
Creative Commons Attribution-NonCommercial (CC BY-NC).
This is an Open Access article distributed under the terms of Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0)

which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided that the original work is properly cited.

344 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 26, NO. 3, JUNE, 2024

Network- and Application-aware Adaptive
Congestion Control Algorithm

Ramyashree Venkatesh Bhat, Jetmir Haxhibeqiri, Ingrid Moerman, and Jeroen Hoebeke

Abstract—More and more traffic is migrating to private
networks in use in various professional environments. With
this, there comes a growing diversity in applications, each of
them requiring different quality of service. This poses challenges
to properly managing such networks, which can span both
wired and wireless segments. To tackle the issue of network
management and application demands in such networks, we
introduce a network- and application-aware adaptive congestion
control algorithm, which provides congestion-free service differ-
entiation to the flows in wireless networks in a decentralized
manner. The designed algorithm operates based on the real-time
network information obtained from in-band network telemetry
and aggregated flow information from intermediate nodes. The
algorithm performs three times better than the existing CUBIC
congestion control algorithm and twice better in a multi-flow
architecture. The designed algorithm is the first step towards
adaptive transport and application layer protocols which are the
future of private professional networks.

Index Terms—APP-NET, congestion control algorithm, con-
nectivity, eBPF, INT, wireless networks.

I. INTRODUCTION

OVER the years, there has been a tremendous increase
in the number of connected devices, more and more of

them becoming part of private networks found for instance
in industrial settings, office environments or other profes-
sional environments. Such networks are also more open to
innovations compared to innovations targeting the scale of
the Internet. The applications running in these networks can
impose quite diverse and stringent requirements that must
be satisfied by the underlying communication infrastructure,
resulting in different traffic types demanding different quality
of services (QoS). When we look at the current state of the
network, applications are confined to choosing QoS offered
by differentiated services (DiffServ) and when the number
of flows in the network increases, say in the range of 100s
and 1000s, achieving fine-grained DiffServ for each flow
becomes harder. To overcome these issues, deterministic1 and

Manuscript received May 23, 2023; revised September 8, 2023; approved
for publication by Lee, SuKyoung, Division 3 Editor, October 31, 2023.

This research was partially funded by the FWO-Flanders under grant agree-
ments #S003921N and #G055619N and by the Flemish Government under
the “Onderzoeksprogramma Artificiële Intelligentie Vlaanderen” program.
This work was also partially supported by the CHIST-ERA grant SAM-
BAS (CHIST-ERA-20-SICT-003), with funding from FWO, ANR, NKFIH,
and UKRI.

The authors are with the Faculty of Engineering and Architecture
Ringgold standard institution, Ghent University, Gent, Belgium,
email: {ramyashreevenkatesh.bhat, jetmir.haxhibeqiri, ingrid.moerman,
jeroen.hoebeke}@ugent.be.

Digital Object Identifier: 10.23919/JCN.2023.000052
1https://datatracker.ietf.org/wg/detnet/about/

time-sensitive2 task groups are aiming to achieve congestion-
free operation through slicing and scheduling by exploiting
the flexibility of programmable data planes. However, such
systems can only accommodate a limited number of slices and
schedules, leading to little flexibility and more complications
in networks where multiple flows of different priorities coexist.
As a result, when several flows with lower priority get assigned
to the same slice, it might eventually result in congestion
in the network or into a common treatment of flows with
diverse needs. Therefore, there is a need to complement such
mechanisms with decentralized approaches, able to adapt to
the growing network traffic, at the same time taking into
account the priorities of emerging applications and achieving
congestion-free differentiation of services. The transmission
control protocol (TCP), is an example of such a decentralized
approach offering connection-oriented, reliable, and error-free
data transfer. However, as it only has an end-to-end view of the
network, it is only partially able to achieve the aforementioned
goals.

A recent development in networking, application-
network (APP-NET) integration, has enabled applications
to specify their traffic and monitoring requirements to
the network layer [3]. This provides a possibility to
involve applications in impacting network management by
acknowledging its requirements to the network layer. Another
recent innovation is continuous in-band monitoring and
verification technique called in-band network telemetry (INT).
INT is capable of collecting node characteristics along with
wireless link information in real-time which can be accessed
by the application layer [4]. Previously in [5], we have
used INT and APP-NET to modify the existing CUBIC
congestion control algorithm for wireless networks. The
obtained results indicate that utilizing INT information can
greatly improve the overall performance of the congestion
control algorithm. Therefore, in this study, we address
the problem of congestion and differentiation of services
by designing a rule-based network- and application-aware
adaptive congestion control algorithm (NACC). This will be a
stepping stone in designing adaptive transport and application
layer protocols, that more optimally make use of the available
network resources and are in line with their needs.

