
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

AD-NEv: A Scalable Multilevel Neuroevolution
Framework for Multivariate Anomaly Detection

Marcin Pietroń , Dominik Żurek , Kamil Faber , and Roberto Corizzo , Member, IEEE

Abstract— Anomaly detection tools and methods present a
key capability in modern cyberphysical and failure prediction
systems. Despite the fast-paced development in deep learning
architectures for anomaly detection, model optimization for a
given dataset is a cumbersome and time-consuming process.
Neuroevolution could be an effective and efficient solution to this
problem, as a fully automated search method for learning optimal
neural networks, supporting both gradient and nongradient fine-
tuning. However, existing methods mostly focus on optimizing
model architectures without taking into account feature sub-
spaces and model weights. In this work, we propose anomaly
detection neuroevolution (AD-NEv)—a scalable multilevel opti-
mized neuroevolution framework for multivariate time-series
anomaly detection. The method represents a novel approach
to synergically: 1) optimize feature subspaces for an ensemble
model based on the bagging technique; 2) optimize the model
architecture of single anomaly detection models; and 3) per-
form nongradient fine-tuning of network weights. An extensive
experimental evaluation on widely adopted multivariate anomaly
detection benchmark datasets shows that the models extracted
by AD-NEv outperform well-known deep learning architectures
for anomaly detection. Moreover, results show that AD-NEv can
perform the whole process efficiently, presenting high scalability
when multiple graphics processing units (GPUs) are available.

Index Terms— Anomaly detection, autoencoders, neural archi-
tecture search, neuroevolution.

NOMENCLATURE
N Number of samples in the original training dataset.
M Number of sensors.
σ Reduction rate.
X Original training dataset.
x Data point from X .
Xr Reduced training dataset.
xrt Data point from Xr .
lw Window size.
P Population in a genetic algorithm.
Ng Iterations (generations) in a genetic process.
Np Size of a population.
pm Probability of mutation.
G i i th subspace.
Si i th solution.

Manuscript received 15 September 2022; revised 5 October 2023 and 6 May
2024; accepted 29 July 2024. This work was supported in part by the PLGrid
Infrastructure, in part by the Polish Ministry of Science and Higher Education
allocated to the AGH University, and in part by Program “Excellence
Initiative—Research University” for AGH University. (Corresponding author:
Marcin Pietroń.)

Marcin Pietroń, Dominik Żurek, and Kamil Faber are with the Faculty
of Computer Science, AGH University of Krakow, 30-059 Kraków, Poland
(e-mail: pietron@agh.edu.pl).

Roberto Corizzo is with the Department of Computer Science, American
University, Washington, DC 20016 USA.

Digital Object Identifier 10.1109/TNNLS.2024.3439404

Fi i th solution.
F[i]ic Input channels of i th layer.
F[i]oc Output channels of i th layer.
F[i]K 1-D filter size of i th layer.
F[i]P Padding value of i th layer.
F[i]Bc Number of channels in batch norm of

i th layer.
PG i Population of models specific for

subspace G i .
δ(F, G(X)) Loss function.
1(F, G) Fitness function.
d(Fi , F j) Distance between models Fi and F j .
L Fi Layers of model Fi .
Lmax Max number of layer in Fi .
cmax Max difference between out and in channels.
γ (l) Number of channels in layer l.
F ′G i

(x) Model classifying input as normal or
anomaly.

Fe(x) Ensemble classification model.
θ Weight in neural network.
pc Crossover probability.
pm Mutation probability.
τ Mutation power.

I. INTRODUCTION

MODERN cyberphysical and failure prediction systems
involve sophisticated equipment that records multivari-

ate time-series data from several up to thousands of features.
Such systems need to be continuously monitored to prevent
expensive failures. In anomaly detection, it is common to have
abundant availability of normal data deriving from sensor mon-
itoring and scarcity of labeled anomalies. For this reason, most
anomaly detection works focus on semi-supervised learning
settings, where model training is conducted exclusively using
normal data [1], as well as unsupervised learning settings,
where training data are mostly normal but may contain a
small number of unknown anomalies. Among recent works
on semi-supervised and unsupervised multivariate time-series
anomaly detection, deep learning-based methods achieve the
best results on well-known benchmarks [2], [3], [4], [5], [6],
[7], [8], [9].

Within deep learning methods, a wide spectrum of
autoencoder-based approaches were designed to deal with
the anomaly detection problem [10], [11], [12], [13], [14].
The most efficient are those based on convolutional, fully
connected, and long short-term memory (LSTM) layers, or a
combination of them in single model. Alternative methods
are based on adversarial techniques [6] as well as variational

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

https://orcid.org/0000-0001-9357-9231
https://orcid.org/0000-0001-5329-1452
https://orcid.org/0000-0003-4221-0017
https://orcid.org/0000-0001-8366-6059

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

autoencoders (VAEs) [15], [16]. Other recent and very
promising trends include autoencoders based on graph neural
networks [17], [18], [19], generative adversarial networks
(GAN)-based architectures [3], supervised classification mod-
els [20], ensemble autoencoders [21], and autoencoders with
attention [22].

In this article, one important problem is the identification of
a suitable and optimized architecture for a given dataset, in a
fully automated way. Neuroevolution is a form of artificial
intelligence that uses evolutionary approaches to find optimal
neural networks. The most popular forms of neuroevolution
algorithms include NeuroEvolution of Augmenting Topologies
(NEAT) [23], HyperNEAT [24], and coDeepNEAT [25], which
aim to optimize parameters, model architectures, or both.
However, despite its potential, neuroevolution approaches have
been focused on the optimization of model architectures
without taking into account the joint optimization of model
architectures with feature subspaces and model weights.

In this article, we aim to fill this gap proposing anomaly
detection neuroevolution (AD-NEv), a multilevel neuroevo-
lution approach that aims to identify robust and optimized
autoencoder architectures for anomaly detection. Inspired by
the framework formulated in [26], loosely based on the
coDeepNEAT algorithm, our novel approach involves the
simultaneous evolution of two populations: models and sub-
spaces. The former contains neural network architectures that
evolve during the neuroevolution process. The latter consists
of subspaces, which define subsets of input features. After
the neuroevolution process, the framework sets up a bag-
ging technique-based ensemble model from single optimized
architectures. A distinctive feature of our proposed approach
stands in the optimization of a single model for each subspace,
overcoming the limitation of a single suboptimal solution
for all subspaces. Subsequently, a fully scalable nongradient
fine-tuning process is performed to iteratively select the best
solutions and generate model populations. In addition, fine-
tuning is performed on the evolved ensemble model. Another
key novelty of our proposed approach stands in the fully
automated nature of the optimization process, encompass-
ing subspace evolution, model evolution, and fine-tuning.
To the best of the authors’ knowledge, this research direction
has never been explored before in the context of anomaly
detection tasks. Our extensive experimental evaluation shows
that our proposed multilevel neuroevolution approach yields
deep ensembles of autoencoder models that outperform state-
of-the-art methods without requiring any predefined scoring
function.

The main contributions of our work can be summarized in
the following.

1) A novel multilevel neuroevolution approach with a sepa-
rate population of models for each subspace of features,
which can be evolved independently, leading to a better
adaptation of specific models to each subspace.

2) A novel selection process for models evolution based on
an adapted distance measure for deep autoencoders that
promotes model diversity.

3) A fast nongradient-based fine-tuning approach for the
evolved model architecture, leveraging adaptations of
neural network weights in the evolution process, which
improves results achieved by the previous levels.

4) Automatic induction of a regularized ensemble model
with a low number of submodels, which further
improves anomaly detection performance.

5) An extensive evaluation with benchmark datasets that
are widely adopted for multivariate anomaly detection.

This article is organized as follows. Section II describes
related works. Section III presents the proposed neuroevolution
approach in detail. Section IV describes and discusses our
experiments. Section V summarizes the key results obtained
in our study. Section VI focuses on our ablation study. Finally,
Section VII concludes this article and outlines directions for
future work.

II. RELATED WORKS

In this section, we analyze the anomaly detection methods
for multivariate time-series data, as well as neuroevolution
methods that are most relevant for our research scope.
Recent surveys on general anomaly detection [27], deep
learning-based anomaly detection [1], [28], [29], [30], [31],
and unsupervised time-series anomaly detection [32] present
techniques relevant to unsupervised and semi-supervised mul-
tivariate time-series anomaly detection. Autoencoder-based
methods include fully connected autoencoder (FC AE), unsu-
pervised anomaly detection (USAD) [6], and univariate fully
connected autoencoder (UAE) [21]. These methods have
become prominent in a number of real-world applications,
such as cybersecurity [10], [11], energy [12], physics [13],
and medical imaging [14].

LSTM-based methods include National Aeronautics and
Space Administration (NASA)-LSTM [20], LSTM-AE [21]
(which is based on [2]), and LSTM-VAE [33]. CNN-
based methods include temporal convolutional AE (TCN
AE) [34]. GAN-based methods include one-class adver-
sarial nets (OCAN) [9] and BeatGAN [3]. Graph neu-
ral network-based approaches include [17]. Finally, hybrid
approaches include Multi-Scale Convolutional Recurrent
Encoder-Decoder (MSCRED) [35], deep autoencoding Gas-
sian mixture model (DAGMM) [36], and OmniAnomaly [5].

