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High-Temperature Thermal Stability of
a Graphene Hall Effect Sensor on
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Abstract— In this letter, we demonstrate a Hall effect
sensor in the technology of amorphous-Al2O3-passivated
transfer-free p-type hydrogen-intercalated quasi-free-
standing epitaxial Chemical Vapor Deposition graphene
on semi-insulating high-purity on-axis 4H-SiC(0001),
pre-epitaxially modified with 5-keV hydrogen (H+) ions.
The sensor operates between 305 K and 770 K, with a
current-mode sensitivity of ∼75 V/AT and thermal stability
below 0.15 %/K (⩽ 0.03 %/K in a narrower range between
305 K and 700 K). It is a promising two-dimensional
platform for high-temperature magnetic diagnostics and
plasma control systems for modern tokamak fusion
reactors.

Index Terms— Graphene, SiC, hall effect sensor.

I. INTRODUCTION

MAGNETIC field sensors are gaining importance as
novel applications emerge, including high-performance

platforms [1]. Constant progress in nuclear fusion technologies
dictates a road map for high-temperature (HT) magnetic
diagnostics [2], [3] and sensors operating stably in a wide
temperature range, from medium-high (473 K to 623 K) [4],
[5], [6], up to the extreme (above 770 K) [7]. Changes in
the toroidal magnetic field in industry-driven DEMO-class
reactors are about to be monitored with Hall effect sensors
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operating at 473 K (ex-vessel position) and up to 773 K
(in-vessel position). The current-mode sensitivity of HT
devices strictly depends on the sensor active layer material.
Below 673 K, AlGaN/GaN and InAlN/GaN heterostructures
offer < 100 V/AT [6], [7], [8], compound-semiconductor thin
films < 10 V/AT [4], [5], [9], metal and semimetal Hall
sensors (Bi, Sb, Cr, Au, Mo, Ta, Cu) < 1 V/AT [10], [11].
The thermal stability of HT sensors is usually at the level of
0.1 %/K [4], [8], [9], [12].

Earlier, in [12], we reported on the application of hydrogen-
intercalated quasi-free-standing (QFS) epitaxial Chemical
Vapor Deposition (CVD) graphene on semi-insulating (SI)
high-purity (HP) 4H-SiC(0001) in a Hall effect sensor verified
between 300 K and 770 K. We reasoned that its performance
followed the physics of a double-carrier system governed
by holes in the QFS graphene and thermally-activated
electrons in the SiC substrate. To restrict the evolution
of the electron channel, we introduced the technology
of pre-epitaxial modification of the 4H-SiC(0001) surface
with hydrogen (H+) (20 keV and 40 keV) and helium
(He+) (25 keV and 50 keV) ions to intentionally modify
its post-epitaxial defect structure. Applying High-Resolution
Photo-Induced Transient Spectroscopy, we identified 17 defect
levels to prove that the protocol eliminates deep electron
traps related to silicon vacancies in the charge state (2-/-)
occupying the h and k sites of the 4H-SiC lattice, pre-
viously recognized as dominant in the process of thermal
activation [13].

Of the two ions, the H+ served the sensory platform better.
Our final recommendation was to reduce the implantation
energy to a sub-20-keV level in the hope that the sensitivity
and hole mobility curves meet the optimum balance between
the magnitude, linearity, and reproducibility. We reasoned that
lowering the implantation energy would benefit the mobility
curves, but only to the point that the pre-epitaxial modification
brought an advantage.

In this communication, we demonstrate thermal stability and
uniformity of hole concentration and mobility, sheet resistance,
and sensitivity of an optimized Hall effect sensor in the tech-
nology of amorphous-Al2O3-passivated QFS epitaxial CVD
graphene on SI HP 4H-SiC(0001), pre-epitaxially bombarded
with 5-keV hydrogen (H+) ions.
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Fig. 1. (a) Top-view optical image of the individual sensor in
the defect-engineered a-Al2O3/QFS-graphene/4H-SiC(0001) technol-
ogy. (b) Photograph of mounted and wire-bonded sensors.

