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Abstract—This paper presents the first compact, wideband,
silicon-micromachined frequency-diverse antenna, operating
across the 220-330 GHz range, designed explicitly for sub-THz
imaging applications. The antenna consists of 80 slot radiating
elements of twelve distinct sizes corresponding to half of
the uniformly sampled wavelengths within the operating
bandwidth. These elements are arranged in a Mills-Cross
configuration for antenna designs A and B, supported by an
innovatively shaped air-filled cavity. The cavity is engineered
to support multiple higher-order, high-Q resonance modes,
generating highly frequency-diverse, pseudo-random radiation
patterns. The frequency-diverse antenna is fed by a three-section
impedance-matching transitional direct waveguide and is
fabricated using advanced silicon micromachining technology.
This paper comprehensively analyzes the antenna’s radiation
patterns and impedance matching across the entire waveguide
band. The compact prototype, with an overall size of 18
mm × 16 mm × 0.933 mm (effective antenna dimensions of
11λ×11λ×0.85λ), is the most compact air-filled, cavity-backed
frequency-diverse antenna reported to date. It demonstrates
high radiation efficiency and is designed for direct mounting
on a standard WR-3.4 waveguide flange. The antenna achieves
a fractional bandwidth of 34%, with a return loss better than
10 dB, extending to 40% with a return loss better than 5 dB.

Index Terms—Sub-THz, wideband antenna, frequency-diverse
antenna, Cavity-backed antenna.

I. INTRODUCTION

M ICROWAVE imaging excels in its non-invasive
penetration capability through optically opaque

materials, which, in contrast to optical methods, allow
the extraction of information from obscured objects,
and has the ability to discriminate low-density materials.
These properties make this technology indispensable in
non-destructive testing, security, structural monitoring, and
medical-imaging applications [1]–[4].

Microwave imaging systems suffer from high
hardware complexity and slow data acquisition due
to requiring numerous measurements in the typical array
configurations, which limits their real-time performance
[1]. To address these limitations, frequency-diverse
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cavity-backed antennas have emerged as a solution
for short-range imaging applications that feature faster
measurement rates since no hardware reconfiguration
or physical antenna scanning is needed. This antenna
configuration significantly reduces hardware complexity,
simplifies system design, and lowers cost and maintenance
requirements, all while maintaining high resolution [5]–[7].

Unlike traditional narrow-beam steering antennas, the
cavity-backed frequency-diverse antenna intentionally
generates pseudo-random radiation patterns. By varying
the frequency, these radiation patterns change, offering a
diverse range of patterns. The goal is to generate as many
independent radiation patterns as possible across different
frequencies, maximizing the antenna’s effectiveness
for imaging applications. The unique cavity-backed
configuration of these antennas significantly enhances their
frequency-diversity capability, which is required for image
reconstruction [8]–[12]. A cavity-backed frequency-diverse
antenna system with wideband performance, generates
a frequency-diverse resonance pattern that effectively
illuminates the field of view with frequency-diverse
radiation patterns, and creates a large physical aperture.
Its simplicity, requiring only a simple feeding and
no reconfigurable elements, enables uncomplicated
implementation, in contrast to, for instance, phased-array
systems requiring phase shifters or a mechanical scanning
system requiring mechanical reconfigurability [1], [6], [13].

In [14], the Mills-Cross configuration was proposed as the
optimal arrangement for transmission Tx and reception Rx
antennas, offering the highest necessary k-space coverage
for imaging by utilizing slot radiators.

Previous works [15], [16] have proposed
frequency-diverse antennas for computational imaging at
W-band frequencies. Zvolensky et al. [15] introduced
a W-band sparse imaging system that utilizes
frequency-diverse cavity-fed metasurface antennas,
where a high-Q cavity geometry supports multiple
distinct higher-order modes. On the other hand, Zhao
et al. [16] proposed a frequency-polarization-port-diverse
(FPPD) cavity imager at W-band, focusing on bunching
random beams. This design uses elliptical holes and a
dual-polarized horn antenna to generate radiation patterns
across frequencies and polarization states.