Regarding autoencoder-based approaches, the FC AE model
introduced in [21] is similar to UAE, but it involves a single
model over all the features, where the input sample is a vector
resulting from the concatenation of time steps observed for
all sensors. The USAD model is an autoencoder with an
additional discriminator model and loss extensions to boost the
final scores. Garg et al. [21] present comparative studies on
multivariate anomaly detection models. They describe UAE as
a model consisting of multiple autoencoders, each connected
by its input to a separate feature. Each encoder is a multilayer
perceptron with a number of nodes corresponding to the
number of time steps (window size) and a reduced number
of dimensions in the latent space by a factor of 2. The
decoder is a mirror image of the encoder with tanh activation.
The resulting ensemble model outperforms many other deep
learning architectures.

The attention mechanism for anomaly detection is exploited
in PAFormer [22], where attention weights are used to learn
the global–local distributional differences for each data point,
enabling to discriminate anomalies.

Focusing on LSTM-based approaches, NASA-LSTM is a
two-layer LSTM model that uses predictability modeling,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PIETROŃ et al.: AD-NEv: A SCALABLE MULTILEVEL NEUROEVOLUTION FRAMEWORK 3

i.e., forecasting for anomaly detection [20]. The LSTM-AE
presented in [21] consists of single-LSTM layer for each
encoder and decoder. LSTM-VAE [15] models the data gen-
erating process from the latent space to the observed space
using variational techniques.

A VAE-based method with evolutionary features is proposed
in [16]. However, unlike our proposed framework, the method
neither consider weights mutation in the model nor subspace
evolution. The model is evolved only for one specialized ECG
dataset.

The CNN-based approach of TCN AE described in [21]
is an architecture in which the encoder is built from a stack
of temporal convolution (TCN) [34] residual blocks. In the
decoder, convolutions in the TCN residual blocks are replaced
with transpose convolutions. The study shows that the scoring
function has a significant impact on the pointwise F1-score.

GAN-based methods include OCAN [9], an end-to-end one-
class classification method in which the generator is trained
to produce examples that are complimentary to normal data
patterns, which is used to train a discriminator for anomaly
detection using the GAN framework. BeatGAN [3] uses a gen-
erative adversarial network framework where reconstructions
produced by the generator are regularized by the discriminator
instead of fixed reconstruction loss functions.

Graph-based models also represents a viable and powerful
alternative for anomaly detection with time-series data. The
dense graph neural network approach presented in [17] models
the anomaly detection problem as a graph neural network,
where each node represents a single feature, and edges
allow to represent data exchanged between different nodes.
The graph-based modeling capabilities represent a distinctive
trait of this method and were shown to yield a significant
performance boost other state-of-the-art methods with very
well-known multivariate time-series datasets.

Zheng et al. [18] adopts a graph neural network to encode
spatial information from complex pairwise dependencies
between variables, and a module with dilated convolutional
functions allows to capture temporal dependencies. A similar
challenge is addressed in [19], where a cross-time spatial graph
network with fuzzy embedding is proposed to disentangle
latent and mixing temporal states and learn cross-time spatial
dependencies.

Hybrid methods such as MSCRED [35] learn to reconstruct
signature matrices, i.e., matrices representing cross correlation
relationships between channels constructed by pairwise inner
product of the channels. It is efficient in the case of long-term
anomalies that are significantly out of the normal data distri-
bution. Deep autoencoding Gaussian mixture model (GMM)
[36] uses a deep autoencoder to generate a low-dimensional
representation and reconstruction error for each input data
point. The output of the autoencoder is further fed into a
GMM. DAGMM jointly optimizes the parameters of the deep
autoencoder and the mixture model in an end-to-end fashion.
The joint optimization balances autoencoding reconstruction
and density estimation of latent representation. The proposed
regularization helps the autoencoder escape from less attrac-
tive local optima and further reduce reconstruction errors.
OmniAnomaly [5] is a stochastic recurrent neural network for
multivariate time series. Its main idea is to capture the normal
patterns of multivariate time series by learning their robust

representations with key techniques, such as stochastic variable
connection and planar normalizing flow. Then, it reconstructs
input data and uses the reconstruction probabilities to deter-
mine anomalies.

One common drawback of these methods is that they do not
perform automatic model optimization, and therefore require
a significant manual effort to identify and tune the right
architecture for the right domain and dataset. This limitation
may be solved by neuroevolution approaches, which have been
recently used in many machine learning tasks for improving
the accuracy of deep learning models and finding optimal
network topologies [37], [38], [39], [40].

Miikkulainen et al. [25] show that a two-level neuroevolu-
tion strategy scheme can outperform human-designed models
in some specific tasks, e.g., language modeling and image
classification. This strategy is based on the co-deep NEAT
algorithm with two optimization levels: single sub-block opti-
mization and composition of sub-blocks to form a whole
network. In [40], a novel deep reinforcement learning-based
framework is proposed for electrocardiogram time-series sig-
nal. The framework is optimized by neuroevolution algorithm.
Jiau and Huang [39] present the framework of the self-
organizing map-based neuroevolution solver by which the
self-organizing maps (SOMs)-like network represents the
abstract carpool service problem. The SOM network is trained
by using neural learning and evolutionary mechanism. In [38],
the novel neuroevolution approach is described. The algorithm
is incorporated with powerful representation which unifies
most of the neural networks into one representation and with
new diversity preserving method called spectrum diversity.
The combination of spectrum diversity with a unified neuron
representation enables the algorithm to either outperform or
have similar performance with NEAT on five classes of
problems tested. Ablation tests show the importance of new
added features in the unified neuron representation. In [41],
a novel neuroevolutionary method for optimization the archi-
tecture and hyperparameters of convolutional autoencoders.
The hypervolume indicator in the context of neural architec-
ture search is introduced. Results show that images can be
compressed by a factor of more than 10, while still retaining
enough information. In [42], it is shown that genetic algorithm
could evolve autoencoders that can reproduce the data better
than the manually created autoencoders with more hidden
units. The experiments were performed on the MNIST dataset.
The first approach of a co-evolutionary neuroevolution-based
multivariate anomaly detection system is presented in [26].
However, one substantial limitation is that the optimization of
subspaces and models occurs separately, so that one model
is optimized for all subspaces. This characteristic limits the
capability of the neuroevolution process to optimize the model
for each specific subspace, forcing the model to compro-
mise in order to handle all subspaces simultaneously, and
potentially resulting in a loss of anomaly detection accuracy.
Moreover, the proposed method does not provide fine-tuning
capabilities, which would provide the opportunity to further
optimize the model and improve anomaly detection perfor-
mance. Fine-tuning is a quite popular technique for improving
the accuracy of the pretrained models. The most popular tech-
nique is gradient-based fine-tuning [43], [44]. The nongradient
approach is quite rare but can yield significant improvements

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 1. AD-NEv framework architecture. Time-series data are used to train and evaluate a set of models during neuroevolution through different levels. The
framework returns an optimized ensemble model that can be used for inference.

as shown in [45]. The presented method improves the accuracy
of pretrained quantized models.

One common drawback of existing neuroevolution methods
is that they typically optimize model architectures or model
weights in isolation. Moreover, the majority of approaches that
optimize model weights focus on shallow neural networks.
Finally, to the best of the authors’ knowledge, there is no
neuroevolution approach that jointly optimizes feature spaces,
model architecture, and model weights.

III. METHOD

In this section, we describe AD-NEv, a scalable mul-
tilevel neuroevolution framework that jointly addresses the
aforementioned limitations of anomaly detection and neu-
roevolution methods. The starting point of the framework is
data preparation—which consists of downsampling training
data used in the following evolution levels, and splitting it into
overlapping windows, which reduces the computational cost of
the following steps. The next step is finding the optimal par-
tition of input features into subspaces, leading to an effective
matching between features and models, as well as a reduced
number of models in the final ensemble. After that, model
evolution is performed for each subspace. At the next level,
the best model for each subspace extracted from the previous
level is fine-tuned using the nongradient genetic optimiza-
tion method. Subsequently, the ensemble model combines all
fine-tuned models evaluating them using a voting mechanism.
A visual representation of the framework architecture is shown
in Fig. 1. In the following, we describe all levels in detail in
Sections III-A–III-G.