II. FABRICATION AND METHODS

A. Graphene Epitaxy on Defect-Engineered
4H-SiC(0001)

The Hall effect sensor was produced in the graphene-on-
SiC technology (GET® [14]). The graphene was transfer-free,
p-type, in-situ hydrogen-intercalated [15], QFS, epitaxial CVD
[16], [17], and statistically ∼1.5-layer, within the understand-
ing of the relative intensity of the SiC-related Raman-active A1
mode at 964 cm-1 [18], [19]. It was grown at 1873 K in an Aix-
tron VP508 reactor on a 20-mm × 20-mm sample diced from
a 4-in, 500-µm-thick, semi-insulating, high-purity, nominally
on-axis 4H-SiC(0001) wafer (Wolfspeed Inc.), using thermally
decomposed propane as the carbon-rich gas [20]. Before the
epitaxy of graphene, the as-purchased 4H-SiC(0001) surface
was implanted with a fixed dose of 1 × 1014 cm-2 of
hydrogen (H+) ions, with an energy of 5 keV, using an
apparatus developed by Ionics SA. The expected penetration
depth assessed with the Stopping and Range of Ions in Matter
program (SRIM) was d = 55 nm.

B. Hall Effect Sensor Technology
The sample was processed into a batch of 96 van der

Pauw structures [18]. Each structure was a 1.4-mm × 1.4-mm
four-terminal device [12] featuring an oxygen-plasma-etched,
equal-arm, cross-shaped [21] 100-µm × 300-µm graphene
mesa, Ti/Au (10 nm/110 nm) current feed and voltage read-
out contacts, and a 100-nm-thick, atomic-layer-deposited,
amorphous, non-stoichiometric [22] Al2O3 passivation [23]
synthesized from trimethylaluminum and deionized water
at 770 K in the Picosun R-200 Advanced reactor. The
choice of this specific geometry, rather than of an opti-
mized Hall bar, was justified by the authors’ will to
elucidate the transport properties of the 5-keV H+-modified
a-Al2O3/QFS-graphene/4H-SiC(0001) platform. The sample
underwent dicing, and nine individual sensors were mounted
onto and gold-wire-bonded to in-house-made 6.6-mm ×

6.6-mm 364-µm-thick sapphire holders equipped with four
Ti/Au (10 nm/190 nm) corner contacts. Fig. 1 (a) illustrates
the optical photograph of an individual sensor, while Fig. 1 (b)
mounted sensors.

C. Broad-Temperature Electrical Characterization
The sensors underwent verification under I = 1-mA direct

current bias in an 0.556-T Ecopia AHT55T5 Hall effect

measurement system in a broad temperature range (305 K
to 770 K, with a step of 15 K) and exposure to ambient
atmosphere. Their basic electrical properties, including hole
concentration pS , hole mobility µp, sheet resistance RS , and
current-mode sensitivity SI (Hall coefficient), were measured
and plotted as a function of temperature. The current-mode
sensitivity followed Eq. 1:

SI =
dUHall

d B
/I = 1/(pSe)[V/AT ] (1)

where UHall is Hall voltage, B is magnetic field, I is feed
current, pS is hole concentration, and e is the unit charge.

To graphically visualize the thermal stability of the param-
eters, each measurement point was color-coded for its local
change with temperature, according to Eq. 2:

αT =

∣∣∣∣1P
1T

/P
∣∣∣∣ × 100%[%/K ] (2)

where P stands for either pS , µp, RS , or SI , and T is the
temperature. An absolute value of the normalized change was
chosen, and the scale of αT was equalized for all the transport
parameters so that areas of corresponding stability could be
easily detected.

III. RESULTS AND DISCUSSION

The thermal stability scale was set between 0.0 %/K and
0.2 %/K for all the measured parameters. Its sign was pur-
posefully ignored as the parameters may have opposite thermal
tendencies.

Room-temperature (RT) verification (averaged over the
50000-µm2 area of the cross-shaped QFS graphene mesa)
revealed that the sensors exhibit p-type conductance with the
hole density pS at the level determined by the double polariza-
tion mechanism [22] of the SiC-related positive polarization
[24], quantified by vector P4H

0 = −2.0 × 10-2 C/m2 [25],
and the negative effect of the a-Al2O3 passivation [22], fixing
the pS at approximately +8 × 1012 cm-2. The pS remains in
agreement with the one measured in analogous materials and
device technology but on non-modified 4H-SiC(0001) [12].

