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Broad Multitask Learning System With Group
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Abstract— The broad learning system (BLS) featuring
lightweight, incremental extension, and strong generalization
capabilities has been successful in its applications. Despite these
advantages, BLS struggles in multitask learning (MTL) scenar-
ios with its limited ability to simultaneously unravel multiple
complex tasks where existing BLS models cannot adequately cap-
ture and leverage essential information across tasks, decreasing
their effectiveness and efficacy in MTL scenarios. To address
these limitations, we proposed an innovative MTL framework
explicitly designed for BLS, named group sparse regularization
for broad multitask learning system using related task-wise
(BMtLS-RG). This framework combines a task-related BLS
learning mechanism with a group sparse optimization strategy,
significantly boosting BLS’s ability to generalize in MTL envi-
ronments. The task-related learning component harnesses task
correlations to enable shared learning and optimize parameters
efficiently. Meanwhile, the group sparse optimization approach
helps minimize the effects of irrelevant or noisy data, thus
enhancing the robustness and stability of BLS in navigating
complex learning scenarios. To address the varied requirements
of MTL challenges, we presented two additional variants of
BMtLS-RG: BMtLS-RG with sharing parameters of feature
mapped nodes (BMtLS-RGf), which integrates a shared feature
mapping layer, and BMtLS-RGf and enhanced nodes (BMtLS-
RGfe), which further includes an enhanced node layer atop
the shared feature mapping structure. These adaptations pro-
vide customized solutions tailored to the diverse landscape of
MTL problems. We compared BMtLS-RG with state-of-the-
art (SOTA) MTL and BLS algorithms through comprehensive
experimental evaluation across multiple practical MTL and UCI
datasets. BMtLS-RG outperformed SOTA methods in 97.81%
of classification tasks and achieved optimal performance in

Manuscript received 7 August 2023; revised 5 April 2024; accepted 11 June
2024. This work was supported in part by the National Natural Science
Foundation of China under Grant 62201402; in part by Shenzhen Science and
Technology Innovation Committee under Grant SGDX20220530111001006;
in part by NSFC/Research Grants Council (RGC) Joint Research Scheme
under Grant N_HKBU214/21; in part by the General Research Fund of RGC
under Grant 12201321, Grant 12202622, and Grant 1220323; in part by
RGC Senior Research Fellow Scheme under Grant SRFS2324-2S02; in part
by Guangdong Basic and Applied Basic Research Foundation under Grant
2023A1515011978; and in part by Hong Kong and Macau Joint Research
and Development Fund of Wuyi University under Grant 2021WGALH19.
(Jintao Huang and Chuangquan Chen contributed equally to this work.)
(Corresponding authors: Chi-Man Vong; Yiu-Ming Cheung.)

Jintao Huang and Yiu-Ming Cheung are with the Department of Computer
Science, Hong Kong Baptist University, Hong Kong, SAR, China (e-mail:
csjthuang@comp.hkbu.edu.hk; ymc@comp.hkbu.edu.hk).

Chuangquan Chen is with the School of Electronics and Informa-
tion Engineering, Wuyi University, Jiangmen 529020, China (e-mail:
chenchuangquan87@163.com).

Chi-Man Vong is with the Department of Computer and Infor-
mation Science, University of Macau, Macau, SAR, China (e-mail:
cmvong@um.edu.mo).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNNLS.2024.3416191, provided by the authors.

Digital Object Identifier 10.1109/TNNLS.2024.3416191

96.00% of regression tasks, demonstrating its superior accuracy
and robustness. Furthermore, BMtLS-RG exhibited satisfactory
training efficiency, outperforming existing MTL algorithms by
8.04–42.85 times.

Index Terms— Broad learning system (BLS), group sparse
regularization, multitask learning (MTL), task relation.

I. INTRODUCTION

DEEP neural networks (DNNs) possess remarkable feature
extraction and nonlinear approximation capabilities [1].

Nevertheless, they still encounter challenges in practical appli-
cations, like vanishing or exploding gradients, convergence
to local optima, and slow training efficiency, just to name
a few. In particular, the weight updates in DNNs through
layer-by-layer gradients during backpropagation are highly
time-consuming [2], [3]. To overcome these limitations, the
broad learning system (BLS) emerges as an efficient and
effective lightweight machine learning approach [4]. It has
the potential to revolutionize traditional artificial intelligence
methods and finds applications across various research fields
in the era of big data [5]. BLS offers notable advan-
tages regarding high accuracy and efficiency when handling
ultrahigh-dimensional massive datasets [6].

BLS has increasingly been applicable for practical tasks
with its superior capabilities over DNNs, owing to its effi-
ciency and adaptability in handling complex data structures,
which is substantiated through various researches with three
advantages inherent to the BLS framework: 1) enhanced
feature extraction through sparse coding: BLS incorporates
sparse coding techniques, facilitating the rapid and precise
identification and extraction of critical features from extensive
datasets, which underscore the system’s proficiency in feature
extraction processes [5], [6]; 2) dynamic and incremental
updating mechanism: the architecture of BLS is designed
to allow the dynamic addition of nodes, thereby enabling
efficient model updating and reconstruction without neces-
sitating complete retraining, presenting a flexible adaptation
approach for the BLS [7], [8]; and 3) efficient output weight
calculation via pseudo-inverse method: by employing the
pseudo-inverse method for calculating output weights, BLS
offers a high-efficiency solution that addresses and mitigates
common issues encountered in neural networks, such as gra-
dient vanishing or explosion [9].

These advantages have cultivated the development of vari-
ous BLS-based structures and algorithms, finding applications
across various domains. Notably, in computer vision, the
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introduction of one-class BLSs (OCBLSs) and their stacked
variants (STs-OCBLSs) by Yang et al. [10] have achieved
significant advancements in industrial intrusion detection sce-
narios. Additionally, the temporally BLS (TBLS) developed
by Sheng et al. [11] enforces temporal consistency in video
frame analysis İn the sphere of EEG signal processing for
brain–computer interface (BCI) research, the integration of
BLS into complex networks is exemplified by Gao et al. ’s [12]
work on visual evoked potential (VEP)-based BCIs. Similarly,
Issa et al.’s [13] application of BLS for user-independent
emotion classification through EEG signals demonstrates
the system’s versatility in bio-signal processing. Further-
more, BLS’s application extends to time-series prediction,
where Han et al. [14] introduced the maximum information
exploitation BLS (MIE-BLS) for chaotic time-series modeling.
Yi et al. [15] developed an intergroup cascade BLS for
optimized chaotic Time-series prediction. In automatic control,
the potential of BLS in predicting the static voltage stability
index online has been explored by Yang et al. [16], high-
lighting its applicability in electrical engineering. Additionally,
Yuan et al.’s [17] integration of BLS with online adaptive
dynamic programming (ADP) controllers for optimal control
of nonlinear systems showcases the system’s adaptability
and effectiveness in control theory. The flexibility and broad
applicability of BLS have been further evidenced through
its integration into various specialized learning frameworks,
including fuzzy-based BLS [18], [19], class imbalance-based
BLS [20], weakly supervised learning [21], [22], [23], semi-
supervised learning [24], and online learning [25].