The long wavelengths of microwave frequencies limit the
resolution and result in large sensor hardware. Therefore,
sub-THz frequencies, due to their shorter wavelengths, have
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Fig. 1. Operating principle of the proposed air-filled cavity-backed frequency diverse sub-THz antenna. (a) matching transition, cavity, and radiating
elements 3D view. (b) The Schematic view of the two proposed Antenna pairs A and B. (c) 3D view of simulated radiation patterns of antennas A and
B at 240 GHz.

been receiving much attention to enhance the imaging
resolutions and to shrink the antenna size [17]–[23].

At sub-THz frequencies, [24] introduces a
frequency-diverse antenna designed for terahertz
communication systems, integrating an oversized metallic
cavity with metallic scatterers and a 3D-printed dielectric
lens. The antenna has dimensions of 45 mm × 45 mm ×
15 mm. It operates in the 220 to 330 GHz range, generating
quasi-random radiation patterns over a wide frequency
band. The random orientation of scatterers inside the
cavity and using a cyclic olefin copolymer (COC) lens with
varying pillar heights enhance the diversity and directivity
of the antenna’s radiation patterns.

A pivotal advancement in sub-THz technology has been
the development of silicon-micromachining fabrication
techniques, in particular, deep reactive ion etching
(DRIE), which facilitates the creation of very small
and accurate features, as well as nanometer surface
roughness critical for low losses of rectangular-waveguide
based sub-THz components [25]–[28]. This is particularly
important at higher frequencies, where tightly controlled
feature sizes and tolerances are necessary to meet the
requirements of geometrical tolerances for maintaining
excellent electromagnetic properties. Furthermore, as
compared to conventional manufacturing methods such
as CNC milling, silicon micromachining is volume
manufacturable, cost-effective for mass production, and has
a high product uniformity [29]–[31].

Also, as it enables the integration of multiple functions
onto a single silicon chip, it significantly reduces the size
and weight of a front-end system, which is advantageous
for applications where size and weight are critical [32]–[35].

The range and cross-range resolution of a radar sensor
are the key performance indicators of the system to
discriminate objects in close proximity, both in distance
and angle. The range (distance) resolution is given by the
following relation [36]:

∆R = c0

2BW
(1)

where c0 represents the speed of light in free space, and
BW denotes the available measurement bandwidth.

The cross-range (angular) resolution is given by [36]:

∆θ= λ

D
(2)

where λ is the wavelength at the operating frequency,
and D represents the dimension of the aperture of the
antenna system. Sub-THz frequencies provide access to
large bandwidth, enhancing the range resolution, and the
millimeter-sized wavelengths of sub-THz frequencies make
it feasible to utilize a relatively large physical aperture
as compared to the wavelength, which also provides high
angular resolution.

This paper presents the first wideband, compact, air-filled
cavity-backed, frequency-diverse antenna, utilizing a direct
waveguide feeding method, and fabricated using silicon
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Fig. 2. Interior view of the antenna A and B backing cavity featuring
asymmetric sawtooth boundaries. The green boundary highlights the
difference in spatial positions of the radiating elements.

micromachining for operation in the 220-330 GHz range.
The antenna is designed explicitly for sub-THz imaging
systems and is the most compact air-filled cavity-backed,
frequency-diverse antenna reported to date. This work
comprehensively examines the antenna’s design, analysis,
and performance evaluation, with all simulations and
optimizations conducted using CST Studio.

II. CAVITY-BACKED FREQUENCY-DIVERSE ANTENNA DESIGN

The proposed antenna is conceptually illustrated in
Fig. 1. The design incorporates a matching transition
from a standard WR-3.4 waveguide interface, leading to
the air-filled resonant cavity with nonuniform borders,
which is topped by a radiating slot element. The antenna’s
radiation pattern is intentionally designed to produce a
pseudo-random distribution, as illustrated. The antenna is
applicable in short-range imaging, and a high-gain antenna
is not required.

The frequency-diverse antenna is composed of the
following components, which are described in the following
subsections:

(A) Air-filled resonant cavity,
(B) Radiating elements,
(C) Input transition.

