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Abstract—The release of ChatGPT has drawn huge interests on foundations models. There is a broad consensus that foundations
models will be the fundamental building blocks for future AI systems. However, there is a lack of systematic guidance on the
architecture design. Particularly, the the rapidly growing capabilities of foundations models can eventually absorb other components of
AI systems, posing challenges of moving boundary and interface evolution in architecture design. Furthermore, incorporating
foundations models into AI systems raises significant concerns about responsible AI due to their opaque nature and rapidly advancing
intelligence. To address these challenges, the paper first presents an architecture evolution of AI systems in the era of foundation
models, transitioning from ”foundation-model-as-a-connector” to ”foundation-model-as-a-monolithic architecture”. The paper then
identifies key design decisions and proposes a pattern-oriented reference architecture for designing responsible
foundation-model-based systems. The patterns can enable the potential of foundation models while minimising associated risks.

Index Terms—Responsible AI, ethical AI, AI safety, architecture, pattern, foundation model, large language model, LLM, ChatGPT,
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1 INTRODUCTION

THE release of ChatGPT, Bard, and other large language
model (LLM)-based chatbots has drawn huge attention

on foundations models (FMs) worldwide. FMs are massive
artificial intelligence (AI) models that are pre-trained on vast
amounts of broad data and can be adapted to perform a
wide variety of tasks [1]. With numerous projects already
underway to explore their potential, it is widely predicted
that FMs will serve as the fundamental building blocks for
most future AI and artificial generative intelligence (AGI)
systems.

Many reusable solutions have been proposed to tackle
various challenges in designing FM-based systems. How-
ever, there is a lack of systematic guidance on the architec-
ture design of FM-based systems. The impact of integrating
FMs into software architecture are not fully studied yet.
Additionally, the FM’s growing capabilities can eventually
absorb the other components of AI systems, introducing
the moving boundary and interface evolution challenges in
architecture design.

On the other hand, there are unique challenges on build-
ing responsible AI into the architecture of FM-based sys-
tems. First, accountability becomes more complex due to the
involvement of multiple stakeholders. The accountability
for decisions made by FM-based systems may be shared
among the system owner, the FM provider, and various
providers of external tools (such as ChatGPT plugins 1).
Second, enabling accountability necessitates the underlying
supporting mechanisms for traceability. It is essential to
record the inputs and outputs of FMs, systems, and exter-
nal tools, services, and systems. Third, trustworthiness is
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1. https://openai.com/blog/chatgpt-plugins

a substantial obstacle in designing the FM-based systems,
e.g., whether the user prompts, the FM outputs and the
intermediate steps align with human goals and fulfill trust-
worthiness criteria. Fourth, the potential AI/AGI misuse
poses a considerable challenge, which requires continuous
risk assessment to ensure the instructions for the FM-based
systems set by humans are trustworthy and responsible.

There is an urgent need for concrete system-level guid-
ance to design responsible FM-based systems. In this paper,
we first discuss the potential architecture evolution of AI
systems in the era of FMs and highlight the key quality
attributes necessary for the design of responsible FM-based
systems. We then identify the major decision making points
when designing FM-based systems. Finally, we propose a
pattern-oriented reference architecture, which provides a
responsible-AI-by-design template architectural solution for
designing FM-based systems and considers the evolution of
architecture to ensure adaptability over time.

2 ARCHITECTURE EVOLUTION OF AI SYSTEMS

FMs are designed to provide a wide range of comprehensive
capabilities that can be applied to various tasks, rather
than being limited to specific functionalities [1]. One key
challenge that the architecture design of AI systems faces
with FMs is that FMs can eventually absorb the external
components such as system functionalities and software
engineering tools. While these components may exist for
a while, they can become short-lived and eventually get
integrated into the FM, resulting a single, monolithic blob
at the center of the architecture. As illustrated in Fig.1, the
architecture evolution of AI systems can be divided into
three stages:
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Fig. 1. Architecture evolution: from ”foundation-model-as-a-connector” to ”foundation-model-as-a-monolithic-architecture”.

• Architecture now: many AI models + many non-AI
components. The current architecture of AI systems
usually comprises AI models (i.e., AI components) and
non-AI components. These AI models and non-AI com-
ponents co-exist within the architecture of the AI sys-
tems and interact with each other to enable the systems
to function properly. The AI models are responsible for
processing data and making inference, while the non-
AI components are responsible for tasks such as user
interface, data storage, interaction with other systems.