A. Autoencoders
AD-NEv leverages a deep neural network architecture con-

sisting of autoencoders as base models for the neuroevolution
process. Autoencoders are unsupervised learning models that
learn a compressed representation of raw input data, which
is then used to accurately reconstruct inputs. They consist
of two parts: an encoder E and a decoder D. The encoder
learns how to efficiently compress and encode the input data

X in a new representation with reduced dimensionality—latent
variables Z. The decoder learns how to reconstruct the latent
variables Z back to their original shape. The model is trained
to minimize the reconstruction loss, which corresponds to
minimizing the difference between the decoder’s output and
the original input data. It can be expressed as follows:

L(X, X̂) = ||X − AE(X)||2 (1)

where

AE(X) = D(Z), Z = E(X). (2)

The autoencoder in our method can consist of various
layers, e.g., fully connected layers and convolutional layers.
Several variants of autoencoder architecture exist, including
adversarial autoencoder (AAE) [46]), VAE [47]), or denoising
autoencoder (DAE) [48]) but the general idea of reconstruction
loss minimization is similar in all cases, (1). When dealing
with time-series data, the error is predicted at each time point
(norm between input and multivariate reconstructed vector),
as in the following equation:

Ert = ||X t − AE(xt)||2. (3)

B. Data Reduction
The algorithm starts by reducing the training data for the

evolution process. Specifically, a consecutive number of data
points σ are aggregated by averaging values for each feature,
leading to a coarser time granularity. As a result, we are
able to provide a fast evolution while retaining the most
important information. The original training dataset X contains
N samples, and each sample contains data from M features,
as shown in the following equations:

X = {xt , t ∈ 1, 2, . . . , N } (4)
xt = {xti , i ∈ {1, 2, . . . , M}}. (5)

The reduced dataset is annotated as Xr , whereas σ is the
reduction ratio parameter

Xr =

{
xrt , t ∈ 1, 2, . . . ,

N
σ

}
. (6)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PIETROŃ et al.: AD-NEv: A SCALABLE MULTILEVEL NEUROEVOLUTION FRAMEWORK 5

Single data points from Xr are obtained according to the
following equation, where med is the median function:

xrt = med({xt∗σ , xt∗σ+1, . . . , x(t+1)∗σ }). (7)

Although the averaging step may lead to information loss,
our experiments with and without this step highlighted that
the ranking of models remains fundamentally unaltered, while
a significant increase in the efficiency of the model selection
step can be obtained. Moreover, it should be noted that, in the
proposed approach, averaging is just used as a reference to
compare model efficiency. The final model architecture is
trained using the whole training dataset in its original gran-
ularity. We have done tests and compared the ranking of the
models after training on the reduced dataset and nonreduced.
The final best architecture in all cases achieved the best
F1-score in both cases.

During this step, data points are also grouped into over-
lapping windows used in the following steps. The rationale
is based on the fact that working with time-series data,
an aggregated context can be more beneficial for the algorithm
than a single data point. The window size lw can change during
the evolution process since it is one of the parameters subject
to mutation.

C. General Evolution Algorithm
In our multilevel neuroevolution framework, we apply a

genetic algorithm in three levels: subspaces, models, and
nongradient fine-tuning. The genetic process starts with the
generation of the initial population P0. Each population con-
tains Np solutions. After that, the single iteration is repeated
Ng times. Each iteration starts with creating offspring from
the parents by the crossover operator. Next, the mutation
operator mutates each solution from the offspring with the
probability pm . The genetic process is formally described in
Algorithm 1. Genetic operators such as crossover and mutation
are different for subspaces (see Algorithms 2–5) and models
(see Algorithms 6 and 7). The models’ fine-tuning has a
unique selection and mutation process (see Algorithm 9).
Nevertheless, the structure of the genetic algorithm is the same
for all levels. Details about each specific step of the process
for all levels are provided later on in this article.

Subsequently, the fitness of each solution is calculated.
In our approach, the generation process works on the model
architecture in the evolution of a single model, on subspaces in
the subspace optimization, and on weight values during fine-
tuning. The combination of these three levels in our framework
allows us to explore and exploit a larger search space during
model optimization. A single genetic iteration finishes with the
selection of solutions that form a new population. The result
of the genetic process is the final population PNg .

D. Subspaces Evolution
The goal of this level of the algorithm is to find an optimal

partitioning of input features into subspaces. We define a
subspace G i as a subset of the input features that is specific
for each dataset, as shown in the following equation:

G i (X) ⊆ {X0, X1, X2, . . . , X M} (8)

where X i denotes data from the i th input feature.

Algorithm 1 General Genetic Algorithm Workflow
Result: PNg – Final population
Input: Ng – Number of iterations
Input: Np – Size of the given population
Input: pm – Probability of mutation

1 i ← 1;
2 Generate initial population P0 ;
3 while i ≤ Ng do
4 Create offspring (crossover) for subspaces (Alg. 2)

or model (Alg. 7);
5 Mutate offspring for subspaces (Alg. 3, 4, 5) or

model (Alg. 6);
6 Compute fitness (loss) of all solutions (Alg. 8) ;
7 Select best solutions for a new population Pi using

fitness and distance as in Eq. 14;
8 i ← i + 1;
9 return Final population PNg

Algorithm 2 Subspaces Crossover Algorithm
Result: S′— solution created by crossover
Input: S1—parent solution with K subspaces
Input: S2—parent solution with K subspaces

1 S′ = {};
2 for i ∈ [0, 1, . . . , K] do
3 g1 = S1i ; // Subspace from S1
4 g2 = S2i ; // Subspace from S2
5 gmin = min (min (g1), min (g2));
6 gmax = max (max (g1), max (g2));
7 γ = randint (gmin, gmax) ; // Split point
8 g′ = {};
9 for κ ∈ g1 do

10 if κ < γ then
11 g′← g′ ∪ κ;
12 for κ ∈ g2 do
13 if κ > γ then
14 g′← g′ ∪ κ;
15 S′← S′ ∪ g′ ;
16 return S′

The partition S of input features contains K subspaces.
There is no restriction on the frequency of the presence for a
single input feature in subspaces, which means that it can be
used in zero, one, or more subspaces. Our method leverages
the genetic algorithm to find the optimal partition of the
input features into subspaces. A single gene provides infor-
mation about a given feature being present in a subspace G.
To perform subspace evolution we adopt the genetic operators
defined in [26]: crossover (Algorithm 2), moving mutation
(Algorithm 3), vanishing mutation (Algorithm 4), and adding
mutation (Algorithm 5).

To improve the convergence speed of the genetic algorithm,
we form the initial population based on the correlation between
features, instead of using a randomly generated population.
Features are clustered performing agglomerative clustering
with a degree of randomness to achieve a diverse population.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Algorithm 3 Subspaces Moving Mutation
Result: S′— solution created by mutation
Input: S—solution containing K subspaces
Input: Pm—probability of a mutation

1 S′← ∅ ;
2 for i ∈ [0, 1, . . . , K] do
3 sample r from N (0, 1);
4 if r < Pm then
5 sample κ from Si ; // Feature to move
6 j = (i + 1) mod K ; // id of the next

subspace in solution
7 S′j ← S j ∪ κ;
8 S′← S′ ∪ S′j
9 return S

Algorithm 4 Subspaces Vanishing Mutation
Result: S′— solution created by mutation
Input: S—solution containing K subspaces

1 S′← ∅ ;
2 for Si ∈ S do
3 S′i = Si ;
4 for κ ∈ Si do

5 Cκ =
∑

Si∈S

{
1, if κ ∈ Si

0, otherwise
;

6 sample r from N (0, 1);
7 if r > 1

Cκ
then

8 S′i ← S′i \ {κ} ;
9 S′← S′ ∪ S′i ;

10 return S′

This process has the effect of recursively merging pairs of
clusters leveraging the linkage distance [49]. In our approach,
we leverage correlations between features as an intuitive
and automatic way to estimate their similarity and drive the
clustering process.

E. Models Evolution

This level follows subspace evolution, and its aim is to find
optimal models that can be later parts of the ensemble model.
Models for each subspace are evaluated independently, since a
model that is optimal for one subspace may not be efficient in
another subspace. Therefore, we create and evaluate a single
population of models for each subspace. We denote PG i as a
population of models specific for subspace G i

PG i =

{
F j

2(G i), j = 0, . . . , NP

}
. (9)

Each model is represented by an encoder and a decoder,
as in the following equations, where the layers in encoder and
decoder appear in the reversed order

z = E
(

F j
2E (G i)

)
= f j

θ E
N

(
f j
θ E

N−1
, . . . ,

(
f j
θ E

0
(G i)

))
(10)

Gr
i = D

(
F j

2D (z)
)
= f j

θ D
0
, . . . ,

(
f j
θ D

N−1

(
f j
θ D

N
(z)

))
. (11)

Algorithm 5 Subspaces Adding Feature Mutation
Result: S′— solution created by mutation
Input: S—solution containing K subspaces
Input: F— set of all features

1 S′← {S′0, S′1, . . . , S′K }, where S′i = Si ;
2 for κ ∈ F do
3 if κ /∈ S then
4 for Si ∈ S do
5 sample r from N (0, 1);
6 if r > 1

K then
7 S′i ← S′i ∪ κ;
8 return S′

Performing D(E(F j
2(G i))), we obtain the reconstructed

subspace—Gr
i .

Each population PG i is evolved independently from the
others in order to find the best solution for each subspace G i
by means of a genetic algorithm. The genetic operators follow
the specifications in [26] and include crossover and mutation
of the following parameters: number of layers, number of
input and output channels for each layer i (F[i]ic, F[i]oc),
and window size (lw) (Algorithms 6 and 7).1

If a mutation of the number of layers takes place, the L F
parameter is modified by removing the last 3l layers in the
encoder (f j

θ E
N

, f j
θ E

N−1
, . . .) (lines 10–12, Algorithm 6) and the

first 3l layers in the decoder (f j
θ D

N
, f j

θ D
N−1

, . . .) or adding new

ones to the end of the encoder after the f j
θ E

N
layer, and to the

decoder before f j
θ D

N
(lines 14–17, Algorithm 6). The mutation

of the output channels in the specific layer is described in
lines 3–7, Algorithm 6, and the window size mutation is
presented between lines 18 and 20, Algorithm 6. In the case
of a crossover, the chosen lth layer of the encoder fθ E

l
and the

decoder fθ D
l

are exchanged between two child models F ′1 and
F ′2 in a subgroup population (lines 4–8, Algorithm 7). The
next option of crossover is to exchange the length between
the two parent autoencoders (lines 10–18, Algorithm 7).