The key research contributions of this study are as follows:

1) Design of a rule-based NACC, that operates based on
real-time network context and aggregated flow informa-
tion to achieve congestion free differentiation in services

2https://1.ieee802.org/tsn/

1229-2370/23/$10.00 © 2023 KICS

BHAT et al.: NETWORK- AND APPLICATION-AWARE ADAPTIVE CONGESTION ... 345

APPLICATION

TRANSPORT

DATA LINK

PHYSICAL

…

END

DEVICE

APP-REQ

in JSON

CAPACITY info

in JSON

Network- and application-aware

congestion control algorithm

INT +

data

APP-REQ

received from

application

Extract CAPACITY

and INT

NETWORK

Application

Network AgentCWND

CAPACITY encapsulation in IPv6 header

Flow Req Priority CAPACITY

Flow 1 50 4 0.714

Flow 2 40 2 0.286

Monitoring parameters

through INT

Fig. 1. Network architecture overview.

in private professional networks that support in-band
telemetry and feedback.

2) Performance evaluation of the designed algorithm in
comparison with the existing CUBIC congestion control
algorithm in terms of stability, throughput, fairness and
application priorities.

The rest of the paper is structured as follows, Section II
discusses the related works in the area of transport protocols.
Section III discusses the goals and Section IV provides the
network architecture overview. Section V describes the design
and implementation of network-aware congestion control algo-
rithm. The design and implementation of NACC is elaborated
in Section VI. Section VII presents the results and discus-
sions of the performance evaluation of NACC. Section VIII
concludes the article with insights on future works.

II. RELATED WORK

Over the years there has been several works to im-
prove mechanisms of transport layer protocol. The Accurate-
ECN [10] is designed as an enhancement to explicit congestion
notification (ECN) by utilizing INT for wired networks. The
authors do not yet utilize the monitoring information to decide
the data transfer rate nor take into account the challenges of
wireless networks. The authors of [11] have designed a multi
objective congestion control algorithm that adapts itself to
different application requirements and corresponding optimal
control policies. The congestion control algorithm designed
in this work is a reinforcement learning based algorithm
which is capable of transferring its knowledge from past

experience to new applications and doesn’t take into account
the real-time network state information. A queuing delay
variation-based adaptive congestion control algorithm has been
designed by the authors of [12]. The algorithm obtains an
optimal congestion window size based on cross-layer-based
initialization method, adapts to the network conditions to
reduce packet losses and retransmissions and tries to achieve
equal fairness among different flows. Other systems such
as BANQUET [8] adjust the bitrate by predicting the QoE
and traffic volume based on future throughput and a buffer
transition calculation but is mainly intended for multimedia
applications. Google’s QUIC aims to provide low-latency data
transfer to online applications [2]. The spin bit feature of
QUIC enables latency monitoring, which is rather reactive than
proactive with a partial network view. Sextant is a system
that has been designed to enable network-aware application
optimization in carrier networks [6]. This approach does not
yet consider the congestion and detailed QoS specific to each
application. Also, authors in [7] have designed adaptive packet
transmission techniques as a response to an abnormality in the
software-defined smart meters. The PANAPI system is being
designed to provide an API for applications to choose from
the available network paths in a path-aware environment [9].
The main disadvantage of this system is the requirement for
a network back-end database with information about assessed
path qualities. The literature mentioned in this section either
utilizes partial network information in the congestion control
algorithms or operates in a centralized network architecture,
hence requiring more computational power. These works do
not yet take into account the issue of providing differentiated

346 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 26, NO. 3, JUNE, 2024

services to the applications based on their requirements nor
address the issue of congestion control in wireless networks at
the same time. Only one or two of these issues are considered
in each work. The designed algorithm NACC addresses the
issue of congestion-free service and service differentiation in
wired-wireless network architecture. NACC utilizes real-time
network information to provide congestion-free data transfer
and achieves the fulfillment of QoS requirements based on ap-
plication requirements in a decentralized network architecture.

III. GOALS

To achieve congestion-free differentiation of services,
we have considered certain goals in designing NACC. The
NACC should not wait until the packet loss to take an action,
it has to be proactive. The algorithm should quickly reach
the maximum possible data transfer rate and fully utilize the
available bandwidth. The algorithm should maintain a stable
data transfer rate, achieving better throughput. The algorithm
should be able to differentiate the packet losses due to
congestion and poor quality of the network. The algorithm
should differentiate the data transfer rate among different
flows based on the application priorities unless achieving
fairness in case of the same priorities.

IV. NETWORK ARCHITECTURE AND ENABLERS

To realize the above mentioned goals, we need the network
architecture that provides continuous monitoring data, appli-
cation network interaction and a framework to reconfigure
the congestion control algorithm. These three frameworks are
indicated in the Fig. 1 as (a), (b), and (c) and explained in this
section.

A. Monitoring Parameters Through INT

To achieve stable data transfer rate and differentiate the
packet losses it is necessary to continuously receive the
real time network data. Hence we use INT which has been
extended to wireless networks by designing new INT-enabled
node architecture and logic to process INT-enabled pack-
ets for WiFi-based networks [4]. This design is capable of
collecting node characteristics such as queue information,
processing delay, and Tx/Rx timestamping values, along with
wireless link information (such as data rate, received signal
strength (RSSI), signal to noise ratio (SNR), the channel used,
etc.) and end-to-end flow characteristics (flow latency, flow
jitter and flow packet loss ratio) (Fig. 1). The INT information
is encapsulated in IPv6 extension header34 and is received as
a feedback at the source node. Hence it is a low overhead,
continuous network monitoring technique which provides real-
time network context to reconfigure the data transfer rate.