• Architecture in 5 years - FM-as-a-connector: 1 FM +
fewer narrow AI models + many non-AI components.
In this architecture, the FM acts as a connector between
external components, i.e., narrow AI models or non-
AI components. The FM can provide four types of
connector services [2]:
– FM-as-a-communication-connector: enabling the

transfers of data between software components, e.g.,
extracting the task description from the user prompt
and transferring to other components for further
processing.

– FM-as-a-coordination-connector: planing a work-
flow and coordinating task execution through vari-
ous software components.

– FM-as-a-conversion-connector: functioning as an in-
terface adapter for software components that use dif-
ferent data formats to communicate with each other,
e.g. parse the task into machine-readable template for
executing by an AI model.

– FM-as-a-facilitation-connector: facilitating the inter-
actions between components, e.g., creating logs or
deciding the invocation of local models.

In such architecture, FMs still need to interface with
narrow AI models and non-AI components to tackle
complex tasks, such as HuggingGPT [3]. However,
as the capabilities of FMs continue to expand rapidly,
it is expected that many of those components will
be eventually absorbed into the FMs and ultimately
disappear.

• Architecture in 10 years:
– Alternative 1: chain of FMs + fewer AI and non-

AI components. There is a chance that most of the
AI and non-AI components could be absorbed into

the FMs. Thus, one alternative of the architecture
in 10 years is a modularised architecture, such as
Socratic Models [4]. This architecture relies on a few
FMs that are chained together and a limited num-
ber of AI and non-AI components to perform tasks
(e.g., through language-based interactions) without
requiring additional training or fine-tuning. The in-
ference for a task-specific output is jointly performed
by multimodal interactions between the indepen-
dent FMs, such as text-to-text models, text-to-visual
models and text-to-audio models. Those FMs can
be connected via APIs with external AI or non-
AI components that offer additional capabilities or
access to databases, such as robotic systems or web
search engines. By multimodal interaction between
independent models, the architecture can effectively
leverage the capabilities of different FMs and exter-
nal AI and non-AI components. In this architecture,
prompt engineering is important for guiding the FM
to produce high-quality responses. Various prompt
patterns can be applied, including few-shot prompt-
ing, self-consistency, chain-of-thought, retrieval aug-
mented generation, etc [2].

– Alternative 2 - FM as a standalone component:
1 ultra-large FM. Another potential type of future
architecture is a monolithic architecture, which only
contains a single big FM capable of performing a vari-
ety of tasks by incorporating different types of sensor
data for cross-training. An example of this type of
architecture is PaLM-E [5], which is used for perform-
ing language, visual-language, and reasoning tasks.
In this type of architecture, no external components
are required, including prompt components. In this
architecture, the non-AI components may include
context engineering components (such as multimodal
context injection), prompt engineering components
(such as prompt generator), and responsible AI com-
ponents (such as continuous risk assessment).

As FMs continuously and rapidly evolve with growing
capabilities, many of the existing software components will
be likely to become obsolete since their functions will be
provided by new versions of FMs. For example, Tesla AI
is working on an end-to-end model which learns all steps
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from the initial input phase and the output result phase 2.
This means that context data goes in and driving decisions
come out, without a single line of code implemented in
the process of autonomous driving. Thus, adaptability and
modifiability are the two key concerned software quality
attributes. Adaptability refers to a software system’s ability
to adapt to run-time changes in its environment without
requiring external intervention [6], such as changes in the
data being processed. Modifiability is the ease with which
a software system can be changed at static-time [6], such as
adding new features, fixing bugs, or changing the under-
lying infrastructure. Both adaptability and modifiability are
important qualities attributes for an evolving architecture,
as they can significantly impact the long-term maintainabil-
ity of a system. The patterns and tactics of conventional
software systems could be applied to manage the issues of
moving boundary and interface evolution in the FM-based
systems.

3 ARCHITECTURAL DESIGN DECISIONS

There are some major architectural design decisions that de-
velopers need to consider when building FM-based systems.

3.1 Design decision 1: Different design options for us-
ing FMs

When designing the architecture, one of the most important
decisions is choosing which type of FM to use. There are
four types of FMs:

• FM type 1: pre-trained by an external organisation
using large unlabeled general data (e.g., general text
corpus).

• FM type 2: first pre-trained using large unlabeled
general data, then pre-trained using large unlabeled
domain specific data (e.g., public real-estate data). The
training can be conducted by the same external organi-
sation or two different external organisations.