Existing research on BLS has made significant advance-
ments in improving both accuracy and efficiency [26], [27],
[28]. Nonetheless, a notable limitation of current BLS-related
methods is their reliance on single-task learning (STL) mod-
els [29], [30]. In other words, these state-of-the-art (SOTA)
BLS-based methods are designed to address individual learn-
ing tasks effectively [29], [30]. When faced with complicated
learning tasks, BLS can only decompose them into multiple
independent single tasks for learning and then combines
the results of each task to obtain the outcome. To achieve
stable learning results in such scenarios, BLS often requires
a substantial amount of labeled data for thorough training.
Without sufficient training data, the risk of underfitting arises,
leading to diminished learning performance [31]. However,
as task complexity and data scale increase, higher demands
are placed on the quantity and quality of manually annotated
data. Moreover, in practical applications, valuable knowledge
and information from other related tasks are often disregarded
when each task is learned independently. This results in redun-
dant training efforts and inefficient use of learning resources,
ultimately limiting the performance improvement of BLS.

Furthermore, real-life situations often involve multiple-
related learning tasks [32]. For example, for a primary
face-learning task, followed by four related learning tasks:
expression recognition, face recognition, age estimation, and
gender classification. Traditional STL methods, including
existing BLS, would require separate training for each task
using individual datasets, leading to distinct machine-learning
models. However, these four learning tasks share common

Fig. 1. Example of existing BLS tackling MTL problem.

characteristics. For instance, they all pertain to face-related
learning tasks, and their datasets contain images of faces.
This scenario is prevalent in practical applications, where
multiple learning tasks exhibit interconnections and overlap.
In summary, the existing BLS methods face challenges such
as the requirement for abundant annotated data, the neglect of
valuable knowledge from related tasks, and the prevalence of
multiple interconnected learning tasks in real-life applications.

To address this phenomenon effectively, the research field
of multitask learning (MTL) has emerged, garnering extensive
attention and exploration [33]. MTL enables the simultaneous
processing of multiple-related tasks and leverages the inherent
relationships between tasks to enhance the generalization
performance of STL. By incorporating inductive bias, MTL
improves the model’s generalization ability by jointly learning
shared information across multiple tasks. This approach has
found successful applications in various domains, such as
computer vision [34], [35], self-driving [36], [37], speech
recognition [38], [39], and medical detection [40], [41]. Given
the increasing complexity and scale of scenarios, BLS needs to
handle, addressing MTL within the BLS framework becomes
crucial and noteworthy. Nevertheless, there has been no pre-
vious research on MTL methods designed explicitly for BLS.
Therefore, our objective is to pioneer the extension of BLS
into MTL. However, applying BLS directly to MTL poses
significant challenges and obstacles.

A. Task Overlapping

Multiple tasks may share common features, but variations
and differences can also exist among them. Directly applying
BLS to MTL may fail to capture the unique characteristics
of individual tasks, potentially leading to suboptimal perfor-
mance. As shown in Fig. 1, the features are extracted through
a separate feature mapping function for each independent task,
then separately processed through a nonlinear transformation
in the enhancement nodes layer.

B. Model Complexity

When dealing with multiple tasks, the complexity of the
model increases significantly. With its lightweight and effi-
cient nature, BLS may struggle to accommodate the added
complexity, potentially resulting in compromised performance
and scalability.
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C. Optimization Difficulty

Simultaneously optimizing multiple tasks in the BLS
framework poses a non-trivial optimization problem. Jointly
optimizing diverse tasks with different objectives, constraints,
and data distributions requires innovative strategies for effec-
tive and efficient learning.

D. Data Heterogeneity

The datasets associated with different tasks may exhibit
heterogeneity in data distribution, feature representation, and
label characteristics. Devising techniques that can handle such
data heterogeneity effectively within the BLS-based MTL
framework is essential. Addressing these challenges is crucial
for successfully integrating MTL into the BLS framework and
unlocking its potential in tackling complex and diverse real-
world scenarios.

To address these challenges and enable the successful
integration of MTL into the BLS framework, we propose a
new multitask-based BLS called group sparse regularization
for broad multitask learning system using related task-wise
(BMtLS-RG), which utilizes task correlation and group spar-
sity techniques [42]. The distinctive technical innovations of
BMtLS-RG are as follows.

1) Task Correlation Technique: BMtLS-RG leverages task
correlation to effectively facilitate joint learning of multiple
tasks within the BLS framework. We introduce a novel weight
fusion criterion considering the correlation between different
tasks. By considering the interdependencies and relationships
between tasks, BMtLS-RG enables sharing parameters and
learned information across tasks, improving accuracy and
performance in MTL scenarios.

2) Group Sparsity Optimization: BMtLS-RG integrates a
group sparsity technology widely used in statistics, signal
processing, and machine learning [43], [44], aiming to mitigate
the influence of noise data or negative information that may
arise when dealing with MTL. We redesign the objective
optimization function, incorporating Lasso regularization for
combined input nodes (i.e., L1-norm regularization), task-
wise sparse regularization, and group sparse regularization.
By effectively suppressing the impact of irrelevant or noisy
data, BMtLS-RG enhances the robustness and stability of the
system during MTL tasks.

3) Efficiency-Enhancing Variant Structures: To further
improve learning efficiency, we proposed two additional vari-
ants of BMtLS-RG based on the degree of information sharing
in tasks.

1) BMtLS-RGf (sharing feature mapping layer): This vari-
ant introduces a sharing feature mapping layer, which
allows for the efficient sharing of feature representa-
tions across different tasks. By exploiting shared feature
mappings, BMtLS-RG with sharing parameters of fea-
ture mapped nodes (BMtLS-RGf) enhances the system’s
adaptability in diverse MTL scenarios.

