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Abstract— The quantum nature of filamentary-type resis-
tive switching (RS) occurring in thin oxide films has been
investigated for more than two decades and though the key
concepts for a mesoscopic theory of RS are well known,
establishing a simple phenomenological model consis-
tent with the experimental observations has proven to be
an elusive task. The physics of RS is complex because
it involves the coupled action of electrons and ions or
vacancies, a connection which gives rise to the hysteretic
behavior of the conduction characteristic of the device.
In this letter, a model based on the Landauer approach
for the electron transport through a narrow constriction
is revisited and combined with the master equation for
the generation and dissolution of a nanosized gap. The
proposed model not only sheds light on one of the most
widely invoked equations for conduction in RS devices
(Stanford-PKU RRAM model) but also provides the physical
meaning of its parameters. The role played by the power
dissipation at the two ends of the constriction during the
occurrence of the switching process is also discussed.

Index Terms— Memristor, resistive switching,
mesoscopic.

I. INTRODUCTION

F ILAMENTARY-TYPE conduction in resistive switching
(RS) devices has been extensively investigated in the last

years [1]. The appearance of this filament is linked to the
local accumulation (electroforming) of metal ions or oxygen
vacancies forming a kind of conducting bridge across a thin
dielectric film sandwiched in between two metal electrodes.
Since the filament can be alternately created and destroyed
by the application of a proper external electrical stimulus, the
resulting resistance change can be used to store information in
a nonvolatile fashion. The control of the device conductance
(synaptic weight) is also of utmost importance in the field
of neuromorphic computing [2], [3]. It has been reported
several times that the electron transport in RS devices exhibits
quantum effects [4], [5], [6], [7], [8], [9], the most striking
manifestation being the observation of conductance jumps of
the order of the quantum unit G0 = 2e2/h, where e is the elec-
tron charge and h the Planck constant. These jumps have been
attributed to structural modifications of the filament atomic
configuration [10]. The physical system is often referred to
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as a quantum point contact (QPC) [11] and its connection
with dielectric breakdown has been matter of intense research
in the past [12], [13]. In this letter, we adopt the modeling
framework of memristive devices [14], i.e. a system of two
coupled equations, one for the current-voltage characteristic
(Landauer approach) and one for the memory state (master
equation). For simplicity, we focus here on the canonical case
of a single filament with internal progressive dynamics but
the extension to abrupt transitions or multiple non-interacting
filaments is straightforward.

II. MODEL FOR THE CURRENT-VOLTAGE
CHARACTERISTIC

According to the finite-bias Landauer approach for meso-
scopic conductors [15], the I-V characteristic of a symmetric
QPC structure can be calculated using the expression:

I (V ) =
2e
h

∫
∞

−∞

D(ε) { f [ε − µL ] − f [ε − µR]} dε (1)

where ε is the energy, D the transmission probability, f
the Fermi-Dirac function, and µL =eV/2, µR =-eV/2 the
electrochemical potentials at the left and right sides of the
constriction, respectively. Assuming a 1D inverted parabolic
barrier of height ϕ at z = 0 for the first energy subband in the
constriction’s bottleneck (see Fig. 1a):

9 (z) ≈ ϕ −
1
2

mω2z2 (2)

the exact expression for D reads [16]:

D(ε) =
1

1 + e−α(ε−ϕ)
(3)

where α is a constant related to the curvature k=ω2m of the
potential barrier profile. Notice that, in this representation, 9 is
not a material-related barrier but a barrier that arises from the
quantum confinement of the electron wavefunction. In terms
of the geometry of the constriction, namely its gap size g[m]
(roughly the separation between the two roots of Eq.(2)) and
radius R[m] (considering an infinite cylindrical quantum well),
α[1/eV] and ϕ[eV] read [17]:

α =
2π

ℏω
=

g
2ℏ

√
2m
ϕ

=
πm
ℏ2zo

gR (4)

ϕ =
ℏ2z2

o

2m
1

R2 (5)

where m[eV/c2] is the effective electron mass in the constric-
tion and z0 = 2.405 the first root of the Bessel function J0
[18]. The physical units are indicated within brackets. In the
zero-temperature limit, (1) can be fully integrated [19], but for
the sake of simplicity let us consider here the case eV/2< ϕ,
i.e. the tunneling regime. In this case, (1) yields:

I (V ) =
4e
αh

e−αϕsinh
(eα

2
V

)
(6)
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Fig. 1. a) Schematics of the energy barrier model for the quantum
confinement effect in the filament. L and R refer to the left and right
electrodes, respectively. g is the gap width and ϕ the top of the potential
barrier. b) I-V characteristics in log-log scale for different g/R aspect
ratios (see Eq.(7)). m/me is the effective electron mass ratio.