RT hole density was verified at ∼8.0-8.7 × 1012 cm-2

(pSmean = 8.4 × 1012 cm-2, standard deviation σp = 0.2 ×

1012 cm-2). The pS has a very stable character throughout the
temperature range, with the αT not exceeding 0.03 %/K at
least up to ∼700 K. Within the 700 - 770 K sub-range, αT
rises but does not exceed 0.15 %/K (Fig. 2).

RT hole mobility was confirmed at 1800 - 2000 cm2/Vs
(µpmean = 1860 cm2/Vs, σµ = 104 cm2/Vs). Its thermal
stability throughout the temperature range is dynamic. Four
conventional sub-ranges are detectable: ∼300 K to ∼400 K
(αT ⩽ 0.11 %/K), ∼400 K to ∼600 K (αT rises to 0.15 %/K),
∼600 K to ∼700 K (αT reaches 0.2 %/K), and ∼700 K to
∼700 K (αT drops to 0.15 %/K) (Fig. 3).

RT sheet resistance was measured at 350 - 450 �/sq
(RSmean = 424 �/sq, σR = 56 �/sq). The thermal stability
of RS is equally as dynamic as the stability of µp, with
four detectable sub-ranges, in qualitative and quantitative
agreement with the previous observation for µp (Fig. 4).

RT current-mode sensitivity was confirmed at 72 - 78 V/AT
(SI mean = 74.4 V/AT, σS = 2.1 V/AT). It follows the stable
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Fig. 2. Hole density profiles as a function of temperature (305 K
to 770 K), measured in the nine Hall effect sensors presented in Fig. 1.

Fig. 3. Hole mobility profiles as a function of temperature (305 K
to 770 K), measured in the nine Hall effect sensors presented in Fig. 1.

Fig. 4. Sheet resistance profiles as a function of temperature (305 K
to 770 K), measured in the nine Hall effect sensors presented in Fig. 1.

character of pS , with the αT not exceeding 0.03 %/K at least
up to ∼700 K (SI mean = 70.6 V/AT, σS = 1.8 V/AT) and rising
but not exceeding 0.15 %/K in the 700 - 770 K (SI mean =

66.1 V/AT, σ = 1.7 V/AT) sub-range (Fig. 5). It is apparent
that the undesirable contribution of the SiC-related electron

Fig. 5. Current-mode sensitivity as a function of temperature (305 K
to 770 K), measured in the nine Hall effect sensors presented in Fig. 1.

channel to the double-carrier conductivity, is suppressed up
to ∼700 K.

At 305 K, the thermal profiles display a percentile spread
around their mean value (σ/mean × 100%) of pS (2.8 %), µp
(5.6 %), RS (13.2 %), and SI (2.8 %). At 770 K, the dispersion
is down to pS (2.6 %), µp (4.7 %), RS (10.4 %), and SI
(2.6 %). This low variation is possible only because direct
epitaxial growth does not require a polymer-assisted transfer
[26]; it is elementally pure and void of substitutional dopants,
and its charge carrier type and density are determined solely
by the SiC-related vector of spontaneous polarization. The
vestigial dispersion is traced to the developed topography of
epitaxial graphene, marked with a fingerprint-like combination
of micrometer-scale terraces and nanometer-scale steps [19],
[27]. It remains an inherent feature of this technology and
the primary source of offset voltage (here, at 305 K: from
∼6 mV to ∼83 mV, with one sensor exhibiting ∼224 mV, and
at 770 K: from ∼10 mV to ∼121 mV, with the one sensor
proving ∼366 mV).

IV. CONCLUSION

The Hall effect sensor fabricated in the technology of
amorphous-Al2O3-passivated QFS epitaxial CVD graphene
on defect-engineered semi-insulating high-purity nominally
on-axis 4H-SiC(0001), pre-epitaxially implanted with 5-keV
hydrogen (H+) ions, operates between 305 K and 770 K
and offers current-mode sensitivity of ∼75 V/AT. Throughout
this temperature range, its hole mobility and sheet resistance
maintain thermal stability αT ⩽ 0.2 %/K, while its hole
density and current-mode sensitivity αT ⩽ 0.15 %/K. In a
narrower range, between 305 K and 700 K, the stability of
the current-mode sensitivity αT ⩽ 0.03 %/K. The sensor is
a promising two-dimensional platform for high-temperature
magnetic diagnostics and plasma control systems for modern
tokamak fusion reactors.
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