2) BMtLS-RGfe (sharing feature mapping layer and
enhanced node layer): Building upon BMtLS-RGf, this
variant incorporates an enhanced node layer that fur-
ther improves the system’s performance. The enhanced

node layer leverages optimized parameters to adaptively
adjust the learning process and make BMtLS-RGf and
enhanced nodes (BMtLS-RGfe) even more effective in
addressing different MTL scenarios.

4) Contributions: Our research introduces a novel frame-
work, BMtLS-RG, joining MTL with the BLS to tackle
challenges applying BLS to MTL scenarios, like overlapping
tasks and complex optimization. The proposed method uses
task correlation techniques and group sparsity optimization to
advance handling practical problems across various domains
significantly. The task correlation enables joint learning by
leveraging task interdependencies, which enhances parame-
ter sharing and information across tasks, thereby improving
accuracy and performance. Group sparsity optimization, incor-
porating Lasso regularization, targets irrelevant or noisy data,
thereby boosting system robustness and stability in MTL
settings. We also present two efficiency-boosting variants,
BMtLS-RGf and BMtLS-RGfe, which enhance adaptability
and performance through shared feature mapping layers and
an enhanced node layer, further contributing to BMtLS-RG’s
accuracy, stability, and efficiency.

The rest of our article is organized as follows. Section II
makes an overview of MTL and BLS. Section III gives the
details of the basic proposed method. Section VI gives the
different variants of the proposed BMtLS-RG. Experimental
results and analysis are given in Section V. Finally, we draw
conclusion in Section VI.

II. PRELIMINARIES

A. Multitask Learning

In MTL, we consider a set of T learning tasks represented
by the dataset vectors {Tt }

T
t=1, where all tasks or a subset of

tasks are related [31], [45]. For the t th taskTt , we have a
dataset Dt consisting of Nt sample-label pairs where Nt is the
instance number of t th task, i.e., Dt = { Xt ,Yt

}
T
t=1, whereXt

denotes the instance data matrix, and Yt is the label matrix for
each T t . Here, xt

i ∈ Xt
= [xt

1, xt
2, . . . , xt

Nt
] represents the i th

instance of the t th task. In the case where different tasks share
the same feature space, meaning that di equals d j for any i ̸= j
where di means the feature space of i th instance, we refer to
it as homogeneous-feature MTL. On the other hand, if tasks
have different feature spaces, we refer to it as heterogeneous
feature MTL. By default, unless otherwise specified, the MTL
setting assumes homogeneous-feature MTL.

B. Broad Learning System

The BLS is an improved flat network based on the
single-hidden layer feedforward network (SLFN), known for
its high efficiency and strong generalization capabilities [8],
[42]. It consists of four main layers: the input layer, feature-
mapping layer, enhanced nodes layer, and output layer.
Notably, the BLS framework allows for obtaining the global
optimal solution without the need for dynamic adjustment of
the input weights and biases in the network.

Formally, consider a dataset represented as M = {X,Y},
where X denotes the input features and Y represents the
corresponding output labels. The dataset comprises n groups
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Fig. 2. Our proposed BMtLS-RG framework. There are two key components: 1) task-relation mechanism by leveraging the inter-task correlations in MTL
and 2) group sparse regularization, incorporating three group sparse regularization terms. R1(W) is the input node regularized term, R2(W) is the task-wise
sparse regularized term, and R3(W) is the group sparse regularized term. F1–F5 are the representative feature spaces.

of mapped features. In this context, the i th feature mapping
nodes can be mathematically defined as follows:

Zi = ϕi
(
XW f i + β f i

)
, i = 1, 2, . . . , n (1)

where the weights W f i and biases term β f i are randomly
generated with the proper dimensions. ϕi (·) is usually a linear
transformation. Additionally, to obtain better mapped features,
W f i is fine-tuned by a sparse autoencoder. The outputs of all
groups of mapped features are denoted as

Zn △
= (Z1, Z2, . . . , Zn). (2)

The output matrix of the j th group of enhancement nodes
connected by Zn is defined as

H j
△
= ξ j

(
Zn Wej + βej

)
, j = 1, 2, . . . ,m (3)

where Wej and βej are same to (1) which are randomly
generated from [0, 1] to connect outputs of mapped features
Zn . ξ j is a nonlinear activation function. Concatenating m
enhancement nodes as the output matrix of the enhancement
layer: Hm △

= (H1, H2, . . . , Hm). Therefore, the output of the
BLS Ŷ is denoted as

Ŷ = [Z1, Z2, . . . , Zn|H1, H2, . . . , Hm]W
=
[
Zn

|Hm]W (4)

where W is denoted as the final output weight of the BLS.

III. PROPOSED METHOD

The BMtLS-RG framework is an innovative approach
to integrating MTL with the BLS, addressing the specific
challenges of task overlap, model complexity, optimization
difficulty, and data diversity inherent in applying BLS to
MTL scenarios. BMtLS-RG consists of two key innovations:
task correlation techniques and group sparsity optimization.
Task correlation harnesses the interconnectedness of multiple

tasks to facilitate shared learning and parameter optimization,
significantly boosting accuracy and performance across tasks.
Meanwhile, group sparsity optimization, incorporating Lasso
regularization, targets the reduction of noise and irrelevant
data, thereby enhancing the robustness and stability of the
learning model. As illustrated in Fig. 2, this framework aims
to overcome the challenges mentioned above and enhance the
performance of BLS in MTL settings.

A. Broad Multitask Learning System Using Related
Task-Wise

Given a multitask dataset {Tt }
T
t=1 with T tasks, for each task

T t , let X ∈ RNt ×d be the input data with d-dimension feature
space, and Y ∈ RNt ×1 is the output. As shown in Fig. 3, for
each task Tt , the objective function of basic BLS with multiple
tasks, namely BMtLS, could be defined as

arg min
Wt

(
1
2
∥Y − At Wt∥

2
+

λ

2
∥Wt∥

2
)

(5)

where Wt is the output weight of m-task, A = [Zn
|Hm

] is
the concatenated final input matrix where the dimension is
M = n + m, and λ is the trade-off parameter. For all the task,
we can obtain the model by combined with each objective
function through (5) as

OBMtLS(W) = arg min
Wt

(
T∑

t=1

1
2
∥Y − At Wt∥

2
+

λ

2
∥Wt∥

2

)
.