• FM type 3: pre-trained by an external organisation
using both large unlabeled general data and large unla-
beled domain-specific data.

• FM type 4: sovereign FM which is trained from scratch
within an organisation using large unlabeled/labeled
general data and/or large unlabeled/labeled domain-
specific data.

There are two design options for the use of FMs for
FM type 1, 2, and 3: using FMs via in-context learning
or fine-tuning FMs using labelled target data. Using FMs
through in-context learning can save costs, as FMs are pre-
trained by external organisations on vast amounts of data
using numerous computational resources. However, these
options may pose responsible AI issues (such as reliabil-
ity and safety) as the pre-training is conducted towards
generating generic outputs rather than being designed to
a specific purpose. This could result in reliability, safety,
ethical issues with the model’s outputs. Furthermore, there
could be data privacy issues. For example, the data used
to train these models may be biased or include personal
information. The big tech companies may use the data

2. https://twitter.com/Tesla AI/status/1730761835694153790

collected from these models for their own purposes, such as
improving their products or developing new features, which
may raise privacy concerns. Thus, additional responsible AI
design patterns can be introduced at system-level, such as
continuous risk assessment and guardrails.

Fine-tuning FMs can help improve reliability and pri-
vacy of the FMs by locally fine-tune the model with labeled
target data (e.g., labeled domain-specific data). However,
responsible AI issues may still exist as organisations cannot
control the FM training process of the external organisa-
tions.

To have complete control over data and model training
and ensure responsible AI, FM type 4 - sovereign FM is the
best option. Also, some organisations may possess unique
internal data and training a sovereign FM in-house from
scratch can become their unique competitive advantage.
However, it requires high investment in cost and resources,
including data, computational, and human resources.

3.2 Design decision 2: Chain of FMs vs. an ultra-large
FM
When considering FMs developed by external organisa-
tions, one important decision is whether to use a chain
of models (such as Socratic Models [4]) or an ultra-large
FM (such as PaLM-E [5]). The chain of FMs generates
joint predictions and offers an modularised architecture that
allows for easy switching to other FMs with specific capa-
bilities, e.g., switching to a more powerful visual language
model to improve performance. This option may improve
maintainability, but it may come with an additional cost
to understand the capabilities and limitations of different
foundations models. On the other hand, using ultra-large
FM may achieve better performance via cross-training on
numerous multi-modal data [5]. However, this option may
come at the cost of reduced maintainability. There may be
a risk for vendor lock-in, as there may be few providers
in the market with similar capabilities. It is challenging
to determine which option is better, and experimentation
is necessary to evaluate each option’s effectiveness for a
specific context.

3.3 Design decision 3: Responsibilities of external
components
Responsibility is a concept in a software context that comes
from object-oriented design. A responsibility can be an
action, a piece of knowledge to be maintained, or a decision
to be carried out by a software component.

FMs can gradually absorb external components by tak-
ing on their responsibilities over time. This can create a
moving boundary issue where the responsibility of a soft-
ware component shifts from an external component to the
FM. To address this issue, one key design decision is to
determine the responsibilities of software components. The
responsibility can be split into a bunch of smaller respon-
sibilities that are placed in distinct components. Changes
can be isolated to specific components, making it easier to
manage the external component that could be absorbed by
the FM over time. As FMs are built around capabilities [1],
it may be worth breaking down a large component along
capability lines. This allows the developers to choose which
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FM’s capabilities to use, e.g., use a good enough one or an
emerging new one.

Breaking down responsibilities into smaller components
can improve adaptability and modifiability, ensuring long-
term maintainability. However, it can also introduce addi-
tional communication overhead between smaller compo-
nents, as each component may need to interact with other
components to accomplish tasks. Additionally, it can make
the system more complex and difficult to understand how
the components work together, potentially reducing main-
tainability.

3.4 Design decision 4: Automatic response vs. verifier

When designing FM-based systems, an important consider-
ation is how to ensure the systems’ responses are accurate
and responsible. One option is to rely solely on the FM to
generate responses to user queries. While this option can
be efficient and cost-effective, it may result in inaccurate or
irresponsible responses that can affect user trust or cause
harm.