A. Air-Filled Resonant Cavity Design

The interior geometry and dimensions of the cavity are
illustrated in Fig. 2. The sidewalls of the cavity measure
12 mm, approximately 11λc × 11λc , with a cavity height
of 278 µm. Unlike the design presented in [15], the
unique sawtooth boundaries on all four sidewalls are
specifically engineered to excite the different populations
of radiating elements. These sawtooth boundaries facilitate
the excitation of nonuniform higher-order modes, resulting
in varied amplitude and phase distributions of the electric
field across different cavity segments.

The dimensions of the size of the sawtooth boundary
and offset are designed to create maximum nonuniform
resonances. Different dimensions can be designed based

(a) (b)

(c) (d)

Fig. 3. Electric field distribution of four resonance modes of the cavity: (a)
f = 220.854 GHz, (b) f = 221.297 GHz, (c) f = 328.839 GHz, (d) f = 328.892
GHz.

on the radiating elements and their position. Using the
Eigenmode solver in CST Studio, simulations revealed a
rich spectrum of 277 distinct modes across the desired
bandwidth, as illustrated in Fig. 3. Notably, even a slight
frequency shift of ∆ f = 0.443 GHz at 220 GHz and a
0.053 GHz frequency shift at 329 GHz result in distinct
resonances, as demonstrated in Figs. 3(a)-(d).

B. Radiating Elements

Slot radiators were selected for their simplicity and
resonance characteristics, with a typical fractional
bandwidth of around 5-10%, allowing for efficient
operational bandwidth coverage. Unlike the approach in
[15], which uses single-size slots, varying the individual
slot lengths to match the cavity’s resonances enhances the
generation of diverse and independent radiation patterns.

Twelve frequencies ranging from 220 to 320 GHz
were uniformly selected to cover the entire operational
bandwidth. The lengths of the slots were then determined
to be half of the corresponding wavelengths at these
frequencies.

The spatial arrangement of the slots is important to the
performance of the radiating elements. The center of the
radiators on the cavity’s cap cannot accommodate slots, as
the feed of the cavity (discussed later in this section) is
positioned below it.

Utilizing the Mills-Cross configuration, the primary
slots are aligned horizontally for antenna design A, as
shown in Fig. 2, and vertically for antenna design B. A
random distribution process was employed for the spatial
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arrangement of the slots to achieve higher diversity in
pseudo-random radiation patterns.

This approach resulted in the configuration of 80
radiating slots, independently selected for both antenna A
and B, ensuring a comprehensive and varied set of radiation
patterns that effectively span the k-space [5].

The periodicity of the radiation slots’ arrangement was
set to the guide wavelength at the center frequency of
275 GHz (1.1 mm), with each slot’s width established as
one-tenth of its corresponding length. The thickness of the
radiating elements was determined by fabrication/material
constraints to 30 µm.

(a)

Z0 Z1 Z2

ZL

Zi n

(b)

Fig. 4. (a) Overall view of the cavity with the direct feed. (b) General
matching circuit model.

C. Input Transition

A waveguide transition enables the transition from
the input waveguide flange to the cavity. Figure 4(a)
visualized the input transition configuration shown in
Fig. 1(a) to show the optimized dimensions. The two upper
waveguide sections are designed for impedance matching
between the standard WR-3.4 waveguide and the cavity.
The bottom section, with dimensions equivalent to the
standard waveguide flange (864µm × 432µm), serves as an
interface with the input waveguide flange. The thickness of
each section of the matching transition is dictated by the
available standard waver that comes later in the fabrication
section. An optimization procedure was conducted utilizing
CST Studio on the dimensions of the waveguide sections,
ai and bi , to achieve sufficient return loss throughout the
220-330 GHz frequency range.

The corresponding circuit model is shown in
Fig. 4(b), where the matching network comprises two
frequency-dependent impedances, Z1 and Z2. The bottom
section of the transition, Z0, has the impedance of a
standard WR-3.4 waveguide, and the impedance ZL

represents the input impedance of the air-filled cavity and
radiation slots.