Notice that the product of the fitting parameters αϕ in (6) is
directly related to the aspect ratio of the constriction g/R and
is independent of m:

g
R

=
2

π z0
αϕ (7)

Remarkably, (6) can be alternatively expressed as:

I (V ) = I0e−
g

g0 sinh
(

V
V0

)
(8)

with:

I0 [A] = G0V0, g0 [m] =
2

π z0
R, V0[V] =

2ℏ2z0

eπm
1

Rg
(9)

(8) is the well-known expression for the I-V curve imple-
mented in the Stanford-PKU model for RS devices [20]. Now,
the dependence of the model electrical parameters I0, g0
and V0 on the physical parameters g, R and m is clearly
revealed. Both (6) and (8) are convenient expressions since
they comply with the expected limit for the conductance
of a collapsing barrier G(α, g →0) = G0 (see Fig. 1b).
In this limit, the I-V curve is linear rather than exponential
as predicted by the Landauer formula (see Fig. 1b). Similar
results can be obtained assuming a wide constriction (large
R), i.e. the absence of a confinement barrier, since also in
this case D →1. Interestingly, considering V ≪ V0 (very low
bias) and sinh(x) ≈ x , (8) reads:

G =
d I
dV

≈ G0e−
g

g0 (10)

which is the expression for the conductance of a mesoscopic
bridge obtained from first principle calculations [21]. In par-
ticular g0 = 0.12 nm has been found for HfO2 [21], so that
from (9), R = 0.45 nm is obtained. More recent results seem
to indicate that g0 depends on the particular properties of
the oxide layer [22]. Since we are dealing with a non-purely
electronic phenomenon, a second physical mechanism needs
to be introduced in order to account for the hysteretic behavior
in the conduction characteristic of RS devices.

III. MODEL FOR THE MEMORY STATE OF THE DEVICE

For the memory state of the device, let’s consider the
master equation corresponding to a birth-death process [23].
We assume here that the particles able to form the atomic
bridge at the constriction’s bottleneck can be alternatively in
two states: conducting (A) or non-conducting (B), a kind of
redox process in VCMs or a local displacement of metal ions
in ECMs. We assume also that the total number of particles

N within the region of interest is constant, i.e. n A + nB = N ,
where n A and nB are the number of particles in states A
and B, respectively. The switching of one particle from one
state to the other is mainly driven by the average electric field
across the dielectric film which is initially assumed constant.
If ωi j is the transition rate from state i to state j then,
neglecting second order terms in 1t , the following textbook
gain-loss equations describes the occupation probabilities of
both states [24]:

d P (ni , t)
dt

=

∑
i ̸= j=A,B

[
−ωi j P (ni , t) + ω j i P

(
n j , t

)]
(11)

where P (n A, t)+ P (nB, t) = 1, ∀t . The master equation (11)
can be solved with the aid of the binomial distribution or more
in general with the generating function G defined as:

G(s, t) =

∞∑
n=−∞

sn P(n, t) (12)

The series expansion (12) allows the easy calculation of the
first moment of the random variable n A as:

⟨n A(t)⟩ =

∑
n A

n A P (n A, t) =
∂G(s, t)

∂s

∣∣∣∣
s=1

(13)

where

G (s, t) =

{
ωS

[
s + e−ωt (1 − s)

]
+ ωR

ω

}N

(14)

In our case, ω=ωS +ωR , ωS and ωR being the set (B→A) and
reset (A→B) transition rates, respectively, expressed as [25]:

ωS (V ) = ω0Ssinh
(

V
V0S

)
H(V ) (15)

ωR (V ) = ω0Rsinh
(

−
V

V0R

)
H(−V ) (16)

ω0S , ω0R , V0S and V0R are model constants and H the
Heaviside function. (15) and (16) correspond to transition rates
of vacancies or drift coefficients of metal ions in the oxide
layer. The hyperbolic sine eliminates the problem of a non-zero
transition rate at V = 0. From (13)-(16), the transparency of
the constriction 0≤ ρ ≤1 is defined as:

ρ(t) =
⟨n A(t)⟩

N
=

ωS

ω

[
1 − e−ωt ]

+ ρ0e−ωt , (17)

i.e. the normalized number of conducting particles. ρ0is the
initial condition for ρ(t). Figure 2a illustrates ρ(t) for typical
potentiation (V >0) and depression (V <0) cases as a function
of time and applied voltage. A similar expression can be
written for the non-conducting species but the use of (17) is
more convenient for the sake of clarity.