3https://p4.org/p4-spec/docs/INT_v2_1.pdf
4https://tools.ietf.org/html/draft-ietf-ippm-ioam-data-04#section-4

B. Framework for Application and Network Interaction

To achieve our goals the NACC needs to understand the
application requirements as well as real time network data
obtained from INT. Hence we use the APP-NET framework
designed in [3], in which the application’s data plane and
control plane are integrated through an application network
agent (ANA) which lies between the application and the
network stack (Fig. 1). This design has a network and system-
independent APP-ANA interface and a network stack-specific
ANA-NET interface. This framework is capable of pass-
ing application requirements (APP-REQ) such as application
identifiers (device ID, application ID, and node ID) and
application properties (traffic types, payload size, periodicity,
priority (PRIORITY), and network paths), at the same time
passing monitored performance of the traffic flow as well as
monitoring feedback from the other end node from the network
layer to the application. The framework also provides the
possibility to further extend the interface to the transport layer
through transport adapter resulting in application-transport-
network layer interaction. The APP-REQ is modeled as a
JSON data structure and is encapsulated in the IPv6 extension
header. This information is sent as INT from the source to the
destination during the connection initiation i.e., in the SYN
packet.

C. Reconfigurability of Congestion Control Algorithms

In order to design NACC, we use congestion control
plane (CCP) API [13] which provides a framework to recon-
figure the congestion control algorithms. It allows us to write
congestion control algorithms in the Python programming
language and run them in any environment.

V. NETWORK-AWARENESS: DESIGN AND
IMPLEMENTATION

A. Relevant Monitoring Parameters

Before designing the congestion control algorithm based
on INT, it is important to revisit the relationship between
different parameters obtained from INT and the congestion
window size (CWND) of TCP [5]. In existing congestion
control algorithms, with the increase of the CWND, the buffer
queue and the load at the interface of the intermediate device
increases as well. With the increase in the number of flows
in the network the congestion is increased too. The lower the
data rate of the link, the lesser the amount of data that can be
sent through the network. The quality of link is also partially
indicated by the round trip time of the packets. The existing
TCP congestion control algorithms cannot differentiate be-
tween the packet loss due to the actual network congestion
and poor wireless connection, hence every packet loss due
to the poor quality of the network also affects the CWND.
Therefore, of the different parameters collected through INT,
available queue capacity (Q), load at the interface (data arrival
rate, A), flow count (FC), wireless packet loss (W_PL), and
varying wireless link data rate (DR) are the ones that directly
affect the congestion in a network and thus CWND is related to
these parameters. The designed congestion control algorithm

BHAT et al.: NETWORK- AND APPLICATION-AWARE ADAPTIVE CONGESTION ... 347

TABLE I
SUMMARY OF ABBREVIATIONS, THEIR MEANINGS, AND UNITS.

Abbreviation Meaning Unit Source

CWND Congestion window size packets calculated

Q Available queue capacity packets/second INT

A Data arrival rate bits/second INT

FC No. of flows passing through the network node no. of flows INT

W_PL Packet loss due to the quality of wireless medium packets INT

DR Data rate of the link Mbps INT

RTT Round trip time second kernel

MSS Maximum segment size bytes kernel

CWND_L CWND does not go below this lower bound packets calculated

CWND_UP CWND does not exceed this upper bound packets packets

A_UP Data arrival rate does not exceed this upper bound bits/second calculated

B_CWND CWND of previous data transfer packets calculated

A_DIFF Rate of increase in the load at the network node percentage calculated

PRIORITY Required application priority - APP_REQ

MAX_PRIORITY Total no. of available priority levels - APP_REQ

CAPACITY Percentage of DR available for data transfer percentage INT

gets real-time updates on these parameters. Suppose there are
several intermediate nodes in the network, then the bottleneck
value of these parameters is considered.

B. Design of Network-aware Congestion Control Algorithm

While sending the SYN packet, the CWND is set to the
same value as ssthresh in conventional congestion control
algorithms of TCP. After receiving the first SYN-ACK packet,
the initialization phase of the designed algorithm will set the
CWND’s lower (CWND_L) and upper bounds (CWND_UP)
and data arrival rate upper bound (A_UP) as per the (1), (2),
and (3), respectively. The value of CWND_L is equal to the
ssthresh. A_UP is the upper bound above which the data ar-
rival rate at the intermediate node does not exceed. The A_UP
is set to 16% of DR. This 16% is obtained by considering the
percentage of DR that is utilized for data transfer (25%)5,
overhead added by the lower layers (5%) (gives 20% of DR),
and a margin of 20% from 0.2·DR (in case a new flow
wants to initiate a connection). CWND_UP being the upper
bound of CWND is calculated using 16% of DR (16% is
the combined overhead by lower layers and 20% margin as
mentioned previously), round trip time (RTT), and maximum
segment size (MSS) (MSS is multiplied by 8 to convert bytes
to bits) of the packets. The upper bounds are updated with
changing link DR and RTT obtained from INT in real time.