A key aspect of our method is that it does not require the
selection of a single value for the mutation stage. To simplify
this task, users can provide a range to define the search
space for the mutation stage, delegating the responsibility
of choosing a proper window size value to the framework,
reducing the user’s margin for error.

As the loss function δ for model F and subspace G on
dataset X , we use the mean squared error defined as follows:

δ(F, G(X)) =
1

|G(X)|

∑
x∈G(X)

(F(x)− x)2. (12)

The genetic algorithm needs to calculate the fitness 1 for
each single model F and subspace G. To achieve this goal,
the methods relies on a windowed training dataset X which is
split into consecutive parts according to the timestamp of data
points: a training part X t (80%) and validation part Xv (20%).

1Without loss of generality, Algorithms 6 and 7 operate on any layer of
the neural network. For conciseness, we do not report the processing of the
encoder and decoder parts of the model.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PIETROŃ et al.: AD-NEv: A SCALABLE MULTILEVEL NEUROEVOLUTION FRAMEWORK 7

Algorithm 6 Single Model Mutation
Input: F - a model
Input: wmax - maximum window size, Lmax -

maximum number of conv layers
1 F ′← copy(F);
2 sample m from {0, 1, 2} ; // mutation types
3 if m = 0 then

// mutate the number of channels in
a layer

4 sample l from {0, . . . , L F − 1};
5 c′ = randint (F[l]ic, F[l + 1]ic);
6 F ′[l]oc ← c′;
7 F ′[l + 1]ic ← c′;
8 if m = 1 then

// reduce the length of the model
9 sample l from {0, . . . , Lmax };

10 if l < L F then
11 for k ∈ [l + 1, . . . , L F] do
12 F ′[k] ← ∅ ;
13 else
14 for k ∈ [L F , . . . , l − 1] do
15 c′ = randint (F[k]oc, F[k]oc + cmax);
16 F ′[k + 1]ic ← F[k]oc;
17 F ′[k + 1]oc ← c′;
18 if m = 2 then

// mutate window size
19 sample w from {1, . . . , wmax };
20 F ′[0]ic ← w;
21 return F ′

Algorithm 7 Models Crossover
Input: F1, F2

1 F ′1 ← copy(F1);
2 F ′2 ← copy(F2);
3 sample m from {0, 1} ; // type of crossover
4 if m = 0 ; // exchange the layers
5 then
6 sample l from {0, 1, . . . , min (L F1 , L F2)} ;
7 F ′1[l] ← F2[l];
8 F ′2[l] ← F1[l];
9 if m = 1 ; // exchange the lengths of

models
10 then
11 if L F1 > L F2 then
12 F ′1[L F2 − 1]oc ← F2[L F2 − 1]oc;
13 for k ∈ [L F2 , . . . , L F1] do
14 F ′1[k] ← F2[k];
15 F ′2[k] ← ∅ ;
16 else
17 F ′2[L F1 − 1]oc ← F1[L F1 − 1]oc;
18 for k ∈ [L F1 , . . . , L F2] do
19 F ′2[k] ← F1[k];
20 F ′1[k] ← ∅ ;
21 return F ′1, F ′2

During the evolution, the model is trained on the training part
X t . After each evolution iteration, we calculate the fitness

as the weighted loss from the validation datasets. The value
is negated because the goal of the genetic algorithm is to
maximize the fitness, whereas we want to minimize loss
values. The whole calculation is expressed in the following
equation:

1(F, G) = −
|X t | ∗ δ(F, G(X t))+ |Xv| ∗ δ(F, G(Xv))

|X t | + |Xv|
.

(13)

Our method introduces a novel selection process in the
evolution of the models. Its goal is to avoid convergence to a
local optimum by keeping diversity in the models’ population.
To achieve this goal, we modify the selection process. Instead
of choosing only the best models in each generation, we also
keep a few of the most different models. We calculate the
distance dF between models Fi and F j . The value is based on
the models’ hyperparameters, such as the number of layers
L and the number of channels γ in the convolutional or
fully connected layer. The distance calculation is performed
as follows:

dF (Fi , F j) = L Fi − L F j +

∑
la ,lb∈L Fi ,L Fj

abs(γ (la)− γ (lb))

min(γ (la), γ (lb))

(14)
where abs denotes the absolute value.

Algorithm 8 Model Fitness Calculation
Result: Fitness value for solution S
Input: S - solution containing K subspaces
Input: X t - train dataset
Input: Xv - validation dataset
Input: Nep - number of epochs to train while

calculating fitness
1 L← 0 ;
2 for Si ∈ S do
3 F = train_model (X t , Si , Nep);
4 Lt = δ(F, Si (X t)) ; // Rec. loss (Eq. 12)
5 Lv = δ(F, Si (Xv)) ;
6 LX =

|X t |

|X t |+|Xv |
∗ Lt +

|Xv |

|X t |+|Xv |
∗ Lv;

7 LSi =
LX
|Si |

;
8 L = L+ LSi

9 return −L

F. Nongradient Fine-Tuning
Changing the weights values of pretrained models with

gradient-based methods can result in suboptimal models that
could be further optimized. This phenomenon was noticed
and presented in [45], which shows that performing nongra-
dient fine-tuning after gradient-based optimization can yield
more accurate models. Inspired by this work, we perform
nongradient fine-tuning on the best models extracted from
the previous level. As the optimization step, we choose the
evolutionary approach in which the genetic operators modify
weights values to improve the performance of the models. The
mutation operator modifies the chosen weights by the mutation
power τ with mutation probability pm as in

θ ′ = θ ∗ (1± pm ∗ τ) (15)

where θ is a single weight.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Algorithm 9 Fine-Tuning
Result: R - A set of fine-tuned models
Input: F - The best model from previous level
Input: NP - Size of fine-tuning population in every

generation
Input: Ng - Number of generations in the fine-tuning
Input: pm - Mutation probability
Input: τ - Mutation power

1 R← ∅ ;
2 g← 0 ; // Generation number
3 Fg ← F ;
4 while g < Ng do
5 Pg ← {F2′1

, F2′2
, . . . , F2′NP

} where θ ′ is created by
mutating weights from Fg using eq. 15 with pm

and τ ;
6 Fg ← arg min

Fi∈Pg

F P(Fi) ;

7 if F P(Fg) = 0∨
8 ∀k∈[g−5,g−4,...,g−1]F P(Fk) = F P(Fg) ; // is

stagnated
9 then

10 R← R ∪ Fg ;
11 Fg ← arg max

F ′∈P
dF (F, F ′) ; // dF (·, ·) from

eq. 16
12 g← g + 1
13 return R

During the fine-tuning process formalized in Algorithm 9,
the algorithm randomly mutates a percentage of the weights2

(line 5, Algorithm 9). The fitness for each solution is calculated
in the population as the number of false positives (FPs) (line 6,
Algorithm 9). During the fine-tuning process, a sample is
marked as an anomaly (FP) if its reconstruction error is higher
than the average value of all reconstruction errors, multiplied
by a constant factor that determines the allowed deviation from
the mean. The best solutions are selected to be included in the
new population (lines 6–11, Algorithm 9). In the following
iteration, a complete new set of models is generated based on
the best models selected from the previous iteration.

If a fitness value of zero FPs is achieved (line 7,
Algorithm 9), or when a model does not further improve for
a given number of iterations, i.e., stagnation condition (line 8,
Algorithm 9), no further improvement is possible. We recall
that this assumption holds since model training takes place in
a semi-supervised setting, in which training data contains no
anomalies. If zero FPs are achieved or the stagnation condition
occurs, the best model is removed from the population and is
used for the inference phase, during which it is evaluated on
testing data.

In all cases, after removing the best model, another model
is selected (line 11, Algorithm 9) and further improved in
the following iterations. The new model is selected based
on the highest distance from the best model, as shown in

2To change weights, the plus/minus sign is randomly chosen with a
probability of 50%.

the following equation:

dθ (Fi , F j) =

Layers(Fi)∑
k=0

√
|θFik − θF jk |

2. (16)

The distance represents the difference between the values
of the weights of the two models. The process of selecting
the most diverse model aims at achieving the exploration of a
larger space of models, while avoiding getting stuck in a local
minima.

The fine-tuning process does not involve the crossover
operation, since its adoption would provide the same effect
as a very high value of the pm parameter. In that case, model
weights would likely drift to a wrong direction in a single
iteration, leading to a drastic loss in model’s accuracy (as
further showcased in Section VI-B).

G. Ensemble Model
The outcome of the previous steps can be summarized as

follows.
1) An optimized partition of input features into subspaces:
{G i , i ∈ {0, . . . , K }}.

2) An optimized and fine-tuned model for each subspace
G i : {FG i , i ∈ {0, . . . , K }}.