To address this issue, before responding to the user, a
verifier can be adopted to verify whether the FM outputs
meet the specified requirements such as topic requirements
or trustworthiness requirements [7]. The verifier could be
a human verifier or an AI verifier (FM-based or non-FM-
based) [2]. However, verifying the output of FMs directly
can be challenging. It is necessary to take a conversational
step-by-step approach to conduct verification. The choices
between automatic response and verifier depends on the
system’s priorities and the consequences of inaccurate or
irresponsible responses. For systems where accuracy and
trustworthiness are critical, a verifier approach may be the
better option, even if it comes at a higher cost. However,
for systems where efficiency and cost-effectiveness are more
important, an automatic response approach may be more
suitable, with periodic checks.

3.5 Design decision 5: passive interaction vs. proac-
tive interaction

Interaction in FM-based systems involves context engineer-
ing and prompt engineering. Context engineering aims to
gather and structure the context in which the FM-based
systems operate to understand the users’ goals [8], while
prompt engineering creates prompts that act as guiding
instructions, enabling the FM-based systems to effectively
complete human’s tasks and goals.

There are two distinct interaction patterns: passive in-
teraction and proactive interaction. Passive interaction in-
terpretes the user’s intentions as described through text
prompts submitted via the dialogue interface. In contrast,
proactive interaction anticipates the user’s intentions and
makes proactive suggestions by understanding multimodal
context data, such as screen recording [9], mouse clicks 3,
typing, eye tracking, gestures [10], document annotations
and notes. Compared to passive interaction, proactive inter-
action introduces a deeper level of autonomy.

3. https://github.com/ddupont808/GPT-4V-Act

3.6 Design decision 6: Single agent vs. agent team
The tasks that need to be performed by an FM can vary in
complexity and scope. For simple tasks or goals, such as
answering frequently asked questions, a single agent may
be sufficient. However, for more complex tasks, it may be
necessary to use a team of agents to ensure the performance.
For example, one agent can be responsible for question-
answering interaction, while another agent can be designed
for analysing context data. However, using multiple agents
can also introduce communication costs between agents and
increase the level of design complexity.

3.7 Design decision 7: Think aloud vs. think silently
There are two options to consider when it comes to the
explaining the decision-making process: think aloud and
think silently. The think aloud design pattern can be used
disclose the decision-making process, such as the interme-
diate steps such as prompt pattern implementation and
verification/validation. This design can help build human
trust in the system, but it may sacrifice data privacy. For
example, some system providers may view the prompt de-
sign and verification/validation as business sensitive data
and intelligence property. In such case, they may need to
carefully consider which parts of the intermediate process
they are willing to share with the users.

4 REFERENCE ARCHITECTURE

Fig. 2 illustrates a pattern-oriented reference architecture
for designing responsible and adaptable FM-based systems.
The architecture comprises three layers: the system layer,
which includes the components of the deployed AI sys-
tem, the operation layer, which provides responsible AI
tooling functions to the AI system, and the supply chain
layer, which generates the software components that com-
pose the AI system. The grey-coloured boxes and cylin-
ders are the components where the design patterns are
applied. An empirically-grounded design methodology has
been adopted for designing the reference architecture [11].
The type of our reference architecture is an industry-
crosscutting, classical, facilitation reference architecture. Our
design strategy is a combination of research-driven and
practice-driven, as the design of this reference architecture
is founded mainly on the findings of literature review [12]
and our project experience4.

4.1 System layer
The system layer comprises the components of the de-
ployed FM-based systems. Interaction components com-
prises two sub-components: multimodal context engineer-
ing and auto-prompt generation. Multimodal context en-
gineering is designed to collect and structure the context
in which the system operates to understand the user’s
goals or tasks. Instead of analysing user’s goals or tasks
described through text prompts sent by the user via the
dialogue interface, the system can proactively anticipate
the user’s goals by analysing multimodal context infor-
mation, including screen recording [9], mouse clicks, typ-
ing, eye tracking, gestures [10], document annotations and

4. https://research.csiro.au/ai4m/operationalising-responsible-ai/
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Fig. 2. A pattern-oriented reference architecture for designing responsible FM-based systems.

notes. Auto-prompt generation automatically produces the
prompts with constraints and specifications, defining the
desired input or output content and format in alignment
with the the ultimate goal. A prompt template is often used
as a factory that creates prompt instances from the template.
The template provides a structured way to standardise the
queries, which can improve the response accuracy and inter-
operability with external systems.Think aloud is a pattern
for explainability, which can describe the system’s capabil-
ities, limitations, the rationale behind its intermediate or
final outputs, and ethical or legal implications. This design
pattern can help build human trust in the system, but it may
sacrifice data privacy. Prompt refusal filters inappropriate
or harmful tasks, e.g., refusing to generate responses that
contain violence promotion or hate speech.