5https://www.itweb.co.za/content/o1Jr5qx96jDvKdWL

The DR with overhead indicates the amount of bandwidth
available for data transfer, hence the AR at the intermediate
node cannot exceed this value, at the same time, the data sent
by the source should be kept below this DR with overhead to
avoid congestion.

𝐶𝑊𝑁𝐷_𝐿 = 10 (1)

𝐶𝑊𝑁𝐷_𝑈𝑃 = 𝐶𝑊𝑁𝐷_𝐿 + (𝐷𝑅 · 0.16) · 𝑅𝑇𝑇
8 · 𝑀𝑆𝑆

(2)

𝐴_𝑈𝑃 = 𝐷𝑅 · 0.16 (3)

Generally, congestion control algorithms have different
phases such as slow start, congestion avoidance, fast recov-
ery, and fast retransmit. As mentioned in Section III, our
aim is to fully utilize the available capacity and reach a
threshold that will sustain the data transfer rate and achieve
better throughput. Our algorithm has two main states, one on
receiving an acknowledgment (or selective acknowledgment)
notification (ON_ACK) and the second on detecting a packet
loss (ON_LOSS). Everytime the algorithm receives one of
these notifications, it reads the real-time DR data from INT
and sets CWND_UP and A_UP.

ON_ACK, the algorithm first checks the FC feed-
back (FC_UPDATE) obtained from INT. If the num-
ber of flows in the network changes, then the previous

348 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 26, NO. 3, JUNE, 2024

Fig. 2. Flowchart of network-aware congestion control algorithm.

CWND (B_CWND) is reduced by the percentage of FC and
A_DIFF (4). A_DIFF is the rate of increase in the load at the
intermediate node. Once the B_CWND is set based on FC,
the algorithm will compare its value with various thresholds.
Starting with CWND_L, if the B_CWND is lower than this
threshold, then the CWND is aggressively increased until it
exceeds CWND_L (6). Then the B_CWND is compared with
CWND_UP and if B_CWND is greater than CWND_UP,
then the CWND is the same as the CWND_UP. If not, then
the current A is compared with the A_UP. If A is greater
than A_UP, it means that the load on intermediate nodes is
more than the available DR, hence the CWND is decreased
by 10% (justified in the next paragraph) (5). If not, then
CWND is increased proportionally to the Q, A, and 1/RTT (6),
thus achieveing stable CWND. Once the maximum possible
CWND for the specific flow under given network is achieved,
the algorithm is designed to maintain the same CWND (or at
least vary in a small window size) throughout the data transfer.

𝐵_𝐶𝑊𝑁𝐷 = 𝐶𝑊𝑁𝐷 · (1 − 𝐹𝐶% − 𝐴_𝐷𝐼𝐹𝐹%) (4)

𝐶𝑊𝑁𝐷 = 𝐵_𝐶𝑊𝑁𝐷 · 0.9 (5)

𝐶𝑊𝑁𝐷 = 𝐵_𝐶𝑊𝑁𝐷 + 𝑄

𝐴 · 8 · 𝑀𝑆𝑆
(6)

ON_LOSS, the algorithm checks if the loss is due to the
poor quality of the wireless network or due to congestion.

If the loss is due to the poor quality of the network, then
the CWND is kept constant since it has better performance
than reducing the CWND [5]. The conventional congestion
control algorithm reduces the CWND by 30% on packet loss
irrespective of the reason for the packet loss. We reduced
CWND by 30%, 20%, 10%, and 5% on packet loss and tested
it in a network with congestion. The overall data throughput
was better when the CWND was reduced by 10%, hence both
CWND and CWND_UP are reduced by 10% when the packet
loss is due to congestion (7).

𝐶𝑊𝑁𝐷 = 𝐵_𝐶𝑊𝑁𝐷 · 0.9 (7)

In case of TCP connection timeout, the algorithm enters the
ON_RESET function, which is the same state as when a new
connection starts, i.e., by sending the SYN packet. Then, the
CWND is set to the value of 10, which is equal to ssthresh in
conventional congestion algorithms. If the SYN-ACK packet is
received, the algorithm enters the initialization phase where the
values of CWND_L, CWND_UP, and A_UP are re-initialized
as per the (1), (2), and (3), respectively.

The above explained algorithm is indicated as a flow
chart/algorithm in Fig. 2.

The designed network-aware congestion control algorithm
uses real-time monitoring information obtained from INT [4]
The design was implemented in Python 3.7 programming
language using CCP [13].

1 {
2 "app-ctrl:cc":{

BHAT et al.: NETWORK- AND APPLICATION-AWARE ADAPTIVE CONGESTION ... 349

Fig. 3. Flowchart of network- and application-aware congestion control algorithm.