(6)

As demonstrated in (6), BMtLS is capable of effectively
utilizing the shared information from the feature mapping
layer and the enhancement node layer across different tasks,
thereby enhancing the predictive performance of the model.
Nevertheless, the existing BMtLS approach only captures the
shared information among all tasks without considering the
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Fig. 3. Two different variants of BMtLS-RG. (a) BMtLS-RGf. (b) BMtLS-RGfe.

varying degrees of association between tasks. Furthermore,
if BMtLS employs BLS for MTL, it may encounter issues
of overfitting. To address these limitations and uncover the
common information within the shared knowledge structure
among tasks, we introduce additional constraints to the output
weight parameters, representing the relationship between two
tasks: Wt = W0ϖt , where W0 is a weight parameter shared
by all tasks, and ϖt represents task-specific weights for each
individual task. Consequently, the refined BMtLS formulation
incorporated task relations is defined as

OBMtLS-R(W) = arg min
Wt

(
T∑

t=1

1
2
∥Yt − At Wt∥

2
+

λ

2
∥Wt∥

2

)
s.t. Wt = ϖtkWk, k ̸= t. (7)

B. Group Sparse Regularization for BMtLS-R

To mitigate the issue of overfitting that may arise dur-
ing MTL in the BLS architecture, which employs Lasso
regularization (i.e., L1-norm regularization), we propose an
enhancement to the model by incorporating group sparsity
regularization. This regularization approach jointly applies the
L1 and L2 norms to regularize the model. Group sparsity
regularization ensures that the L2-norm imposes minimal
constraints on similarity while simultaneously maintaining the
sparse characteristic of the L1 norm for each task. Conse-
quently, with the integration of group sparsity regularization,
the enhanced framework is denoted as BMtLS-RG

OBMtLS-RG(W)

= arg min
Wt

[
T∑

t=1

1
2
∥Yt − At Wt∥

2

+
λ1

2
∥W∥

2
1 + λ2 R2(W)+ λ3 R3(W)

]
s.t.Wt = ϖtkWk, k ̸= t (8)

where R2(W) is the task-wise sparse regularized term, and
R3(W) is the group sparse regularized term, which are
obtained by

R2(W) = ∥W∥2,1 =

T∑
t=1

∥W., t∥2,1 (9)

R3(W) = ∥WG∥2,1 =

T∑
t=1

G∑
g=1

βg∥WGg,t∥2,1. (10)

Additionally, suppose R1(W) =
∑D

d=1 ∥Wd, .∥
2
1 is the input

node regularized term, where D is the dimension of A. G
in (10) denotes the number of feature groups. Accordingly,
(8) can be rewritten as

OBMtLS-RG(W) = arg min
2

[2(W)+ λR(W)]

s.t. Wt = ϖtkWk, k ̸= t (11)

where

2(W) =

T∑
t=1

1
2
∥Yt − At Wt∥

2 (12)

λR(W) = λ1 R1(W)+ λ2 R2(W)+ λ3 R3(W). (13)

Owing to the interdependence introduced by (11), the direct
utilization of the Lagrangian function to convert the formula-
tion into an unconstrained optimization problem is not feasible.
In line with the principles of alternating direction method of
multipliers (ADMMs), we introduce new variables to facilitate
the transformation of the aforementioned constraints

OBMtLS-RG(W) = arg min
2

[2(W)+ λR(W)]

s.t. Wt = Qtk,ϖtkWk = Qtk . (14)

To address the optimization problem stated in (14),
we employ the ADMM in combination with the Lagrangian
function. This involves the following steps:

L(Wt ,S,P,Qtk,ϖtk) = 2(Wt )+ λR(S)

+ Tr
[
P⊤(Wt − S)

]
+
α

2
∥Wt − S∥

2

+

T∑
t=1

T∑
k=1,k ̸=t

[β1(Wt − Qtk)

+
α

T
∥Wt − Qtk∥

2
]

+

T∑
t=1

T∑
k=1,k ̸=t

[β2(ϖtkWk − Qtk)

+
α

T
∥Qtk −ϖtkWk∥

2
]

(15)

where λ, α are the trade-off parameters, and β1, β2 are
the non-negative Lagrange multipliers. P is the augmented
Lagrangian multiplier, and S is the slack variables. To obtain
the solution of each parameters in (14) of t th task for (i +1)th
iteration, minimize the Lagrangian loss function in an iterative
manner.
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C. Optimization of BMtLS-RG

1) Updating Wi+1
t :

∂L(Wt ,S,P,Qtk,ϖt )

∂Wt

=

[
A⊤A + α I + 2α

(T − 1)
T

)
I
]

Wt

− A⊤Y + P − αS + β1(T − 1)

−
2α
T

T∑
k=1,k ̸=t

Qtk (16)

Wi+1
t =

[
A⊤A + α

(
1 + 2

(T − 1)
T

)
I
]−1

×

A⊤Y − Pi
+ αSi

× −β i
1(T − 1)+

2α
T

T∑
k=1,k ̸=t

Qi
tk

. (17)

2) Updating Si+1:

∂L(Wt ,S,P,Qtk,ϖt )

∂S
=
∂λR(S)
∂S

− P + α(Wt − S) (18)

arg min
K

[
λR(S)+

α

2
∥S − K∥

2
]

(19)

where K = Wt +
1
α

P, the goal is to be able to compute
K efficiently. It can be shown that the proximal operator for
the composite regularizer can be computed efficiently in three
steps, and all of these steps can be executed efficiently using
suitable extensions of soft-thresholding

Φ i+1
= arg min

Φ

[
λ1

2
∥Φ∥

2
1 +

α

2
∥Φ − K∥

]
Ψ i+1

= arg min
Ψ

[
λ1

2
∥Ψ ∥

2
2,1 +

α

2
∥Ψ − Φ∥

]
Si+1

= arg min
S

[
λ1

2
∥SG∥

2
2,1 +

α

2
∥S − Ψ ∥

] (20)



φi,t =
max

{
∥ki,t∥1 −

λ1
α
, 0
}

∥ki,t∥1
ki,t

ψi. =
max

{
∥φi,∥2 −

λ2
α
, 0
}

∥φi,∥2
φi,

sGg,t =
max

{
∥ψGg,t∥2 −

λ3
α
βg, 0

}
∥ψGg,t∥2

ψGg,t

(21)

where φi., ki., and ψi. are the i th row of Φ i+1, Ki+1, and
Ψ i+1, sGg,t , ψGg,t are rows in group Gg for t th task of Si+1

and Ψ i+1, respectively.
3) Updating Qi+1

tk :