There are several patterns for using FMs, including the
external FMs, fine-tuned FMs, sovereign FMs, chain of
FMs and ultra-large FMs. Due to the rapidly growing capa-
bilities of FMs, there are issues with the moving boundary
and interface evolution in architecture design. Most of the
components in the system layer, operation layer, and supply
chain layer will eventually be absorbed by FMs. In some
cases, absorption is not done component by component, but
rather by splitting a component in the middle. To address
these issues, two classic patterns can be applied to ensure
adaptability and modifiability: microkernel pattern [13] and
adapter pattern (also known as wrapper). Microkernel pat-
tern can help place smaller responsibilities in distinct com-
ponent so that changes can be isolated to specific compo-
nents, which could be absorbed by the FM overtime. When a
component is absorbed by an FM, the component’s original
connector used to communicate with other components may
need to be converted into a certain format of interface (such
as a text interface for LLMs) through the use of an adapter
pattern.

With autonomous agents, users only need to provide a
high-level goal, rather than providing explicit step-by-step

instructions. These agents derive their autonomy from the
capabilities of FMs, enabling them to break down the given
goal into a set of manageable tasks and orchestrate task
execution to fulfill the goal. The agents can be categorised
into two types of roles: agent-as-a-coordinator and agent-as-
a-worker. Agents in the coordinator role primarily formulate
high-level strategies and orchestrate the execution of tasks
by delegating task execution responsibilities to an agent
team in the worker role. These agents in the worker role
need to generate strategies and execute specific tasks in
line with those strategies. To complete these tasks, agents
in the worker role may need to cooperate or compete with
other agents, or call external tools or non-agent AI/non-AI
systems.

To prevent harmful dual-use of AI systems, developers
should impose restrictions on their usage and prevent users
from getting round of restrictions through unauthorised
reverse engineering or modification of the system design.
One way to do this is by implementing governance via
APIs pattern, which involves providing AI services on cloud
platforms and managing interactions through API controls
(such as GPT4), rather than allowing AI systems to run
locally with unrestricted access.

To improving the response accuracy of FMs, retrieval
augmented generation (RAG) can be adopted by using a
vector database (such as Pinecone 5) for storing the domain
data from various data sources as vector embeddings. These
embeddings can be used to perform similarity searches and
enable the retrieval of data that are related to specific tasks.
When the tasks involves cross-organisational data analyt-
ics, federated RAG can be applied by adapting federated
learning. Each organisation deploys an FM and has its own
RAG in which the data is confidential to other organisations.
The data in the local RAGs can be aggregated and further
processed by a central FM.

5. https://www.pinecone.io
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4.2 Operation layer
The operation layer includes components responsible for
monitoring and managing the responsible AI related qual-
ities in deployed FM-based systems. A verifier, whether
human or AI (FMs or non-FM models) 6, can be introduced
to check whether the final or intermediate outputs meet
the specified requirements such as topic requirements or
trustworthiness requirements.

Guardrails can be added at three stages: 1) Preprocess-
ing: After receiving the user prompts, guardrails can be
enforced after verifying whether the prompts can comply
with responsible AI requirements through the verifier. For
example, some users prompts might not be relevant to the
pre-configured scope and should be rejected 7. Whitelists
and blacklists can be established to identify actions that are
permitted and prohibited respectively. Additionally, some
users prompts may contain personal identifiable informa-
tion (PII) and need to be removed by employing data
de-identification and anonymisation before being sent to
the FMs. 2) Intermediate process: During task execution,
if the output at each intermediate step does not fullfil
the users’ specific requirements including trustworthiness
requirements, the respective types of guardrails should
be invoked. 3) Postprocessing: When FM returns results,
guardrails are necessary to ensure that the outputs meet
the requirements including responsible AI requirements,
structure requirements, etc.