3 "identifiers":{
4 "calculated_capacity":0.5,
5 "ns-id":3456,
6 "payload_size_bytes":50,
7 "period_ms":20
8 },
9

10 "network-paths":[
11 {
12 "dst-ip":"cccc::2",
13 "dst-port":5201,
14 "src-ip":"aaaa::2",
15 "src-port":"52296"
16 }
17]
18 }
19 }

VI. APPLICATION AWARENESS IN NETWORK-AWARE
CONGESTION CONTROL ALGORITHM

Given a network with one flow, the application can fully uti-
lize the available bandwidth for data transfer. When there are
several other flows in the network, the conventional congestion
control algorithm of TCP tries to achieve fairness between the
flows irrespective of their priority and traffic needs. We aim
to design an algorithm that provides fairness based on APP-
REQ of the flows [Section III]. This section elaborates on
how we achieve application awareness in the network-aware
congestion control algorithm.

A. APP-REQ Processing in Intermediate Nodes: Data Encap-
sulation and Extraction

As explained in Section IV-B, APP-REQ is sent as INT from
the source to the destination during the connection initiation

i.e., in the SYN packet. The intermediate nodes decapsulate
this APP-REQ and store the flow information along with its
traffic properties. The application identifiers help to differen-
tiate between different flows of different applications from
the same node. The intermediate nodes calculate the available
capacity (percentage of data rate available for data transfer) to
this flow. Whenever the node receives a packet destined to the
source node (for a new flow it is SYN-ACK), it embeds the
calculated capacity (CAPACITY) information in the units of
percentage (in decimal format) (as calculated in (8)) in JSON
format along with the application identification as shown in the
Listing V-B. Equation 8 calculates the capacity, CAPACITY_r
of flow r with payloadr, periodr and priority pr requirements
and n flows in the node. This data structure is encapsulated
in the IPv6 extension header [Fig. 1] and the source node can
extract the CAPACITY information from the INT packet.

𝐶𝐴𝑃𝐴𝐶𝐼𝑇𝑌𝑟 =

𝑝𝑟 ·
(
𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑟

𝑝𝑒𝑟𝑖𝑜𝑑𝑟

)
𝑝1 ·

(
𝑝𝑎𝑦𝑙𝑜𝑎𝑑1
𝑝𝑒𝑟𝑖𝑜𝑑1

)
+ · · · + 𝑝𝑛 ·

(
𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑛

𝑝𝑒𝑟𝑖𝑜𝑑𝑛

)
(8)

Suppose multiple flows are already passing through an in-
termediate node, whenever a new flow initiates the connection,
the intermediate then distributes the available capacity among
different flows (8) and updates the capacity information of
other existing flows along with the new flow. The node then
waits for the packets that are destined for source nodes (in-
cluding the packets for nodes with previously existing flows)
and notifies all the source nodes whose flows pass through
the intermediate node with the updated capacity allocation.
By sharing just the capacity allocation information, the inter-
mediate node does not give out the application identification
of other flows in the network and thus protects the privacy of
the network.

350 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 26, NO. 3, JUNE, 2024

Fig. 4. Network emulated in Mininet-
wifi, with black box implementation.

Fig. 5. Network emulated in Mininet-
wifi, with an access point and two end
devices.

Fig. 6. Multi-flow wireless network setup in IDLab Testbed.

The designed NACC (explained in Section VI-B) utilizes
this updated capacity information to modify the data transfer
rate and adapt to other flows in the network.

B. Making the Network-aware Congestion Control Algorithm
Application-aware

The network-aware congestion control algorithm is still not
aware of the APP-REQ and uses only the real-time network
context. With APP-REQ processing in the intermediate nodes,
the source nodes now have distributed knowledge of other
flows in the network and its calculated capacity. We will make
a few modifications to the network-aware congestion control
algorithm mentioned in Section V and make it application-
aware as well.

No FC monitoring: The intermediate node itself takes into
account the other flows in the network and distributes the
capacity accordingly. Therefore, the source node does not have
to consider FC, and B_CWND is not set based on FC.

Modified CWND bounds: The CWND_L guarantees the
minimum number of packets sent and CWND_UP limits the
maximum number of packets sent. Therefore, to provide a
guaranteed service to an application, the PRIORITY of the
application is used to set the CWND_L (9). To maintain
fairness among different flows, the application should not
exceed its data transfer rate above the CAPACITY, hence
the CAPACITY is used to set the CWND_UP (10). The
CWND_UP is calculated using 16% of DR (16% is the com-
bined overhead by lower layers and 20% margin as mentioned
previously), RTT, and MSS (MSS is multiplied by 8 to convert
bytes to bits), along with the CAPACITY_r obtained from
the intermediate node, which acts as an upper threshold and
takes into account the percentage of DR available for the node.

The CWND_L and CWND_UP of application- and network-
aware congestion control algorithm are directly proportional
to PRIORITY and CAPACITY, respectively.