∂L(Wt ,S,P,Qtk,ϖt )

∂Qtk

= β1 − β2 − +
2α
T
ϖtkWk −

4α
T

Qtk

⇒ Qi+1
tk =

T
(
β i

2 − β i
1 −

2α
T ϖ

i+1
tk Wi+1

k

)
4α

. (22)

4) Updating ϖ i+1
t :

ϖ i+1
tk =

Tβ i
1Wi+1

k + 2α
(
Wi+1

t

)⊤Qi+1
tk

2α
(
Wi+1

t
)⊤Wi+1

t

. (23)

5) Updating Pi+1, β i+1
1 , β i+1

2 :
Pi+1

= Pi
+ α

(
Wi+1

t − Si+1)
β i+1

1 = β i
1 + α

(
Wi+1

t − Qi+1
tk

)
β i+1

2 = β i
2 + α

(
Wi+1

t − Qi+1
tk

)
.

(24)

Algorithm 1 Broad Multitask Learning System via Related
Task and Group Sparse (BMtLS-RG)
Input: A multi-task dataset {Tt }

T
t=1 with T tasks;

number of feature mapped nodes n;
number of enhancement nodes m;
user-specified coefficients λ, α;
number of iterations i ter .

Output: the output weighted matrix W.
01. Step 1: Initialized procedure:

02. Initializing S,P,Qtk =

 0 · · · 0
...
. . .

...

0 · · · 0

;

03. Initializing ϖt , β1, β2 = 0, i = 1;
04. For t = 1 to T do:
05. Step 2: Feature processing procedure:
06. Obtaining the Zn for each task t ;
07. Obtaining the Hm for each task t ;
08. Step 3: Updating procedure:
09. Repeat:
10. Updating the Wi+1

t by (18);
11. Updating the Si+1 by (19);
12. Updating the Qi+1

tk by (24);
13. Updating the ϖ i+1

t by (26);
14. Updating the Pi+1, β i+1

1 , β i+1
2 by (27);

15. i = i + 1;
16. Until i = i ter .
17. end For

IV. DIFFERENT VARIANTS OF BMTLS-RG

Section III introduces BMtLS-RG by incorporating task
pairing association and group sparse mechanism. With
BMtLS-RG, the parameters and relevant information of the
feature mapping and enhanced node layers are decoupled
from specific tasks, which can improve model performance
and training efficiency in MTL scenarios. However, sharing
information between nodes can further enhance results in
certain situations. Thus, in this section, we explore variant
models of BMtLS-RG that involve sharing information from
the feature mapping layer or both the feature mapping layer
and the enhanced node layer. Specifically, we delve into
BMtLS-RGf [shown in Fig. 3(a)], which includes a shared
feature mapping layer, and BMtLS-RGfe [shown in Fig. 3(b)],
which shares both the feature mapping layer and enhanced
node layer. It is important to note that the enhanced node layer
cannot be shared independently in practical situations due to
the need for transformation after the feature mapping nodes.
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A. BMtLS-RG With Sharing Parameters of Feature Mapped
Nodes

In BMtLS-RGf, the feature mapping node layer is shared
among tasks, meaning that the feature mapping layer of all
tasks utilizes a unified parameter and structure. This implies
that, in BMtLS-RGf, a consistent transformation of the feature
mapping layer is applied to all tasks.

Referring to (8), where At = [Zn
t |Hm

t ] represents the
concatenated input layer consisting of n feature mapping nodes
and m enhanced nodes for each task. In BMtLS-RGf, At can
be modified as follows:

∀t ∈ [1, T ], At =
[
Zn

T |Hm
t

]
=
[
Ẑ|Ht

]
(25)

where Ẑ represents the shared feature mapping layer for
all tasks, while Ht represents the enhancement nodes layer
specific to the t th task. Accordingly, the optimization function
of BMtLS-LGf in (11) can be refined as

OBMtLS-RGf(W) = arg min
2

[
T∑

t=1

1
2
∥Yt −

[
Ẑ|Ht

]
Wt∥

2

+λR(W)

]
s.t. Wt = Qtk,ϖtkWk = Qtk . (26)

Therefore, the detailed algorithm of BMtLS-LGf is shown
in Algorithm 2.

Algorithm 2 BMtLS-RG With Shared Feature Mapped Nodes
(BMtLS-RGf)
Input: The same to Algorithm 1
Output: the output weighted matrix W.
Step 1: The same to Algorithm 1.
Step 2: Feature processing procedure:

01. Obtaining the Ẑ for all task t ∈ T ;
02. For t = 1 to T do:
03. Obtaining the Hm for each task t ;

Step 3: The same to Algorithm 1.
04. end For

B. BMtLS-RG With Sharing Parameters of Feature Mapped
Nodes and Enhanced Nodes

In BMtLS-RGfe, the feature mapping node layer and the
enhanced node layer are shared among all tasks, meaning
they utilize the same parameters and structures. Consequently,
in BMtLS-RGfe, a unified nonlinear transformation is applied
to the shared feature mapping layer and the enhanced node
layer for all tasks. This unified transformation ensures con-
sistent feature mapping and enhancement processing across
tasks. Accordingly, in BMtLS-RGfe, At in (28) can be refined
as

∀t ∈ [1, T ], At =
[
Zn

T |Hm
T

]
=
[
Ẑ|Ĥ

]
(27)

where Ĥ is the enhanced node layer for all the tasks.

Therefore, the optimization function of BMtLS-LGfe in (11)
can be refined as

OBMtLS-RGfe(W) = arg min
2

[
T∑

t=1

1
2
∥Yt −

[
Ẑ|Ĥ

]
Wt∥

2

+λR(W)

]
s.t. Wt = Qtk,ϖtkWk = Qtk . (28)

The algorithm of BMtLS-LGfe is displayed in Algorithm 3.

Algorithm 3 BMtLS-RG With Shared Feature Mapped Nodes
and Enhanced Nodes (BMtLS-RGfe)
Input: The same to Algorithm 1
Output: the output weighted matrix W.
Step 1: The same to Algorithm 1.
Step 2: Feature processing procedure:

01. Obtaining the Ẑ for all task t ∈ T ;
02. Obtaining the Ĥ for each task t ∈ T ;
03. For t = 1 to T do:

Step 3: The same to Algorithm 1.
04. end For

V. EXPERIMENTS

In this section, we conducted a comprehensive set of
experiments on various practical multitask datasets to evaluate
the effectiveness of our proposed methods, namely BMtLS-
RG, BMtLS-RGf, and BMtLS-RGfe. The experiments were
designed to address the following objectives.