As shown in Fig. 1, mounting the antennas on the
standard flange requires the use of alignment pins. To
avoid interference between the alignment pins and the
cavity—which degrades the number of cavity resonances
and conflicts with the location of the slot radiators—the
feed structure is rotated by 45◦ in-plane.

III. FABRICATION

The silicon-micromachining fabrication process for
the sub-THz frequency diverse antenna involves several
steps to achieve the desired fabrication properties. The
process is illustrated in Fig. 5 and utilizes so-called
silicon-on-insulator (SOI) wafers, consisting of a device
layer of 30 µm and a handle layer of 275 µm. The latter
forms the structural base of the cavity, and the former is
the layer into which the radiating slots are etched. A buried
oxide (BOX) layer of 3 µm in between these two layers
isolates the device layer from the handle layer. It acts as an
etch stop to etch these two layers with different geometrical
features independently. The final antennas are composed
by vertically assembling three chips of these SOI wafers,
resulting in a total of six individually etched layers.

The sequence of fabrication steps is as follows:
1) Hard mask disposition: A 2 µm thick silicon dioxide

layer is grown on both sides of the SOI wafer. This
layer serves as a hard mask for the subsequent
deep-silicon etching process.

2) Photolithography: Positive photoresist is applied to
one side of the wafer, and the pattern of the cavity
and radiating elements is transferred via exposure.
The oxide layer on this side is then etched to form
the hard mask. The process is repeated for the other
side of the wafer.

3) Deep Reactive Ion Etching (DRIE): Utilizing the
BOSCH process, DRIE is performed to etch through
the silicon layers down to the BOX layer, creating the
cavities and slots as defined by the hard masks.

4) Oxide etching: The surface oxides (including the BOX
and hard masks) are removed in this step to yield a
smooth silicon surface.

5) Metallization: All chips are first coated with a
50 nm-thick titanium tungsten adhesion layer. A
gold layer is then deposited on the chips using a
sputtering technique, resulting in a 1.5 µm gold layer,
which provides effective conductive surfaces, which
is essential for high radiation efficiency, minimized
losses, and high-Q resonances for high frequency
diversity.

6) Assembly: The device is constructed of three
layers, which are aligned and bonded using a
thermo-compression bonding method [37].

High-resolution Scanning Electron Microscope (SEM)
images of the cavity, along with two differently sized slots
with lengths of 525 µm and 550.4 µm, and widths of 55.6
µm and 53.9 µm, are shown in Fig. 6.

Optical microscope pictures of the fabricated cavity with
radiating elements in both antenna A and antenna B
arrangements are displayed in Fig. 7.
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Fig. 5. Fabrication fellow process: (a) cross-section view of an SOI
wafer; (b) oxide growing on both sides; (c) lithography; (d) hard mask;
(e) silicon etching; (f) removing oxide layers; (g) metallization; (h)
thermo-compression bonding.

Fig. 6. SEM image of the fabricated cavity, showcasing an overall view of
the cavity, sawtooth boundaries, and two radiating elements.

Fig. 7. Optical images of the fabricated cavity featuring radiating elements
configured for antennas A and B and the transition layers.

The high Q-factor modes necessary for distinct cavity
modes at closely spaced frequencies are ensured by the
low surface roughness in the order of a few nanometers of
the cavity boundaries, which is a specific strength of silicon
micromachining compared to other fabrication techniques.

IV. MEASUREMENTS

The measurements are performed in an anechoic
antenna measurement chamber operable within
67-750 GHz [22]. The chamber is equipped with a
4-degree-of-freedom fully automated robot and is covered
with high-frequency absorbers to minimize reflections,
facilitating accurate radiation pattern measurements. The
S-parameters and patterns are measured using a Rohde
& Schwarz ZVA-24 Vector Network Analyzer (VNA) with
ZC-330 frequency extenders operating in the 220-330 GHz.
The measurement setup is calibrated with a standard
calibration kit using the Through-Offset-Short-Match
(TOSM) method, shifting the measurement reference
planes to the surface of the waveguide flanges right at the
input port.