𝐶𝑊𝑁𝐷_𝐿 = 10·𝑃𝑅𝐼𝑂𝑅𝐼𝑇𝑌𝑟 (9)

𝐶𝑊𝑁𝐷_𝑈𝑃 = 𝐶𝑊𝑁𝐷_𝐿 + 𝐶𝐴𝑃𝐴𝐶𝐼𝑇𝑌𝑟 ·(𝐷𝑅·0.16)·𝑅𝑇𝑇
8·𝑀𝑆𝑆

(10)
Partiality among the flows: The applications with higher

PRIORITY are given more preference as compared to the
lower PRIORITY ones. Hence the algorithm is designed
to increase the CWND aggressively for a flow with higher
PRIORITY. Similarly in the presence of a higher PRIORITY
application, the algorithm is designed to decrease the CWND
aggressively for a flow with lower PRIORITY. This is achieved
by modifying the increase rate of CWND and making it
proportional to PRIORITY along with Q and A (11) and
modifying the decrease rate of CWND on packet loss and
making it inversely proportional to PRIORITY (12).

These simple modifications to the network-aware congestion
control algorithm make the algorithm application-aware. In
this article, we have designed a NACC with the option to
switch to only a network-aware congestion control algorithm.
Though we utilize the real-time network parameters and APP-
REQ of other flows in the network, there are still certain
parameters that are not accessible to the transport layer and can
result in packet loss. Hence we have designed the algorithm
such that it takes into account these packet losses and still
maintains a stable data transfer. The APP-REQ processing in
intermediate nodes is implemented using the Click modular

BHAT et al.: NETWORK- AND APPLICATION-AWARE ADAPTIVE CONGESTION ... 351

Fig. 7. Responsiveness of CWND of NACC to data arrival rate. Fig. 8. Responsiveness of CWND of NACC to available queue capacity.

Fig. 9. Responsiveness of CWND of NACC to data rate of the wireless
channel.

router framework6. The modifications in the congestion control
algorithm are made in the previous implementation of the
network-aware congestion control algorithm using CCP.

𝐶𝑊𝑁𝐷 = 𝐵_𝐶𝑊𝑁𝐷 + 𝑃𝑅𝐼𝑂𝑅𝐼𝑇𝑌𝑟 ·𝑄
𝐴·8·𝑀𝑆𝑆

(11)

𝐶𝑊𝑁𝐷 =𝐵_𝐶𝑊𝑁𝐷· (1 − 0.1 (12)
×(𝑀𝐴𝑋_𝑃𝑅𝐼𝑂𝑅𝐼𝑇𝑌 − 𝑃𝑅𝐼𝑂𝑅𝐼𝑇𝑌𝑟)) (13)

VII. RESULTS AND DISCUSSION

A. Responsiveness of the NACC

As discussed in Section V-A, key parameters such as Q,
A, FC, and DR, have a direct impact on the congestion.

6https://github.com/kohler/click

Fig. 10. Responsiveness of CWND of NACC to number of flows in the
network.

The increase or decrease in any of these parameters should
trigger a positive or negative change in the behavior of the
NACC. Hence we tested the impact of these parameters on
the designed congestion control algorithm. A network with
two end devices and a black box was set up in Mininet-wifi7

to test the responsiveness of the designed algorithm (Fig. 4).
The black box was implemented using the Click modular
router, to encapsulate dummy network parameters in INT. The
responsiveness was tested for changes in Q, A, FC, and DR
of the network.

With a sudden increase in A in Fig. 7, the congestion
control algorithm drastically reduces the CWND, thus the
data transfer rate adapts to the increase in the load. Similarly,
when the available queue capacity at the access point suddenly
decreases in Fig. 8, the CWND also decreases. When the
value of the DR at the access point decreases as shown in
Fig. 9, the CWND_UP is reset according to this change and

7https://mn-wifi.readthedocs.io/en/latest/

352 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 26, NO. 3, JUNE, 2024

Fig. 11. Throughput comparison of CUBIC and NACC.

Fig. 12. CWND over time of CUBIC and NACC.

thus the designed algorithm also reduces the data transfer rate
by lowering CWND. Also when the number of flows in the
network increases, the congestion control algorithm is notified
by INT through FC, and thus the algorithm reduces the CWND
as shown in Fig. 10. Therefore we can conclude that the
designed congestion control algorithm is highly responsive to
the changes in the network.

B. Benchmarking Against the CUBIC Congestion Control
Algorithm

The authors in [14] and [15], have proven the CUBIC
congestion control algorithm to be better than other congestion
control algorithms like TCP Tahoe, TCP Reno, including
binary increase congestion control (BIC-TCP) based on which
the CUBIC algorithm was built. The CUBIC algorithm has
been used in Linux kernels since version 2.6 [16]. Hence we
have benchmarked the designed NACC algorithm against the
CUBIC congestion control algorithm. The performance was
compared in terms of throughput, stability of the CWND and
A, and progression of the CWND over time. The tests were

Fig. 13. Frequency distribution of CWND of CUBIC and NACC.

Fig. 14. Frequency distribution of load at the intermediate node generated
by CUBIC and NACC.

performed on a network emulated in Mininet-wifi with two
end devices and an access point as show in Fig. 5.

