1

∣∣∣∣∣∣
(t∗1,p

∗)
<0

∂2AP (t1, p)
∂p2

∣∣∣∣∣∣
(t∗1,p

∗)
=

1
T
∂g (t1, p)
∂p

∣∣∣∣∣∣
(t∗1,p

∗)
<

∂2AP (t1, p)
∂t1 ∂p

∣∣∣∣∣∣
(t∗1,p

∗)
=

D(t∗1, p
∗)[1−τ (T − t∗)]

T

0 < δ < 1 ∣∣∣∣∣∣∣∣ ∂
2AP (p, t1)

∂t2
1

∣∣∣∣∣∣∣(
t∗1,p
∗
)
∣∣∣∣∣∣∣∣ >∣∣∣∣∣∣∣∣ ∂

2AP (p, t1)
∂t1 ∂p

∣∣∣∣∣∣(
t∗1,p
∗
)
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣ ∂
2AP (p, t1)
∂p2

∣∣∣∣∣∣(
t∗1,p
∗
)
∣∣∣∣∣∣∣∣ >∣∣∣∣∣∣∣∣ ∂

2AP (p, t1)
∂t1 ∂p

∣∣∣∣∣∣(
t∗1,p
∗
)
∣∣∣∣∣∣∣∣

(t∗1, p
∗)

Furthermore,  from  the  discussion  mentioned

before,  we  easily  obtain 

,    

0,  and .

Using the assumption  and combining with the

sion  before,  we  have 

 and 

.  Thus,  the  determinant  of  the

Hessian matrix at the stationary point  is
 

det(H) =

 ∂2AP (p, t1)

∂t2
1

∣∣∣∣∣∣∣(
t∗1,p
∗
)

 ∂2AP (p, t1)

∂p2

∣∣∣∣∣∣(
t∗1,p
∗
)
−

 ∂2AP (p, t1)
∂t1 ∂p

∣∣∣∣∣∣(
t∗1,p
∗
)
2 > 0.

(t∗1, p
∗)

M
As a result, we gain that  is the unique optimal

solution of Model .
This ends the proof Theorem 4.2.
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