Our next goal is to build an ensemble model that is capable of
classifying input data as normal or as an anomaly. To accom-
plish this goal, we add a threshold to each model to return a
binary prediction: either 0 (normal) or 1 (anomaly). Therefore,
for each subspace G i , we create a model F ′G i

that compares
the output of FG i to the threshold ηi , specifically defined for
each model

F ′G i
(x) =

{
0, FG i (x) < ηi

1, FG i (x) ≥ ηi .
(17)

As a result of this process, we compose base models into the
ensemble model Fe adopting a crisp voting strategy

Fe(x) =


0,

K∑
i=0

F ′G i
(x) = 0

1,

K∑
i=0

F ′G i
(x) > 0.

(18)

Fe(x) ⇐⇒ (FG1(xG1), FG2(xG2), . . . , FG K (xG K)). (19)

This voting mechanism was empirically determined and
selected since it gives better results than standard approaches
such as majority voting. As a result, the ensemble model Fe
can classify input data as normal or an anomaly based on the
output of single models.

IV. EXPERIMENTS

Our experiments focus on multivariate anomaly detection
with time-series data, which represents a challenging task that
is crucially important in many real-life applications.

More specifically, our experiments aim to address the fol-
lowing research questions.

1) RQ1: Does AD-NEv yield a higher anomaly detec-
tion performance than state-of-the-art anomaly detection
methods for multivariate time series?

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PIETROŃ et al.: AD-NEv: A SCALABLE MULTILEVEL NEUROEVOLUTION FRAMEWORK 9

2) RQ2: Are all modeling levels in AD-NEv contributing
to the achievement of the final anomaly detection per-
formance of the method?

3) RQ3: Does AD-NEv model training present a reasonable
time complexity in terms of execution time for all its
levels (training, subspaces, models, and fine-tuning)?

4) RQ4: Does the AD-NEv framework present satisfactory
speedup values, allowing to efficiently scale model opti-
mization when using multiple general purpose graphics
processing units (GPGPU)?

5) RQ5: Does AD-NEv present a stable and efficient model
evolution and fine-tuning convergence process consid-
ering different values for the population size, τ , and
mutation probability parameters?

To answer these questions, we perform a set of quantitative
and qualitative experiments that assess the performance of
AD-NEv from different perspectives. In the following sub-
sections, we describe the evaluation protocol followed in our
study, the datasets analyzed, the metrics used to assess the
anomaly detection performance, as well as competitor methods
considered and their configuration. Results are discussed in
Section V.

A. Datasets
We selected relevant time-series datasets, including the

Secure Water Treatment (SWAT) Dataset (SWAT) [50], the
Water Distribution (WADI) dataset [51], the Mars Science
Laboratory (MSL) Rover dataset, and the Soil Moisture Active
Passive (SMAP) Satellite dataset [20]. All datasets either
involve data gathered in real environments (MSL and SMAP)
or carefully prepared testbeds reflecting existing systems
(SWAT and WADI). The datasets contain anomalies resulting
from either device malfunctions or external malicious activity.
The anomalies were labeled by the domain experts who
created the datasets. It is noteworthy that the chosen datasets
are popular benchmarks used in many recent studies.3

For all datasets, we leveraged splits provided by the authors
of each dataset, which properly considers the continuity of
time-series data. Training data contains clean conditions of
the process without anomalies, whereas testing data contains
both normal data and anomalies (class 0: normal/benign and
class 1: anomaly).

Accordingly, we adopt a semi-supervised anomaly detection
setting, where normal/benign data are exclusively used for
model training (one-class learning). As a result, our models are
exclusively trained on normal data, without anomalies. Both
training and testing data are processed in windows, according
to the value of window size (in channels in the Conv1D layer)
chosen during model optimization. Statistics about datasets
characteristics are shown in Table I.

While the SWAT and WADI datasets contain one continuous
data stream (SWAT: 11 days of continuous operation: 7 days
under normal operation and four days with attack scenarios—
WADI: 16 days of continuous operation: 14 days under normal
operation and 2 days with attack scenarios), SMAP and MSL
are more complex, and they are split into smaller subsets called
entities. All data samples between 5 and 3 days before the first

3See supplementary material in our external appendix: https://github.com/
neuroevolution-agh/AD-NEv.

TABLE I
STATISTICS OF THE USED DATASETS

observed anomaly are used for model training, and all data
points between 3 days before and 2 days after the first observed
anomaly are used for model evaluation. We concatenate data
from these subsets for the evolution of subspaces and models.
Following this idea, to better fit specific data characteristics of
entities, we build subspaces separately for each entity, and then
train and fine-tune separate models. The final result is obtained
by concatenating results from each entity. During prediction
time, we choose the model corresponding to the particular
entity of the source that generated the data instance.

B. Metrics
The F1-score is a standard metric for anomaly detection

tasks, as it is more resistant to class imbalance than other
metrics such as accuracy (which yield high values when the
normal class in testing data is larger than the anomaly class).
We adopt F1 as a pointwise metric, i.e., we evaluate every data
point independently. While sequence-based evaluation (point-
adjusted F1) also represents a feasible choice, and it is largely
adopted in the literature, it usually results in higher values
for performance metrics (since predictions of anomalies in a
sequence are considered correct if at least one anomaly in
the sequence is identified correctly), without providing precise
information about how well the algorithm can decide whether
a single data point is an anomaly [52].

V. RESULTS AND DISCUSSION

A. Anomaly Detection Performance
Table II presents the results for AD-NEv in comparison to

the results of well-known anomaly detection methods. Some
models are evaluated using an optimized Gauss-D scoring
function [21], which features a data transformation step on
previously observed data points, aiming at increasing F1 val-
ues. However, in our experiments, this scoring function did
not provide significant improvements to the model’s accuracy
and was therefore discarded in the final experiments. For the
largest dataset (WADI), AD-NEv outperforms the second-best
method [graph neural network (GNN)] by 0.05, whereas F1
of the third-best model (LSTM-VAE) is significantly lower,
with a margin of 0.12. Most of the other methods obtain
even worse results. The differences are less impressive with
the SWAT dataset, where AD-NEv outperforms GNN and
USAD by a value of 0.01 and 0.02, respectively. The smaller
difference is probably related to the fact that SWAT is smaller
and less complex than WADI, which results in methods being
more aligned in terms of predictive performance. In the case
of MSL, all the best models provide results that are very
close to each other. However, AD-NEv improves the results
of NASA-LSTM and TCN AE by 0.02. However, AD-NEv

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE II
POINTWISE F1 SCORE. *—MODELS WERE EVALUATED USING GAUSS-D

SCORING FUNCTION; THE BEST RESULT FOR EVERY
DATASET IS IN BOLD

provides a radical improvement with the SMAP dataset, where
it outperforms the second-best model (NASA-LSTM) by 0.18.

Overall, it is noteworthy that the models extracted by
AD-NEv achieve the best results across all datasets when
compared with all the other methods. For some datasets,
the difference is very significant, while for others it is rel-
atively smaller. However, the other methods considered in
our experiments usually achieve high results with only a
few of the analyzed datasets. For example, NASA-LSTM is
the second-best method for MSL and SMAP datasets, but
it does not handle SWAT and WADI very well (in which
F1 is 0.13 and 0.20, respectively). The opposite situation is
in the case of GNN. It is the second-best model on WADI
and SWAT but is significantly worse on SMAP and MSL
datasets. The reason behind this fact is that in the SMAP
and MSL datasets, there is a small number of dominant
sensors (most of them have constant values and can be treated
as noise signals). It shows that AD-NEv subspace evolution
can be the crucial stage that helps to overcome this specific
time-series multisensor data problem. On the other hand, AD-
NEv showcases the capability to adjust the evolving model
to specific dataset requirements thanks to the neuroevolution
approach. This result can be clearly observed by looking
at the mean value of F1 across all datasets in Table II.
To validate the statistical significance of our results, we apply
Wilcoxon signed rank tests to all pairwise combinations of
methods across multiple executions with all datasets. Results
in Table III highlight that our method significantly outperforms
all considered baslines (RQ1).

B. Ablation Study: Detection Performance

Table IV presents results for an ablation study consisting of
three models: 1) a baseline model [26]; 2) after our subspaces
and models evolution; and 3) after the fine-tuning level.
This table reveals the improvements introduced by our newly
introduced approaches for subspaces optimization, model evo-
lution, and fine-tuning. Comparing the results from [26] with
the results following our improvements in subspaces and
model evolution, we see improvements in terms of F1 on
SWAT by 0.01, WADI by 0.05, MSL by 0.05, and SMAP by
0.15. These results show that the introduced novelties, such as

TABLE III
STATISTICAL ANALYSIS WITH WILCOXON SIGNED RANK TESTS

COMPARING ALL PAIRWISE COMBINATIONS OF METHODS.
BOLD: COMPARISON IS STATISTICALLY

SIGNIFICANT (p-VALUE < 0.01)

TABLE IV
ABLATION STUDY SHOWING POINTWISE F1 SCORE USING A

BASELINE MODEL WITH BASIC SUBSPACE AND MODEL
EVOLUTION AND WITHOUT FINE-TUNING (A), USING
AD-NEV WITH ENHANCED SUBSPACE AND MODEL

EVOLUTION (B), AND WITH THE FULL VERSION
OF AD-NEV THAT INCLUDES FINE-TUNING (C).