Fig. 11 indicates that the throughput of the designed con-
gestion control algorithm is better than the CUBIC. Especially
with the increase in the load (bytes sent), the throughput
of the designed congestion control algorithm is almost three
times better than the CUBIC. On starting the data transfer,
the designed congestion control algorithm tries to achieve a
stable CWND as soon as possible. It also tries to maintain the
same CWND (or at least vary in a small window) until all the
data is transferred. The designed congestion control algorithm
reaches the maximum possible CWND for the given network
before the CUBIC algorithm as indicated by the green line in
Fig. 12. From the frequency distribution Fig. 13, we see that
the CWND of CUBIC is highly variable whereas the CWND
of the designed congestion control algorithm is more stable
and tries to maintain the same value. The impact of this can
be seen on the frequency distribution of A in Fig. 14.

BHAT et al.: NETWORK- AND APPLICATION-AWARE ADAPTIVE CONGESTION ... 353

Fig. 15. Throughput comparison of CUBIC and NACC for flow 1 and 2 with
priorities 4 and 2, respectively.

Fig. 16. Throughput comparison of CUBIC and NACC for flow 1, 2, and 3
with priorities 2, 4 and 1, respectively.

C. Bandwidth Fairness Based on Application Requirements

The designed NACC distributes the capacity based on the
APP-REQ as opposed to the CUBIC which achieves equal
fairness irrespective of the application priorities. Therefore, the
performance of the designed congestion control algorithm was
evaluated in a multi-flow wireless network in IDLab testbed8.
The testbed setup consisted of two access points connected
by a wired connection and six end devices, a set of three
connected to an access point wirelessly as shown in Fig. 6.

For the purpose of evaluation, the application could specify
priority levels between 4 to 1, 4 being the highest and 1 being
the lowest priority (Listing V-B). The throughput of two flows
with different priorities (flow 1 with priority 4 and flow 2
with priority 2) was measured for CUBIC and the designed
congestion control algorithm is plotted in Fig. 15. From the
plot, it can be seen that the throughput of flow 1 is the same

8https://doc.ilabt.imec.be/ilabt/wilab/

Fig. 17. CWND over time of NACC for flow 1 and 2.

Fig. 18. CWND over time of NACC for flow 1, 2, and 3.

as flow 2 for CUBIC, whereas, it is greater than flow 2 when
the NACC is used. The overall throughput achieved by the
new algorithm is twice the throughput achieved by CUBIC.
The designed congestion control algorithm sets the CWND_L
and CWND_UP based on the APP-REQ, hence when the
second flow starts, the access point notifies the first flow of
the new capacity distribution, and the CWND bounds are
reset. Therefore flow 1 reduces its CWND, but there is still a
marginal gap between the CWND of the two flows as shown
in Fig. 17. This achieves differentiated service based on the
priorities of the flows. Similarly, the algorithm was tested for
three flows with different priorities (flow 1 with priority 2,
flow 2 with priority 4, and flow 3 with priority 1) and the
throughput was measured. The results in Fig. 16 indicate that
on average the overall throughput of the NACC algorithm is
twice the throughput of CUBIC. We can see the difference
in the throughput of each flow based on their priority which
is also reflected in the differences of the CWND of the three
flows in Fig. 18. We can observe that flow 2 and flow 1 have
a priority difference of two, hence a larger gap in CWND as

354 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 26, NO. 3, JUNE, 2024

compared to flow 1 and flow 3 with a priority difference of
only one.

VIII. CONCLUSION AND FUTURE WORK

Recent innovations like INT and APP-NET integration have
enabled the possibility of applications being aware of the
real-time network context and network being aware of APP-
REQ. Utilizing these features, we have designed a rule-based
network- and application-aware adaptive congestion control
algorithm, which operates based on the real-time network
context and distributed knowledge on aggregated flow in-
formation. The algorithm takes into account the APP-REQ,
and its priorities and achieves service differentiation among
different flows in a multi-flow network architecture. It provides
a congestion free data transfer service in a wireless distributed
network architecture. The performance of the designed al-
gorithm was evaluated by benchmarking with the CUBIC
congestion control algorithm. The designed algorithm achieved
three times more throughput than the CUBIC when 50 MB of
data was sent. The designed algorithm distributed the capacity
among different flows based on their priority and achieved a
throughput that is twice as CUBIC in a multi-flow wireless
network.

With several diverse applications with different priorities
being introduced everyday, the designed congestion control
algorithm is capable of addressing these requirements and
achieving differentiation based on their priorities in a multi-
flow distributed network. It paves the way for an adaptive
transport and application layer protocol for private professional
networks and can complement more centralized scheduling
mechanisms. As a next step, we will look into adapting other
mechanisms of a transport layer protocol and in better taking
the dynamics of wireless settings into account. We will also
look into designing adaptive application layer protocol for
private professional networks.

REFERENCES

[1] Cisco. “Cisco annual Internet report (2018–2023) white paper." 2020.
[Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/
executive-perspectives/annual-internet-report/white-paper-c11-741490.
html

[2] A. Langley et al., “The quic transport protocol: Design and internet-scale
deployment," in Proc. ACM SIGCOMM, 2017.