A. Comparison With SOTA STL Methods

We compared the performance of BMtLS-RG against other
widely used STL methods, including BLS [4], FBLS [18],
CFBLS [5], REMBLS [7], and MSBLS [46], using different
variants of the BLS.

B. Comparison With SOTA MTL Methods

We compared the performance of BMtLS-RG against other
SOTA MTL methods, such as VSTG [47], MTPL [32],
ATMTL [48], MWAN [49] and MRN [50].

C. Comparison Among Proposed Methods

We conducted comparisons among our proposed methods,
BMtLS-RG, BMtLS-RGf, and BMtLS-RGfe, to evaluate their
relative performance.

D. Ablation Experiments

We performed ablation experiments on BMtLS-RG to inves-
tigate the impact of different components and settings of the
proposed method.

All the experiments were conducted on a computer system
equipped with an Intel1 Core2 i7-9700K CPU running at

1Registered trademark.
2Trademarked.
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TABLE I
13 BENCHMARK DATASETS FOR MTL

3.60 GHz and 32.00 GB of memory, using the Windows
10 operating system. To evaluate the effectiveness of our
proposed BMtLS-RG method, we conducted experiments on a
set of ten UCI datasets and three practical multitask datasets.
The details of these datasets are provided in Table I. For
the six UCI classification datasets, namely Yeast, Abalone,
Isolet, Audit, Avila, and Car, we converted them into multitask
datasets based on the number of categories present in each
dataset. This conversion allows us to explore the perfor-
mance of BMtLS-RG in an MTL setting for classification
tasks. Additionally, we selected four UCI regression datasets,
namely Machine, CCPP, UJIndoorLoc, and QSAR-BCF. These
datasets provide regression problems, and we included them
in our experiments to assess the performance of BMtLS-RG in
multitask regression scenarios. Please refer to Table I for more
detailed information about these datasets. Due to limitations,
only some of the experimental data is displayed. For more
experimental data, please refer to the supplementary materials.

E. Comparisons Between STL and MTL Methods

To comprehensively evaluate the effectiveness of our pro-
posed algorithm, we conducted experiments comparing it with
four STL algorithms: BLS, FBLS, CFBLS, and MSBLS. Addi-
tionally, we selected three SOTA MTL algorithms: MTPL,
VSTG, and ATMTL, as representative benchmarks for com-
parison. In our experiments, we set the number of feature
mapping nodes to 200 and the number of enhanced nodes to
500 for BLS, CFBLS, MSBLS, and BMtLS-RG. For FBLS,
we used 200 fuzzy subsystems and 500 enhanced nodes. These
settings ensure consistency across the compared algorithms.
We conducted the experiments on eight classification datasets
and five regression datasets. The datasets were split into 80%
training and 20% test data. The results of the experiments
are presented in Table II for classification tasks and Table III
for regression tasks, respectively. These tables comprehen-
sively compare the performance of our proposed algorithm
(BMtLS-RG) with the selected STL and MTL algorithms
across various datasets.

Table II presents the findings from evaluating four widely
recognized metrics for assessing classification algorithms:

accuracy, precision, recall, and F1-score. Our introduced
algorithm, BMtLS-RG, demonstrates superior performance in
97.81% of instances evaluated. Specifically, within the Land-
mine and USPS-MNIST datasets, BMtLS-RG surpasses nine
competing algorithms across all four metrics. The observed
enhancements span from 1.24% to 28.14% for accuracy, 2.99%
to 25.96% for precision, 1.46% to 27.17% for recall, and
1.89% to 26.40% for F1-score, underscoring the algorithm’s
exceptional performance on these datasets. The analysis
reveals that MTL approaches significantly outperform STL
methods in classification outcomes. Across eight datasets,
these findings suggest that singular learning architectures are
insufficient for attaining optimal classification accuracy within
MTL contexts. Compared to single-task models like BLS, the
enhanced BMtLS-RG, as proposed in this study, shows marked
improvements in all evaluated scenarios, affirming the efficacy
of the proposed multitask model, which leverages group sparse
BLS. Moreover, BMtLS-RG outstrips four other MTL method-
ologies by margins ranging from 2.51% to 10.12%, evidencing
its superiority across diversified datasets.

Table III shows the performance of ten comparative methods
on five multitask regression datasets, evaluated through metrics
such as root-mean-square error (RMSE) and mean absolute
percentage error (MAPE). The proposed BMtLS-RG algorithm
achieves the optimal results across all five regression datasets.
Relative to nine other algorithms, BMtLS-RG exhibits signifi-
cant improvements in RMSE and MAPE across these datasets.
On average, BMtLS-RG’s RMSE metrics are enhanced by fac-
tors ranging from 4.99 to 26.87 times, and its MAPE metrics
by factors ranging from 2.57 to 8.65 times. It is particu-
larly noteworthy that BMtLS-RG outclasses existing multitask
learning algorithms on the real multitask regression dataset,
Sarcos. However, due to extended training durations within the
current experimental setup, the MTPL and MWAN algorithms
failed to yield results within a 5-h window, necessitating the
exclusion of their RMSE and MAPE metrics. The analysis also
provides the average training durations for eight algorithms
across the five datasets. It is observed that the five STL models
represented by BLS require significantly less training time than
their MTL counterparts. The BMtLS-RG model benefits from
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TABLE II
CLASSIFICATION PERFORMANCE OF TEN COMPARING ALGORITHMS ON EIGHT DATASETS

TABLE III
REGRESSION PERFORMANCE OF TEN COMPARING ALGORITHMS ON FIVE DATASETS

the BLS’s lightweight architecture, enabling more efficient
training time while simultaneously achieving superior results.

In summary, the BMtLS-RG model proposed in this article
demonstrates superior performance to the original single-task
model represented by BLS in both classification and regres-
sion tasks. Compared to existing MTL models, BMtLS-RG
outperforms SOTA MTL models thanks to the advantages of

the adaptive expansion of the BLS width network and the
proposed group sparse mechanism.

F. Comparisons Among MTL Methods on Image Datasets

The proposed algorithm is further evaluated on two real
multitask image datasets: Office-Home and ImageCLEF. These

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 4. Classification accuracy of different MTL methods for each task on ImageCLEF and OfficeHome. (a) Accuracy of Image-CLEF (%). (b) Accuracy
of Office-Home (%).

datasets are compared with several advanced MTL algorithms
to verify the effectiveness of our approach.