THE BEST RESULT FOR EACH DATASET
IS REPORTED IN BOLD

the independent population for each subspace, improve the
results with all datasets (RQ2). Fine-tuning also positively
impacts all datasets: SWAT by 0.01, WADI by 0.03, MSL
by 0.07, and SMAP by 0.10. The gains are lower for SWAT
and WADI, as the results for these datasets are already higher.
Those results confirm the positive contributions introduced by
the new components proposed in this article, and highlight that
nongradient fine-tuning can be an efficient method to boost the
anomaly detection performance of pretrained models.

C. Time Complexity

The framework was implemented with Python and
PyTorch.4 All presented calculations were executed leveraging
Nvidia Tesla V100-SXM2-32 GB graphics processing units
(GPUs). Since AD-NEv supports parallel model optimization,
experiments were performed using a pool of eight GPGPUs
(each subspace/model was processed on a separate GPGPU).

We provide the values of the parameters of the neuroevo-
lution process for each level in Tables V and VI. We also
present the execution times in Fig. 2. It is important to
note that SMAP and MSL datasets are processed in full,
without downsampling, since most features are binary, and
this operation would result in information loss. Considering all
datasets, the evolution of the subspace level took a minimum
of 0.8 and a maximum of 18 h. The best results in terms
of accuracy were achieved with a value of the maximum

4https://github.com/neuroevolution-agh/AD-NEv

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PIETROŃ et al.: AD-NEv: A SCALABLE MULTILEVEL NEUROEVOLUTION FRAMEWORK 11

TABLE V
HYPERPARAMETERS OF THE GENETIC PROCESS DURING EACH LEVEL

TABLE VI
OTHER HYPERPARAMETERS OF THE NEUROEVOLUTION PROCESS

Fig. 2. Execution times in hours using eight GPGPUs with all datasets
(SWAT, WADI, MSL, and SMAP).

number of possible subspaces (parameter K of the evolution
process) set to 5. The rationale for this choice was to find
the highest number yielding a reasonable execution time.
We experimentally observed that a higher value for K exceeds
the time limits of the evolution process (>140 h). Considering
all datasets, the model evolution process took a minimum of 2
and a maximum of 62 h. Fine-tuning was on average more
time-consuming, taking between 12 and 50 h. It is noteworthy
that model training and fine-tuning were performed separately
for each entity in the SMAP and MSL datasets. Therefore,
the whole neuroevolution process, including the final training
and evaluation, lasted the following execution times: SWAT—
74 h; WADI—131.8 h; MSL—18.8 h; and SMAP—58.2 h.
Overall, all the executions for each single dataset required
less than 132 h, which we consider to be a reasonable time
frame considering the size of the datasets and the satisfactory
accuracy achieved by the resulting models (RQ3).

D. Scalability
One aspect worth discussion is the scalability of the pro-

posed method. It is noteworthy that the execution time can be
easily reduced by adding more GPGPUs, since each model can

Fig. 3. Scalability results showing speedup (left) and scaleup (right) factors
for both model evolution and fine-tuning levels with an increasing number of
GPUs and population size (for scaleup only) on the x-axis.

be trained and evaluated independently on a separate GPGPU.
Results in Fig. 3 show that a speedup of up to 4× can be
obtained for the fine-tuning level and up to 5× for the model
evolution level.5 The results also highlight that the model
evolution level of the AD-NEv framework exhibits a linear
speedup with an increasing number of GPUs. The fine-tuning
process also benefits from the execution on multiple GPUs,
achieving comparable performances with respect to the model
evolution level. Fig. 3 also shows results in terms of scaleup,
where problem complexity (population size) and computa-
tional resources (GPUs) increase at the same time, i.e., from
a population size of 4 with one GPU, to a population size of
32 with eight GPUs. Results show a remarkable performance
which positions very close to the ideal curve, i.e., a constant
scaleup of 1 across all configurations. Both speedup and
scaleup results support our assumption that multiple GPGPUs
can significantly reduce the execution time of the AD-NEv
framework, effectively distributing the training and evaluation
of multiple models on different GPUs, thus resulting in a
significant speedup. Overall, the AD-NEv framework can be
effectively scaled, supporting the efficient optimization of a
large number of models (RQ4).

The models extracted after the neuroevolution process differ
depending on the specific dataset and subspace. We present the
complete architecture of the best model for the best subspace
in every dataset in the supplementary material. The final
models for the SWAT and WADI datasets consist of three
convolutional layers in the encoder and the decoder parts of the
model. However, the SWAT model presents a higher number
of channels. The models for MSL and SMAP consist of six
convolutional layers in the encoder and decoder. After the first
two levels of the framework and before fine-tuning, the final
training was run with 120 epochs in the case of the WADI
dataset, 90 epochs for SWAT, and 250 for SMAP and MSL.

It is noteworthy that the presented AD-NEv framework
requires a smaller number of computational units that the state-
of-the-art ensemble method in [21], which achieves the best
anomaly detection performance on multivariate time-series
benchmarks. While the model in [21] requires a number of
submodels equal to the number of features, S = M , AD-NEv
produces an ensemble model with K submodels working on
K subspaces, K ll M . The complexity and memory reduction

5The hyperparameter values specification for the scalability experiment are
reported in Tables V and VI.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 4. Convergence plot for the WADI dataset during the model’s evolution
for population size 24. The diversity in the selection process introduced by
the distance function improves not only convergence but also F1 score on the
test dataset (F1 0.59 in comparison to 0.55 without distance function).

of our solution is ≃(K/M). (The impact of the input size is
negligible.)

VI. ABLATION STUDY

This section presents the impact of neuroevolution parame-
ters on the model’s accuracy. A detailed analysis of the most
complex dataset (WADI) is presented in the following, focus-
ing on a selection of relevant model parameters. Regarding
the SMAP and MSL datasets, a separate model was generated
and tuned for each entity (see Section IV-A). For this reason,
we do not present partial results for those datasets. It should
be noted that, for all datasets, the behavior is consistent with
that observed with WADI.

A. Convergence of the Model Evolution Process

Fig. 4 presents the fitness on the validation dataset (not
containing anomalies) of the best model in each iteration
during model evolution process for version: 1) with the dis-
tance function for model evolution dF (Fi , F j) introduced in
Section III-E—blue and 2) without the distance function—
orange. The distance function aims at achieving model
diversity during the model evolution process. It could be
observed that, in the scenario where the distance function is
adopted, the value of the loss function was persisting on the
same level over the first eight iterations. During the following
eight iterations, the fitness value was improved twice. Finally,
the model with the lowest value of loss function was evaluated
on the test dataset achieving F1 score equal to 0.59. In the case
of the scenario without diversity introduced by the distance
function, the stagnation was persistent over ten iterations, and
it improved only once in the following iterations. Moreover,
in this case, the loss value was always higher than the sce-
nario with distance function. The best model evolved without
distance function achieved the final F1 score of 0.54. We can
clearly see that introducing the distance function dF (Fi , F j)

ensuring diversity to the population during evolution improved
not only the convergence but also the anomaly detection
performance (RQ5). Table VII presents F1 scores for WADI

TABLE VII
F1 SCORE ON WADI AND SWAT DATASETS AFTER EVOLUTION MODEL

PROCESS DEPENDING ON POPULATION SIZE

TABLE VIII
ABLATION STUDY: FINAL WINDOW SIZE (BEST-SELECTED MODEL)

AND WINDOW SIZE EVOLUTION AT DIFFERENT
LANDMARKS (MIN–MAX RANGE)

and SWAT on the test dataset, with different values of the
population size parameter. As expected, the most effective
models were extracted with the highest value for this parameter
(24), showing the contribution of a large population of models
during the evolution process. The largest population size was
set to 24. Regarding the evolution of the window size param-
eter, we present a convergence and ablation study showing the
ranges of values and the final window size for the best-selected
model in Table VIII. Our experiments were conducted with
a simple selection of window sizes in a range of [1–12].
We observe that the behavior of the algorithm is rather stable,
converging to window size values that lie in a subrange of
the initially defined search space. Additional ablation studies
include layer size during evolution (see Table IX), and the
number of layers of the best selected model (see Table X).
For the number of output channels, we defined our search
space in the range [16–6144]. We observe that the last encoder
layer size lies in a range between 205 and 1041. Interestingly,
a smaller capacity is used in SWAT and WADI datasets,
when compared with the MSL and SMAP datasets. We also
observe that, as the iterations increase, the model converges
to smaller subranges of layer size, confirming the stability of
the algorithm and the proper selection of the initial search
space. The same phenomenon is observed for the number of
layers in the final encoder, as shown in Table X. The filter size
range used in our experiments is defined as: [1–7]. For the
sake of brevity, we omit showing the full model architecture.
More detailed model specifications are provided in an external
appendix for the interested reader.6

B. Convergence of the Nongradient Fine-Tuning Process
Results in Table XI show the average convergence and the

F1 obtained on the WADI dataset using different configura-
tions for Np, pm , and τ parameters. Results show that with an
increasing value of the population size, the algorithm required
a reduced number of iterations to achieve a zero value of FP
(eight iterations on average for NP = 8 and 4.92 on average
iterations for NP = 24). Moreover, a higher number of NP
also translates to an improved anomaly detection performance,
resulting in an increased F1 value.