A continuous risk assessor continuously monitors and
assesses AI risk metrics 8 to prevent the misuse of the
agent and to ensure the trustworthiness of the agent. For
example, when a user submits a prompt through the di-
alogue interface, the continuous risk assessor can assess
the potential risks of the intended goals and may modify
or reject the prompt based on the risk assessment results.
A black box recorder records the runtime data, which
can be then shared with relevant stakeholders to enable
transparency and accountability [14]. The recorded data
includes the input, output, and intermediate data for each
layer or component within the architecture, such as the
input and output of the FMs or other components. The
data recorded by the black box recorder can be helpful in
determining accountability, including which stakeholders
share the accountability and to what extent. All these data
need to be kept as evidence with the timestamp and location
data. Design decisions need to be made on what data should
be recorded and where the data should be stored (e.g., using
a blockchain-based immutable log or a cloud-based data
storage). The standardised reporter pattern can be used to
inform stakeholders (such as regulators and users) about the
development process and product design of AI systems, as
well as the runtime data collected by the black box recorder.

4.3 Supply chain layer
The supply chain layer includes all components involved
in developing and procuring both AI components (includ-
ing FMs) and non-AI components. FM providers can use
reinforcement learning from human feedback (RLHF) to

6. https://openai.com/blog/our-approach-to-alignment-research
7. https://github.com/NVIDIA/NeMo-Guardrails
8. https://oecd.ai/en/catalogue/metrics

fine-tune the FM’s behaviour and produce more accurate
and responsible responses. RLHF allows humans to provide
feedback on the quality of the responses and uses this
feedback to adjust the model’s parameters. The FM is then
trained to maximise the reward it receives from human feed-
back, which can improve its accuracy and responsible AI
related qualities over time. Parameter-efficient fine-tuning
techniques, e.g., LoRA 9, can reduce the number of training
parameters by 10,000 times and decreasing GPU usage by
threefold. All components procured from third parties can
be associated with a bill of materials (BOM) that records
their supply chain details, which can include responsible
AI (RAI) metrics or verifiable RAI credentials. This procure-
ment information can be maintained in an AIBOM registry.
FMs can refuse to call the third party components or sys-
tems that fail to provide registered AIBOM information.
To ensure auditability, the co-versioning registry pattern
can be applied to co-version the AI artifacts, such as ex-
ternal/sovereign FMs, fine-tuned FMs, and training/testing
datasets.

5 EVALUATION

In this section, we evaluate the completeness and utility of
the proposed reference architecture by mapping it to the ar-
chitecture of a real-world FM-based system, responsible AI
(RAI) chatbot. This chatbot enables scientists to understand
and assess potential AI risks in their AI projects10. The cur-
rent version is built on GPT-4, an external FM provided by
OpenAI. Users interact with the chatbot by describing their
AI systems and asking questions through a web interface.
Questions not relevant to RAI are automatically rejected
through prompt refusal.

To improve accuracy in responding to user queries, the
RAI chatbot employs RAG by integrating LlamaIndex 11,
which connects GPT-4 with local data sources. The lo-
cal data sources include a manually labelled AI incident
database, the Responsible AI Question Bank [15], and the
Responsible AI Pattern Catalogue [12].

The chatbot incorporates the think aloud pattern, mak-
ing the intermediate processes transparent to users. Agent
team is used by creating multiple instances to perform
different tasks. For example, one agent is responsible for
question-answering interactions, while another summarises
the documents shared by users. All conversation histories
are captured by a black box recorder. The verifier pattern
is implemented, allowing a human expert to review and
edit the answers generated by GPT-4. The project team is
currently building an AIBOM registry for the RAI chatbot
and discussing the potential of fine-tuning an FM to further
increase response accuracy.

It can be concluded that our reference architecture is
complete and usable as the architecture of RAI chatbot is
successfully mapped to the proposed reference architecture.
We have observed that the fundamental layers in an FM-
based system architecture include the system layer, opera-
tion layer and supply chain layer. The key components in

9. https://github.com/microsoft/LoRA
10. https://research.csiro.au/ai4m/operationalising-responsible-ai/
11. https://www.llamaindex.ai
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the system layer include FMs, interaction components, data
sources.

6 CONCLUSION

This paper presents pattern-oriented responsible-AI-by-
design reference architecture to address the challenges of
responsible AI and architecture evolution in FM-based sys-
tems. We first discuss the architecture evolution and identify
two important software qualities for building FM-based
AI systems: adaptability and modifiability. Then, we sum-
marise seven key design decisions in architecture design
and discuss the trade-offs between responsible AI related
software qualities. Finally, we present a pattern-oriented
reference architecture to provide a concrete guidance for
developers to design responsible and adaptable FM-based
systems. In the future, we will build a pattern catalogue for
building FM-based systems.
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