The measurement setup, depicted in Fig. 8, involves
mounting the Antenna Under Test (AUT) on the standard
WR-3.4 waveguide flange of a 220-330 GHz frequency
extender.

The measured and simulated reflection coefficients, S11,
for antennas A and B are shown in Fig. 9. These results
verify the impedance matching of both antennas. The slight
discrepancies between the measured and simulated S11

values are attributed to misalignments in the impedance
matching layer and fabrication tolerances.

As reported by our group in [38], the silicon
micromachining losses are very low, better than 0.07
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Fig. 8. Measurement pattern setup: The frequency-diverse antenna
mounted on the automated robot with a 25 dBi gain standard horn
antenna serving as the transmitter.

Fig. 9. The measured and simulated S11 for both antennas A and B over
the frequency range of 220 GHz to 330 GHz.

dB/mm, contributing minimally to any differences
observed. The measured fractional bandwidth (FBW) is
34% for a return loss better than 10 dB and 40% for a return
loss better than 5 dB, limited by the waveguide bandwidth
of the measurement instrumentation. Both antennas A and
B demonstrate excellent matching performance across the
entire waveguide band.

Radiation pattern measurements were conducted in both

(a)

(b)

Fig. 10. (a) Measured patterns of the antenna A. (b) Measured patterns of
antenna B under conditions similar to antenna B, illustrating the diversity
and effectiveness of the design.

azimuth and elevation, spanning a field of view of -60◦ to
30◦ (due to setup measurement restriction that a metalic
arm of the robot limits the azimuth range) and ±60◦,
respectively, with a 1◦ step size across 551 frequencies,
with each frequency step sized at 200 MHz. The antennas
are positioned at a distance of 0.6 m to ensure far-filled
illumination while maintaining sufficient dynamic range of
the setup. A standard-gain horn antenna with 25dBi gain is
employed as the transmitting antenna to measure radiation
patterns for antennas A and B. The measured radiation
patterns of the antennas A and B at six frequencies from
230 GHz to 320 GHz with 20 GHz frequency intervals are
shown in Fig. 10.

The radiation patterns vary significantly across the
frequency range, indicating the frequency-dependent
behavior of the antennas. The variation in colors from red to
blue represents the power levels in dB, with red indicating
the highest power and blue indicating the lowest.

These frequency-dependent radiation patterns are
important for evaluating and optimizing the performance
of the frequency-diverse antenna system in imaging and
communication applications at sub-THz frequencies.
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(a) (b) (c)

Fig. 11. Pattern independency graphs for antennas (a) A, (b) B, and (c) combination of antennas A and B.

V. DISCUSSION

The antenna setup has 110 GHz bandwidth, resulting
theoretically in a range resolution of better than 1.4 mm
as calculated from (1). A figure of merit called pattern
independence was defined to evaluate the effectiveness of
the generated diverse patterns. This metric qualitatively
assesses how different scene parts are independently
illuminated at various frequencies. Patterns that illuminate
the same parts of the scene do not contribute additional
information:

I(m,n) =
∑i ∑ j U( fm ,θi ,φ j )×U∗( fn ,θi ,φ j )∥∥U( fm ,θ,φ)

∥∥
2 ×

∥∥U( fn ,θ,φ)
∥∥

2

(3)

where U( f ,θ,φ) is the measured pattern at frequency f
and angles θ and φ, and ∥.∥2 denotes the Euclidean norm
(or 2-norm). Ideally, if the patterns are orthogonal, the
independence matrix will be an identity matrix.

Fig. 11 illustrates the frequency pattern dependence
of the Mills-Cross antenna configuration for antennas A
and B and the combination of both. Fig. 11(a) shows
the antenna A frequency pattern dependence, where the
antenna A pattern varies by frequency between 220 GHz
and 330 GHz. A clear diagonal trend indicates a consistent
frequency-dependent variation in the transmitted radiation
pattern.

Fig. 11(b) presents the antenna B frequency pattern
dependence, where similar diagonal patterns are observed
to exhibit frequency-dependent variations in its pattern
across the same frequency range.