6https://github.com/neuroevolution-agh/AD-NEv

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PIETROŃ et al.: AD-NEv: A SCALABLE MULTILEVEL NEUROEVOLUTION FRAMEWORK 13

TABLE IX
ABLATION STUDY: FINAL LAYERS CHANNELS FOR THE BEST-SELECTED MODEL (LEFT) AND MIN–MAX RANGE OF OUTPUT CHANNELS DURING

EVOLUTION AT DIFFERENT ITERATIONS (RIGHT). THE FINAL MODELS ARE REPRESENTED BY THE SEQUENCE OF
INPUT AND OUTPUT DEPTHS OF THE ENCODER LAYERS

TABLE X
ABLATION STUDY: FINAL NUMBER OF LAYERS (BEST-SELECTED MODEL)

AND EVOLUTION AT DIFFERENT LANDMARKS (MIN–MAX RANGE)

TABLE XI
FINE-TUNING CONVERGENCE (NUMBER OF ITERATIONS) AND F1

OBTAINED WITH VARYING VALUES OF NP , pm , AND τ

Fig. 5(a) represents a detailed example for row 3 in Table XI
(best configuration), showing the values of the fitness function.
The best F1 score observed is 0.62. Decreasing the population
size from 24 to 16 leads to a minor decrease of the highest
F1 performance (0.61). Decreasing the population size to
8 leads to another slight decrease in F1 (0.60), as shown
in Fig. 5(b). Increasing the value of mutation power from
τ = (1/256) to τ = (1/128) as shown in Fig. 5(c) leads to
a minimal drop in F1 performance drop (0.59). Additional
experiments reveal that increasing the mutation probability
from 0.02 to 0.05 leads to a more significant drop in F1 (0.53).

Another perspective of results in Table XI is how fast
the model was able to converge with different values of the
mutation power τ . Results (rows 3–5) shows that the optimal
model was obtained faster when this parameter had a higher
value (1/128), but it does not have an impact on the final
F1 score. Moreover, using a large value for τ allows the
process to converge faster. It is worth noting that reducing
the value of the τ parameter to τ = (1/512) allowed us to
obtain the same F1 score as τ = (1/128) but the algorithm
required a higher number of iterations to converge. We argue
that generating a compact set of models may be preferred over
a large number of models to reduce the time impact of model
evaluation on testing data.

Finally, one interesting aspect worth analysis is how increas-
ing the value of mutation probability pm from 2% (pm = 0.02)
to 5% (pm = 0.05) resulted in a decrease of efficiency for the
algorithm. In this case, the best achieved F1 score was 0.53,

Fig. 5. Fine-tuning convergence in terms of a different number of FPs for
the best-generated model in each iteration. The experiments were conducted
on the WADI dataset with 64 iterations and different configurations for
population size (Np), mutation power (τ), and mutation probability (pm).
(a) Np = 24, τ = (1/256), and pm = 0.02. (b) Np = 8, τ = (1/256), and
pm = 0.02. (c) Np = 24, τ = (1/128), and pm = 0.02. We also report the
F1 performance for each converged fine-tuned model.

which is worse than the base F1 value of 0.59. Comparing
rows 3 and 5, it could be observed that when too many
weights are modified during a single iteration, the convergence

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

process is slower. Overall, the convergence process for the
fine-tuning level is stable and efficient with respect to selected
ranges of values of population size, τ , and mutation probability
parameters (RQ5).

VII. CONCLUSIONS AND FUTURE WORK

In this article, we proposed AD-NEv—a novel multilevel
framework for evolving ensemble deep learning autoencoder
architectures for multivariate anomaly detection. Its novelty
consists of an efficient multilevel optimization that includes the
evolution of input features subspaces, the model architecture
for each subspace, and non-gradient fine-tuning. To further
boost the anomaly detection performance, AD-NEv builds an
ensemble model with voting to combine the outputs of single
optimized models. We show that each introduced optimization
component contributes to the achievement of the final model
accuracy. An extensive experimental evaluation results show
that the final ensemble model outperforms state-of-the-art
anomaly detection models for multivariate time-series data,
while presenting a reasonable execution time, even with large
datasets. AD-NEv’s execution can be seamlessly scaled up by
adding computational resources. Directions for future work
include the integration of the framework with redefined genetic
operators for graph neural networks. Another possibility worth
investigating is the introduction of modified operators that
enhance neural network architectures, such as different types
of layers in a model or adding dense connections to each layer.
Finally, we will further explore possible data distillation strate-
gies to further reduce training data and reduce the execution
time of the evolution level.

ACKNOWLEDGMENT

The authors also acknowledge the support of the Polish
Ministry of Education and Science assigned to AGH Univer-
sity of Krakow, Kraków, Poland.

REFERENCES

[1] G. Pang, C. Shen, L. Cao, and A. Van Den Hengel, “Deep learning
for anomaly detection: A review,” ACM Comput. Surv., vol. 54, no. 2,
pp. 1–38, Mar. 2019.

[2] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and
G. Shroff, “LSTM-based encoder–decoder for multi-sensor anomaly
detection,” CoRR, pp. 1–5, Jul. 2016.

[3] B. Zhou, S. Liu, B. Hooi, X. Cheng, and J. Ye, “BeatGAN: Anomalous
rhythm detection using adversarially generated time series,” in Proc.
28th Int. Joint Conf. Artif. Intell., Aug. 2019, pp. 4433–4439.

[4] Y. Zhang, Z. Y. Dong, W. Kong, and K. Meng, “A composite anomaly
detection system for data-driven power plant condition monitoring,”
IEEE Trans. Ind. Informat., vol. 16, no. 7, pp. 4390–4402, Jul. 2020.

[5] Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei, “Robust anomaly
detection for multivariate time series through stochastic recurrent neural
network,” in Proc. 25th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, 2019, pp. 2828–2837.

[6] J. Audibert, P. Michiardi, F. Guyard, S. Marti, and M. A. Zuluaga,
“USAD: Unsupervised anomaly detection on multivariate time series,”
in Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining.
New York, NY, USA: Association for Computing Machinery, 2020,
pp. 3395–3404, doi: 10.1145/3394486.3403392.

[7] S. Tariq et al., “Detecting anomalies in space using multivariate con-
volutional LSTM with mixtures of probabilistic PCA,” in Proc. 25th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Jul. 2019,
pp. 2123–2133.

[8] A. Tuor, S. Kaplan, B. Hutchinson, N. Nichols, and S. Robinson,
“Deep learning for unsupervised insider threat detection in structured
cybersecurity data streams,” in Proc. Workshops 31st AAAI Conf. Artif.
Intell., 2017, pp. 1–9.

[9] P. Zheng, S. Yuan, X. Wu, J. Li, and A. Lu, “One-class adversarial nets
for fraud detection,” in Proc. AAAI Conf. Artif. Intell., Jul. 2019, vol. 33,
no. 1, pp. 1286–1293.

[10] H. Torabi, S. L. Mirtaheri, and S. Greco, “Practical autoencoder based
anomaly detection by using vector reconstruction error,” Cybersecurity,
vol. 6, no. 1, pp. 1–13, Jan. 2023.

[11] K. Faber, R. Corizzo, B. Sniezynski, and N. Japkowicz, “VLAD: Task-
agnostic VAE-based lifelong anomaly detection,” Neural Netw., vol. 165,
pp. 248–273, Aug. 2023.

[12] R. Corizzo, M. Ceci, G. Pio, P. Mignone, and N. Japkowicz, “Spatially-
aware autoencoders for detecting contextual anomalies in geo-distributed
data,” in Proc. Int. Conf. Discovery Sci. Halifax, NS, Canada: Springer,
2021, pp. 461–471.

[13] T. Finke, M. Krämer, A. Morandini, A. Mück, and I. Oleksiyuk,
“Autoencoders for unsupervised anomaly detection in high energy
physics,” J. High Energy Phys., vol. 2021, no. 6, pp. 1–32, Jun. 2021.

[14] N. Shvetsova, B. Bakker, I. Fedulova, H. Schulz, and D. V. Dylov,
“Anomaly detection in medical imaging with deep perceptual autoen-
coders,” IEEE Access, vol. 9, pp. 118571–118583, 2021.

[15] D. Park, Y. Hoshi, and C. C. Kemp, “A multimodal anomaly detector for
robot-assisted feeding using an LSTM-based variational autoencoder,”
IEEE Robot. Autom. Lett., vol. 3, no. 3, pp. 1544–1551, Jul. 2018.

[16] A. J. Hashim, M. A. Balafar, J. Tanha, and A. Baradarani, “AEVAE:
Adaptive evolutionary autoencoder for anomaly detection in time series,”
IEEE Trans. Neural Netw. Learn. Syst., early access, Dec. 6, 2023, doi:
10.1109/TNNLS.2023.3337243.

[17] A. Deng and B. Hooi, “Graph neural network-based anomaly detection
in multivariate time series,” in Proc. AAAI Int. Conf. Artif. Intell., 2021,
pp. 4027–4035.

[18] Y. Zheng et al., “Correlation-aware spatial–temporal graph learn-
ing for multivariate time-series anomaly detection,” IEEE Trans.
Neural Netw. Learn. Syst., early access, Nov. 14, 2023, doi:
10.1109/TNNLS.2023.3325667.

[19] K. Zhu, P. Song, and C. Zhao, “Fuzzy state-driven cross-time spatial
dependence learning for multivariate time-series anomaly detection,”
IEEE Trans. Neural Netw. Learn. Syst., early access, Mar. 8, 2024, doi:
10.1109/TNNLS.2024.3371109.