IV. MEAN-FIELD APPROXIMATION AND MODEL
EQUATIONS

Assuming that the gap size g shrinks as the constriction’s
transparency ρ increases, we make the following ansatz for
the normalized gap length:

g̃(t) =
g (t) − gm

gM − gm
= 1 − ρ(t) (18)

where gm and gM are the minimum and maximum gap lengths,
respectively. From the mean-field theory of master equations
(fluctuations are neglected), (11) and (17) allow establishing
the deterministic differential equation:

dg̃
dt

= −ωS g̃ + ωR (1 − g̃) (19)
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Fig. 2. a) Simulation of the potentiation (V>0) and depression (V<0)
effects in the constriction transparency factor using expression (17).
b) Typical I-V loop and evolution of the normalized gap width corre-
sponding to the RS mechanism obtained from expressions (8) and (19).

Fig. 3. a) Difference in the dissipated power (PD◁ as a function of the
applied voltage during the opening and closing of a quantum channel.
b) Temperature at the gap. c) Equivalent thermal model for the QPC
structure.

which expresses the evolution of the gap width as a function
of time. Notice that the similarity between (11) and (19) is not
a coincidence, since (19) represents the macroscopic (average)
version of (11). However, in some extent, (19) increases the
scope of (17) because the transition rates do not longer need
to be considered constants, i.e. arbitrary voltage signals are
now allowed. This is illustrated in Fig. 2b for the case of
a sinusoidal signal. As can be seeen, the collapse of the
gap is reflected in a notable current increase. The subsequent
formation of the gap at a negative bias generates the reset
transition. In summary, the proposed mesoscopic model for
RS devices is finally expressed by equations (8) and (19).

V. ON THE ASYMMETRY OF POWER DISSIPATION

In this Section, we discuss how power dissipates at the two
ends of the constriction during the switching cycle and the
effect on the gap temperature, Tg . Assuming a quasi-static
approach, power dissipation at the left (L) and right (R) sides
of the constriction can be calculated according to (see Fig. 1a):

PL =
2
h

∫
∞

−∞

(µL − ε) D(ε) { f [ε − µL ] − f [ε − µR]} dε

=
2e

hα2 e−αϕ
[
eαeV/2

− (1 + αeV )e−αeV/2
]

(20)

PR =
2
h

∫
∞

−∞

(ε − µR) D(ε) { f [ε − µL ] − f [ε − µR]} dε

=
2e

hα2 e−αϕ
[
e−αeV/2

− (1 − αeV )eαeV/2
]

(21)

As expected, PS = PR + PL = IV, which corresponds to the
power dissipated in the device. We still assume that the spread
of the Fermi-Dirac functions at the electrodes is negligible and
that we are operating in the tunneling regime [26]. However,
if we focus the attention instead on the difference PD = PR-
PL , we obtain from (20) and (21):

PD =
2e

hα2 e−αϕ
[
(αeV − 2) eαeV/2

+ (αeV + 2) e−αeV/2
]

(22)
As illustrated in Fig. 3a, the formation and destruction of a G0
conductance channel are associated with a strong asymmetry
of the energy release in the device. This occurs because of the
exponential dependence of D on ε and has been the subject
of recent investigations in QPCs [27]. Dissipation is always
higher at the drain electrode (where electrons thermalize). This
indicates that although the electron transport in the constriction
is elastic, a heat current dQL R /dt=Gz(TL -TR) flows across
the gap generating a thermal gradient [28]. TR and TL are
the temperatures at the two sides of the constriction and Gz =

5E-7K/W [29] the thermal conductance in the z direction. The
equivalent thermal circuit (see Fig. 3c) can be expressed as:

PL = G N (TL − T0) + Gz (TL − TR)

PR = −Gz (TL − TR) + G N (TR − T0) (23)
where G N =1.33E-5W/K [29] is the thermal conductance
in the normal direction to the electron flow and T0 =300K
the substrate temperature. From (23), the average temperature
Tg ≈ (TR + TL)/2 = PS /(2G N ) + T0 is computed and
showed in Fig. 3b. This expression demonstrates how the
power dissipated in the device relates to Tg , a well-known
result. Thermal inertia has not been considered here. It is
speculated that for larger currents than those considered in this
canonical case, the generated heat wave facilitates the ion or
vacancy migration in bipolar RS devices as widely suggested
in the literature [30]. In this connection, the Soret effect can
play a role in the movement of the atomic species [31].

VI. CONCLUSION

Observation of quantum effects in the hysteretic conduction
characteristics of RS devices is no longer considered as a
mere artifact. The phenomenon has been reported many times
and it is not associated with a single specific material or
device. It is the consequence of the funneling of the electron
wavefunction when passing through a narrow constriction of
atomic dimensions. In this letter, we revisited the QPC model
for the electron transport in broken down dielectrics and we
linked it to the Stanford-PKU model for RS devices. In this
way, we were able to determine the physical meaning of its
parameters. In addition, we connected this model with the mas-
ter equation describing the formation and destruction of the
gap along the filamentary structure. Finally, we demonstrated
that the opening and closing of a quantum channel generate
a large asymmetry in the spatial distribution of the dissipated
power which can ultimately contribute to the movement of the
atomic species.
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