Fig. 11(c) shows the combined antennas A and B
frequency pattern dependence, where the frequency
variation patterns of both antennas are compounded. The
combined antennas A and B frequency pattern dependence
is calculated from 3. The. The combined radiation patterns
are substituted as:

UAB( fm ,θi ,φ j ) =
√

UA( fm ,θi ,φ j )×UB( fm ,θi ,φ j ).

Here, the diagonal pattern dependence becomes more
concentrated, reflecting the combined response of
both antennas over the entire frequency range. This
demonstrates how the interaction between the antennas

A and B results in a consistent frequency response across
the range of interest.

The calculated pattern independence applies both to the
measured pattern’s azimuth and elevation span—a broader
azimuth and elevation span result in a narrower distribution
of pattern independence.

In order to compare the achievements introduced in
this work, TABLE I provides a summary of previous works
compared to the current study, highlighting the essential
approaches and findings. This work presents a compact
frequency-diverse antenna operating in the 220-310 GHz
range (with extension to 330 GHz), offering a fractional
bandwidth of 34% (and up to 40%). Compared to previous
designs, such as [24] with dimensions 41×41×13.63λ3

c , this
antenna is significantly smaller, with dimensions of only
11×11×0.85λ3

c , making it one of the most compact designs
at sub-THz frequencies. Despite its smaller size, the antenna
achieves a return loss of ≤ −10 dB, comparable to the
best-performing designs in the literature, while supporting
wideband operation.

One key advantage of this work is using direct transition
waveguide feed and slot radiators, which enhance pattern
diversity while maintaining low return loss. The silicon
micromachining fabrication process allows for more precise
construction and easier integration into compact systems
compared to conventional methods such as CNC milling or
3D printing, which are used in other works. This makes the
design highly suitable for applications requiring compact,
high-resolution radar and imaging systems at sub-THz
frequencies.

VI. CONCLUSION

This paper addresses several challenges associated
with antennas for short-range imaging systems, such as
achieving a wideband frequency range while miniaturizing
system size and reducing complexity. The silicon
micromachined wideband sub-THz antenna combines
innovative cavity-backed and frequency-diverse designs
to optimize performance across 220-330 GHz. The
unique design and implementation of radiating elements,
alongside silicon micromachining, significantly enhance
the antenna’s operational efficiency and the quality of
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TABLE I
COMPARISON OF THE FREQUENCY-DIVERSE PATTERN ANTENNA WITH PREVIOUS WORKS.

Ref. Frequency FBW Size S11 Feed type Radiating Fabrication
(GHz) (%) (dB) elements method

[5] 17.5-26.5 41 7.33×7.33λ2
c ≤−10 Coaxial cELCs PCB

[10] 17.5-26.5 41 21×21×11.18λ3
c ≤−5 Coaxial Holes -

[11] 32-36 11.8 (6.8)2π×2.27λ3
c ≤−10 Waveguide Different elements PCB & CNC milling

[6] 17.5-26.5 41 14.7×14.7×3.9λ3
c ≤−8 Waveguide Holes 3D printing

[14] 17.5-26.5 41 7.35×7.35λ2
c ≤−10 Coaxial Irises PCB

[15] 75-110 37.8 12.5×12.5×0.4λ3
c ≤−5 Waveguide Slots CNC milling

[16] 76-81 6.37 (15.79)2π×1.78λ3
c ≤−5 Waveguide Elliptical holes 3D printing & metal plating

[24] 220-330 40 41×41×13.63λ3
c ≤−10 Waveguide COC lens 3D printing

This work 220-310 (220-330) 34 (40) 11×11×0.85λ3
c ≤−10(−5) Waveguide Slots Silicon

micromachining

the imaging results. Experimental validations within an
anechoic chamber confirm the simulation expectations
on the design, showcasing the antenna’s ability to
produce independent radiation patterns necessary for
high-resolution imaging. The measurements highlight the
antenna’s frequency-diverse feature, validating its potential
for integration into advanced imaging systems.
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