[20] K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and
T. Söderström, “Detecting spacecraft anomalies using LSTMs and
nonparametric dynamic thresholding,” in Proc. 24th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, Jul. 2018, pp. 387–395.

[21] A. Garg, W. Zhang, J. Samaran, R. Savitha, and C.-S. Foo, “An eval-
uation of anomaly detection and diagnosis in multivariate time series,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 6, pp. 2508–2517,
Jun. 2022.

[22] N. Bai, X. Wang, R. Han, Q. Wang, and Z. Liu, “PAFormer: Anomaly
detection of time series with parallel-attention transformer,” IEEE
Trans. Neural Netw. Learn. Syst., early access, Dec. 11, 2023, doi:
10.1109/TNNLS.2023.3337876.

[23] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evol. Comput., vol. 10, no. 2, pp. 99–127,
Jun. 2002.

[24] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci, “A hypercube-based
encoding for evolving large-scale neural networks,” Artif. Life, vol. 15,
no. 2, pp. 185–212, Apr. 2009.

[25] R. Miikkulainen et al., “Evolving deep neural networks,” CoRR,
vol. abs/1703.00548, pp. 1–8, Mar. 2017.

[26] K. Faber, M. Pietron, and D. Zurek, “Ensemble neuroevolution-based
approach for multivariate time series anomaly detection,” Entropy,
vol. 23, no. 11, p. 1466, Nov. 2021.

[27] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM Comput. Surv., vol. 41, no. 3, pp. 1–58, 2009.

[28] R. Chalapathy and S. Chawla, “Deep learning for anomaly detection: A
survey,” 2019, arXiv:1901.03407.

[29] K. Choi, J. Yi, C. Park, and S. Yoon, “Deep learning for anomaly
detection in time-series data: Review, analysis, and guidelines,” IEEE
Access, vol. 9, pp. 120043–120065, 2021.

[30] M. Landauer, S. Onder, F. Skopik, and M. Wurzenberger, “Deep learning
for anomaly detection in log data: A survey,” Mach. Learn. Appl.,
vol. 12, Jun. 2023, Art. no. 100470.

[31] T. Fernando, H. Gammulle, S. Denman, S. Sridharan, and C. Fookes,
“Deep learning for medical anomaly detection—A survey,” ACM Com-
put. Surv., vol. 54, no. 7, pp. 1–37, 2021.

[32] A. Blázquez-García, A. Conde, U. Mori, and J. A. Lozano, “A review
on outlier/anomaly detection in time series data,” ACM Comput. Surv.,
vol. 54, no. 3, pp. 1–33, Apr. 2022.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

http://dx.doi.org/10.1145/3394486.3403392
http://dx.doi.org/10.1109/TNNLS.2023.3337243
http://dx.doi.org/10.1109/TNNLS.2023.3325667
http://dx.doi.org/10.1109/TNNLS.2024.3371109
http://dx.doi.org/10.1109/TNNLS.2023.3337876

PIETROŃ et al.: AD-NEv: A SCALABLE MULTILEVEL NEUROEVOLUTION FRAMEWORK 15

[33] R.-Q. Chen, G.-H. Shi, W.-L. Zhao, and C.-H. Liang, “A joint model for
IT operation series prediction and anomaly detection,” Neurocomputing,
vol. 448, pp. 130–139, Aug. 2021.

[34] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling,” 2018,
arXiv:1803.01271.

[35] C. Zhang et al., “A deep neural network for unsupervised anomaly
detection and diagnosis in multivariate time series data,” in Proc. AAAI
Conf. Artif. Intell., vol. 33, 2019, pp. 1409–1416.

[36] B. Zong et al., “Deep autoencoding Gaussian mixture model for unsu-
pervised anomaly detection,” in Proc. ICLR, 2018, pp. 1–19.

[37] E. Galván and P. Mooney, “Neuroevolution in deep neural networks:
Current trends and future challenges,” IEEE Trans. Artif. Intell., vol. 2,
no. 6, pp. 476–493, Dec. 2021.

[38] D. V. Vargas and J. Murata, “Spectrum-diverse neuroevolution with
unified neural models,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28,
no. 8, pp. 1759–1773, Aug. 2017.

[39] M.-K. Jiau and S.-C. Huang, “Self-organizing neuroevolution for solving
carpool service problem with dynamic capacity to alternate matches,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 4, pp. 1048–1060,
Apr. 2019.

[40] Y. Huang, G. G. Yen, and V. S. Tseng, “Snippet policy network v2:
Knee-guided neuroevolution for multi-lead ECG early classification,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 2, pp. 2167–2181,
Feb. 2024.

[41] D. Dimanov, E. Balaguer-Ballester, C. Singleton, and S. Rostami,
“MONCAE: Multi-objective neuroevolution of convolutional autoen-
coders,” in Proc. ICLR, 2021, pp. 1–8.

[42] H. Okada, “Neuroevolution of autoencoders by genetic algorithm,” Int.
J. Sci. Eng. Invest., vol. 6, no. 6, pp. 127–131, 2017.

[43] Y. Zhou, L. Liao, Y. Gao, R. Wang, and H. Huang, “TopicBERT: A topic-
enhanced neural language model fine-tuned for sentiment classification,”
IEEE Trans. Neural Netw. Learn. Syst., early access, Aug. 6, 2021, doi:
10.1109/TNNLS.2021.3094987.

[44] Y. Ro, J. Choi, B. Heo, and J. Y. Choi, “Rollback ensemble with
multiple local minima in fine-tuning deep learning networks,” IEEE
Trans. Neural Netw. Learn. Syst., early access, Mar. 3, 2021, doi:
10.1109/TNNLS.2021.3059669.

[45] M. Nagel, R. A. Amjad, M. van Baalen, C. Louizos, and T. Blankevoort,
“Up or down? Adaptive rounding for post-training quantization,” in
Proc. ICML, 2020, pp. 7197–7206.

[46] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, “Adversar-
ial autoencoders,” in Proc. Int. Conf. Learn. Represent., 2016, pp. 1–10.

[47] H. Xu et al., “Unsupervised anomaly detection via variational auto-
encoder for seasonal KPIs in web applications,” in Proc. World Wide
Web Conf. World Wide Web, 2018, pp. 187–196.

[48] Y. Bengio, L. Yao, G. Alain, and P. Vincent, “Generalized denoising
auto-encoders as generative models,” in Proc. Adv. Neural Inf. Process.
Syst., vol. 26, 2013, pp. 1–9.

[49] M. R. Ackermann, J. Blömer, D. Kuntze, and C. Sohler, “Analysis of
agglomerative clustering,” Algorithmica, vol. 69, no. 1, pp. 184–215,
2014.

[50] A. P. Mathur and N. O. Tippenhauer, “SWaT: A water treatment testbed
for research and training on ICS security,” in Proc. Int. Workshop Cyber-
Phys. Syst. Smart Water Netw. (CySWater), Apr. 2016, pp. 31–36.

[51] C. Ahmed, V. Palleti, and A. Mathur, “WADI: A water distribution
testbed for research in the design of secure cyber physical systems,” in
Proc. 3rd Int. Workshop Cyber-Phys. Syst. Smart Water Netw., Apr. 2017,
pp. 25–28.

[52] S. Kim, K. Choi, H.-S. Choi, B. Lee, and S. Yoon, “Towards a rigorous
evaluation of time-series anomaly detection,” in Proc. AAAI Conf., 2022,
pp. 7194–7201.

Marcin Pietroń received the Ph.D. degree in com-
puter science from the AGH University of Krakow,
Kraków, Poland, in 2014.

He is currently an Assistant Professor with the
AGH University of Krakow. He works as an AI
Scientific Consultant for many high-tech companies.
He has authored about 80 research articles. He was
involved as a reviewer for several international jour-
nals and conferences. His research concentrates on
artificial intelligence and parallel computing.

Dominik Żurek received the Ph.D. degree from
the AGH University of Krakow, Kraków, Poland,
in 2021.

He is currently a Research Specialist at the
AGH University of Krakow. He cooperates with
many companies as an AI expert. His research
interests include deep learning, computational intel-
ligence, and general purpose graphics processing
units (GPGPU) programming.

Kamil Faber received the B.S. and M.S. degrees
from the AGH University of Krakow, Kraków,
Poland, in 2018 and 2019, respectively, where he
is currently pursuing the Ph.D. degree in computer
science.

He was a Research Intern and later a Research
Assistant in a DARPA-funded Project at
American University, Washington, DC, USA,
from 2021 to 2022. His research interests cover
lifelong learning, anomaly detection, and machine
learning applications in cybersecurity.

Roberto Corizzo (Member, IEEE) received the
Ph.D. degree from the University of Bari Aldo Moro,
Bari, Italy, in 2018.

He is currently an Assistant Professor with the
Department of Computer Science, American Uni-
versity, Washington, DC, USA. He has co-authored
over 60 articles, including 20 publications in journals
such as IEEE TRANSACTIONS ON INDUSTRIAL
INFORMATICS, Neural Networks, and Machine
Learning. He was involved in the scientific com-
mittee of international conferences and served as a

reviewer for several international journals.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

http://dx.doi.org/10.1109/TNNLS.2021.3094987
http://dx.doi.org/10.1109/TNNLS.2021.3059669