Office-Home dataset3 consists of images from four differ-
ent domains/tasks: artistic images, clip art, product images,
and real-world images. Each task includes images belonging
to 65 object categories collected in office and home settings.
In total, there are approximately 15 500 images across all tasks.
This dataset provides a challenging scenario for multitask
learning due to the diverse domains and object categories
involved.

ImageCLEF dataset4 comprises 12 common categories
shared by four tasks: Caltech-256, ImageNet ILSVRC 2012,
Pascal VOC 2012, and Bing. There are around 2400 images
in total across all tasks. This dataset offers another real-world
MTL scenario for evaluation.

These two datasets are used to evaluate the proposed
algorithm’s performance compared to other SOTA MTL algo-
rithms, i.e., MTPL, VSTG, ATMTL, and MRN. The results
obtained from these experiments provide further evidence
of the effectiveness of the proposed algorithm in real-world
multitask image scenarios.

The classification accuracy of these comparisons on the four
sub-classification tasks of the ImageCLEF and Office-Home
datasets is presented in Fig. 4, which provides insights into
the performance of each algorithm on different tasks. The
average results of the algorithms are also shown, providing
an overview of their overall performance on the dataset. The
results shown in Fig. 4 demonstrate the effectiveness of the
proposed BMtLS-RG algorithm in handling multitask image
classification tasks. On the ImageCLEF dataset, BMtLS-RG
achieves competitive performance compared to the other com-
parison algorithms. While it may not have the highest accuracy
on the Caltech classification sub-task, it performs very closely
to the top-performing algorithms, ATMTL and MRN. Notably,
BMtLS-RG outperforms the other algorithms and achieves the

3http://hemanthdv.org/OfficeHome-Dataset
4http://imageclef.org/2014/adaptation

optimal values on the ImageNet, PASCAL, and Bing tasks.
Additionally, when considering the average results across
all four tasks, BMtLS-RG ranks first, indicating its strong
performance across the dataset. On the Office-Home dataset,
BMtLS-RG demonstrates superior performance in all four
sub-tasks compared to the other four comparison algorithms.
This highlights the effectiveness of the BMtLS-RG algorithm
in addressing multitask image classification tasks, leveraging
the incremental adaptive structure of BLS combined with the
proposed group sparse framework.

G. Comparisons Among Our Proposed Methods (BMtLS-RG,
BMtLS-RGf, and BMtLS-RGfe) With Different Feature Nodes
and Enhancement Nodes

The experimental comparisons conducted on the Car dataset
for classification aim to investigate and compare the differ-
ences and robustness of the three algorithms: BMtLS-RG,
BMtLS-RGf, and BMtLS-RGfe. Several evaluation indicators,
including accuracy, F1, and training time, are used to evaluate
the performance of the algorithms. Two sets of experiments
are designed.

1) Varying the number of feature mapping nodes: In this
experiment, the number of fixed enhancement nodes is
set to 200, and the number of feature mapping nodes
is increased. The feature mapping group is either 5 or
10, and each group’s number of feature nodes varies
from [10, 50]. The experimental results are presented
in Fig. 5, showing the performance trends of the three
algorithms on the Car dataset.

2) Varying the number of enhanced nodes: In this experi-
ment, the number of fixed feature nodes is set to 200,
and the number of enhanced nodes is increased. The
number of enhanced nodes ranges from [100, 1000],
with an increment of 100. The results of this experi-
ment are depicted in Fig. 6, illustrating the changes in
performance for the three algorithms on the Car.
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Fig. 5. Classification performance of different nodes of feature mapped layer under fixed enhanced nodes of our proposed methods on Car (fixed enhanced
nodes: 200; groups of windows: {5, 10}; feature nodes of each window: {10, 20, . . . , 50}). (a) Accuracy. (b) F1. (c) Training time (s).

Fig. 6. Classification performance of different nodes of enhanced nodes layer under fixed feature mapped nodes of our proposed methods on Car (fixed
groups of windows: 10; fixed feature nodes of each window: 20; enhanced nodes: {100, 200, . . . , 1000}). (a) Accuracy. (b) F1. (c) Training time (s).

Fig. 6 illustrates the trends of the three algorithms
(BMtLS-RG, BMtLS-RGf, and BMtLS-RGfe) on the Car with
varying feature mapping nodes. As the number of feature map-
ping nodes increases, the algorithms’ performance gradually
stabilizes. In terms of accuracy and F1-score, all three algo-
rithms show a notable upward trend as the number of feature
mapping nodes increases from 5 to 10 and then stabilizes.
In the MTL scenario, the proposed method’s accuracy and
F1 score improve by about 0.6%–1% when the number of
enhanced node layers increases from 100 to 500. In terms
of training time, it can be observed that BMtLS-RGf and
BMtLS-RGfe exhibit higher training efficiency compared to
BMtLS-RG due to the parameter sharing between the feature
mapping layer and the enhanced node layer. Fig. 6 illustrates
the trends of the three algorithms with varying numbers of
enhanced nodes. On the Car, all three algorithms exhibit an
upward trend in classification performance as the number of
enhanced nodes increases from 100 to 500. As the number
of enhanced nodes increases, the classification performance
stabilizes. These results further validate the effectiveness and
stability of the proposed algorithm. However, it is essential
to note that the performance trends may vary depending
on the specific dataset and task. While the training time of
BMtLS-RG increases with the number of enhanced nodes,
its RMSE and MAPE are significantly better than those of
BMtLS-RGf and BMtLS-RGfe.

To summarize, achieving relatively better results can be
accomplished with 50–100 feature nodes for selecting the
number of feature mapping nodes. 500–600 can lead to more

effective performance for the number of enhanced nodes.
Regarding parameter sharing, if the goal is to achieve optimal
accuracy, BMtLS-RG (without sharing any layer) is recom-
mended. If there is a need to balance efficiency and accuracy,
BMtLS-RGf (sharing the feature mapping layer) can be cho-
sen. Finally, BMtLS-RGfe (sharing both the feature mapping
layer and enhanced node layer) achieves optimal efficiency.