[3] J. Haxhibeqiri, A. Seferagic, R. V. Bhat, I. Moerman, and J. Hoebeke,
“Tighter application-network interfacing to drive innovation in networked
systems," in Proc. ACM SIGCOMM, 2021.

[4] J. Haxhibeqiri, P. H. Isolani, J. M. Marquez-Barja, I. Moerman, and J.
Hoebeke, “In-band network monitoring technique to support SDN-based
wireless networks," IEEE Trans. Netw. Serv. Manag., vol. 18, no. 1, Mar.
2021.

[5] R. V. Bhat, J. Haxhibeqiri, I. Moerman, and J. Hoebeke, “Adaptive
transport layer protocols using in-band network telemetry and eBPF,"
in Proc. IEEE WiMob, 2021.

[6] J. Zhang et al., “Sextant: Enabling automated network-aware application
optimization in carrier networks," in Proc. IFIP/IEEE IM, 2021.

[7] M. Maris, T. Halpin, D. Ezeh, K. Miu, and J. de Oliveira, “Adaptive
packet transmission in response to anomaly detection in software defined
smart meter networks," 2021, arXiv:2112.04602.

[8] T. Kimura, T. Kimura, A. Matsumoto, and K. Yamagishi, “Balancing
quality of experience and traffic volume in adaptive bitrate streaming,"
IEEE Access, vol 9, pp. 15530–15547, Jan. 2021.

[9] T. Krüger, D. Hausheer, “Towards an API for the path-aware Internet,"
in Proc. ACM SIGCOMM, 2021.

[10] J. Liu, S. Lu, and Q. Yang, “Accurate-ECN: An ECN enhancement with
inband network telemetry," in Proc. IEEE LCN, 2022.

[11] Y. Ma et al., “ Multi-objective congestion control," in Proc. ACM
EuroSys, 2022.

[12] L. P. Verma, V. K. Sharma, M. Kumar, and D. Kanellopoulos, “A novel
delay-based adaptive congestion control TCP variant," Comput. Electr.
Eng., vol. 101, Jul. 2022.

[13] A. Narayan et al., “Restructuring endpoint congestion control," in Proc.
ACM SIGCOMM, 2018.

[14] S. Ha, I. Rhee, and L. Xu, “CUBIC: A new TCP-friendly high-speed
TCP variant," ACM Oper. Syst. Rev., vol. 42, no. 5, pp. 64–74, Jul. 2008.

[15] T. Kozu, Y. Akiyama, and S. Yamaguchi, “Improving RTT fairness on
CUBIC TCP," in Proc. IEEE CANDAR, 2013.

[16] L. Xu et al. “Cubic for fast long-distance networks," Internet Eng. Task
Force, Fremont, CA, USA, RFC 8312, 2018.

Ramyashree Venkatesh Bhat received her
M.Sc. (2020) and B.E. (2017) degrees in
Communication Systems from Technical University
of Munich, Munich, Germany and Electronics and
Communications Engineering from PES Institute
of Technology (now PES University), Bengaluru,
India respectively. She is currently pursuing her
Ph.D. degree in Engineering Computer Science
from Ghent University, Ghent, Belgium.

Jetmir Haxhibeqiri received the Master’s degree
in Engineering, Information Technology, and Com-
puter Engineering from RWTH Aachen University,
Aachen, Germany, in 2013, and the Ph.D. degree
in Engineering Computer Science from Ghent Uni-
versity, Ghent, Belgium, in 2019. He is currently a
Senior Researcher with the Internet Technology and
Data Science Lab, Ghent University and IMEC, Leu-
ven, Belgium. His research interests include wireless
communications technologies (IEEE 802.11, IEEE
802.15.4e, LoRa) and their application, IoT, wireless

time-sensitive networking, in-band network monitoring, and wireless network
management.

Ingrid Moerman received a degree in Electrical
engineering in 1987, and a Ph.D. degree from
Ghent University in 1992, where she became a part-
time Professor in 2000. She is a Staff Member
with IDLab, Core Research Group, imec with re-
search activities embedded with Ghent University
and the University of Antwerp. Her main research
interests include cooperative and intelligent radio
networks, real- time software-defined radio, time-
sensitive networks, dynamic spectrum sharing, co-
existence across heterogeneous wireless networks,

vehicular networks, open-source prototyping platforms, software tools for
programmable networks, next-generation wireless networks (5G/6G), and
experimentally supported the research.

BHAT et al.: NETWORK- AND APPLICATION-AWARE ADAPTIVE CONGESTION ... 355

Jeroen Hoebeke is an Associate Professor in the
Internet Technology and Data Science Lab of Ghent
University and imec. He is conducting and co-
ordinating research on wireless (IoT) connectiv-
ity, embedded communication stacks, determinis-
tic wireless communication and wireless network
management. This expertise has been applied in
a variety of application domains such as logistics,
Industry 4.0, building automation, healthcare and an-
imal monitoring. He is particularly active in national
funded projects as well as in defining, executing and

managing such projects. He has also been involved in several EU research
funded projects and is author or co-author of more than 150 publications in
international journals or conference proceedings.