H. Ablations Experiments and Robustness of BMtLS-RG
To investigate the robustness of the group sparse structure

in the proposed BMtLS-RG algorithm, ablation experiments
and parameter sensitivity analysis are conducted on the Land-
Mine dataset (classification task) and the Sarcos dataset
(regression task). These experiments aimed to assess the
contribution and impact of different components or modules
of the algorithm and examine the sensitivity of the algorithm
to various parameter settings. In the ablation experiments,
specific components or modules of the BMtLS-RG algorithm
were temporarily removed or modified, and the performance
of the modified algorithm was evaluated. This analysis helped
determine the importance and effectiveness of the group
sparse structure in improving the algorithm’s performance.
By comparing the results of the modified algorithms with the
original BMtLS-RG, insights could be gained into the specific
contributions of the group sparse framework. Additionally,
parameter sensitivity analysis was performed to examine the
effects of different parameter settings on the algorithm’s
performance. Parameters such as the regularization strength,
number of feature mapping nodes, and number of enhanced
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Fig. 7. Classification performance of three parameters for BMtLS-RG on Landmine (lamda1: [2−1, 2−2, . . . , 2−10
]; lamda2: [2−1, 2−2, . . . , 2−10

]; lamda3:
[2−1, 2−2, . . . , 2−10

]). (a) Accuracy(↑). (b) F1(↑).

TABLE IV
ABLATION CLASSIFICATION RESULTS OF THREE GROUP REGULARIZED

TERMS FOR BMTLS-RG ON LANDMINE

nodes were systematically varied. The resulting performance
metrics were measured and compared, such as accuracy,
F1-score, RMSE, and MAPE. This analysis aimed to identify
the optimal parameter settings for achieving the best perfor-
mance on the LandMine and Sarcos datasets.

1) Ablations of Group Regularized Terms: A series of
ablation experiments were conducted on the three group
sparse modules specified in (13). Expressly, the regularization
parameters λ1, λ2, and λ3 were varied between 0 and 0.5. For
instance, λ1 was set to 0 while λ2 and λ3 were set to 0.5,
denoted the BMtLS-RG algorithm without the Lasso regular-
ization terms. Similar variations were applied to explore other
scenarios. The outcomes of these experiments are presented
in Tables IV and V.

Table IV presents the classification results obtained from
different ablation combinations of BMtLS-RG on the Land-
Mine dataset. It is obvious that when all group sparse terms
are removed (i.e., λ1 = λ2 = λ3 = 0), the performance across
all four indicators is significantly compromised. Comparing
these results to the scenario where all group sparse terms
are included (λ1 = λ2 = λ3 = 0.5), the differences in
the four indicators amount to 19.68%, 19.26%, 16.17%, and
14.82%, respectively. When only one group sparse term is
incorporated, λ2 yields the optimal results. Furthermore, when
combining any two group sparse terms, the combination of λ2
and λ3 emerges as the most effective. This suggests that the

TABLE V
ABLATION REGRESSION RESULTS OF THREE GROUP REGULARIZED

TERMS FOR BMTLS-RG ON SARCOS

inclusion of all three group sparse terms, particularly λ2, has
a substantial impact on the classification results. Turning to
Table V, which corresponds to the Sarcos dataset, it becomes
evident that the advantages of BMtLS-RG are maximized
when all group sparse terms are incorporated. Among the
three group sparse terms, λ3 plays a relatively significant role
in the context of the regression task. Overall, the proposed
BMtLS-RG algorithm, leveraging group sparse techniques,
demonstrates superior performance in both classification and
regression tasks.

2) Parameters Analysis of Group Regularized Terms
(λ1,λ2,λ3): To analyze the impact of the three group sparse
parameters, λ1, λ2, and λ3, we conducted a comparative
analysis using ten sets of parameter values ranging from 2−1

to 2−10. The results are visualized in Fig. 7. In the two sub-
figures, the x , y, and z coordinates represent the values of
λ1, λ2, and λ3, respectively. Meanwhile, the color map on the
right depicts different evaluation metric values. In Fig. 7, for
accuracy and F1, the regions closer to green represent higher
values and better results. Analyzing Fig. 7, it can be observed
that BMtLS-RG achieves relatively better results when λ1
ranges from 2−5 to 2−7, λ2 ranges from 2−1 to 2−4, and
λ3 ranges from 2−1 to 2−5. Conversely, poorer results are
obtained when λ1 ranges from 2−9 to 2−10, λ2 ranges from
2−9 to 2−10, and λ3 ranges from 2−9 to 2−10. These findings
demonstrate the sensitivity of BMtLS-RG to the values of
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the group sparse parameters. Selecting appropriate parameter
values within the specified ranges can improve classification
and regression results.

VI. CONCLUSION

This article has introduced a novel BLS for multitask
learning called BMtLS-RG, which presents improved gen-
erality and generalization capabilities. The proposed system
incorporates a task relation mechanism and a group sparse
optimization mechanism to enhance the accuracy, robust-
ness, and stability of MTL. The task relation mechanism
enables effective learning of relevant information between
tasks, allowing BMtLS-RG to handle multiple tasks simul-
taneously and improve the accuracy of MTL. It facilitates the
extraction of shared knowledge and relationships among tasks,
enhancing overall performance. The group sparse optimization
mechanism consists of various modules, including L1-norm
regularization, task-wise sparse regularization, and group
sparse regularization. This mechanism maximizes the utiliza-
tion of practical information between tasks while reducing the
impact of noise data from one task to another. It enhances
the robustness and stability of BMtLS-RG, making it more
resilient to challenging real-world scenarios. Additionally,
to address practical applications with higher efficiency, two
variants of BMtLS-RG have been introduced, i.e., BMtLS-RGf
and BMtLS-RGfe. These variants have provided a flexibility
in handling complex and diverse multitask learning scenarios,
meeting the demands of high-performance applications.

Extensive experiments have been conducted to evaluate the
performance of BMtLS-RG. Comparative analyses have been
carried out on various datasets, including UCI and real MTL
datasets, for classification and regression tasks. The results
consistently demonstrate the superiority of BMtLS-RG over
existing BLS STL models and SOTA MTL algorithms in terms
of accuracy and training time. Furthermore, the effectiveness,
stability, and robustness of BMtLS-RG are verified through
ablation experiments and parameter sensitivity analysis. These
experiments illustrate the significance of the group sparse
terms in achieving optimal performance in classification and
regression tasks. Future research directions further explore the
application of BMtLS-RG in diverse MTL domains, such as
autonomous driving and medical image analysis, to enhance
its versatility and utility in real-world scenarios.
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