
14 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 2 4 © 2 0 2 4 I E E E

DEVELOPER PRODUCTIVITY
FOR HUMANS

UNDERSTANDING AND EFFEC-
tively measuring developer goals is
critical for enhancing developer experi-
ence and productivity. By focusing on
durable, consistent, relatable, sensical,
and observable goals, we create a more
robust view into our developers’ days.

Introduction
In this installment of our column,
we’re writing about the value of goal-
based measurement of the developer
experience. Developer tooling teams
are often faced with questions like:
“How frequently do developers have
to debug a failing test?” “How long
does setting up a new server take a
developer?” “How many developers
are using a given tool in their work-
flow to test code quality?” “Are we
actually improving the ways devel-
opers’ get their work done?” among
others. Anchoring measurement
around user goals (in this case, de-
veloper goals) helps to answer these
questions by keeping metrics human-
centered,1 and encouraging measure-
ment thinking that spans product
boundaries: Many developers have
to work with multiple tools to com-
plete their development goals. In this

article, we’ll outline our process for
articulating and refining goals, pro-
vide our list of 30 rigorously-tested
developer goals, and share a little bit
about how we leverage both senti-
ment and behavioral data to measure
and understand goals through differ-
ent lenses.

Value of Articulating and
Measuring Developer Goals
Measuring user goals is not a new
practice at Google. Since 2014,
Google has relied on critical user
journeys (CUJs) to drive product ex-
cellence in our billion user products.2
A CUJ captures who the user is, their
critical goal, and the journey of tasks
the user undertakes to achieve that
goal. A canonical example would be
“As a <user>, I want to <goal>, so I
<task 1>, <task 2>, and <task 3>”.
The value proposition of CUJs is
fairly straightforward: By under-
standing, articulating, and measur-
ing the way that users employ tools in
tasks that accomplish their goals, you
can make sure you focus on improv-
ing the highest value areas with the
biggest opportunities. While goal-
oriented measurement has a 10+ year
history at Google, the practice of us-
ing this framework is relatively new
in the developer experience space.

Historically, our measurement of
CUJs relied on lab-based studies and
task-based metrics to quantify the
effectiveness and value of our prod-
ucts and infrastructure. For example,
we might run a lab-based UX study
where users are asked to “get direc-
tions to configure a new server” and
determine how difficult it is for users
to achieve the goal. While we could
take a similar approach for devel-
oper journeys, we found that many
developer journeys are looping and
iterative and many span across mul-
tiple developer tools. Even our most
straightforward tasks are made com-
plex through their dependence on
context (particularly, the intent or
goal). For example, “searching for
documentation” is a common and
relatively simple task, but whether
you are “exploring technical solu-
tions” as part of system design or
looking to “understand the context
to complete a work item” changes ev-
erything about your journey and how
well supported you feel while accom-
plishing it. This situation presented
a challenge: To truly understand
the value of our developer tools, we
needed to shift away from measur-
ing individual tasks and instead
focus on understanding and measur-
ing the overarching goals that drive

Measuring Developer
Goals
Benjamin Ferrari-Church and Carolyn Egelman

Editor: Collin Green
Google
colling@google.com

DEVELOPER PRODUCTIVITY
FOR HUMANS

Editor: Ciera Jaspan
Google
ciera@google.com

Digital Object Identifier 10.1109/MS.2024.3410830
Date of current version: 13 August 2024

https://orcid.org/0009-0009-4928-970X
https://orcid.org/0000-0003-3352-2203
mailto:colling@google.com
mailto:ciera@google.com

DEVELOPER PRODUCTIVITY FOR HUMANS

 SEPTEMBER/OCTOBER 2024 | IEEE SOFTWARE 15

developer behavior and the context in
which those goals are accomplished.

Goals That Span the
Developer Experience
There are many journeys that devel-
opers take while attempting to com-
plete their work, and we could define
and measure all of them. However,
we sought to also have a concise list,
which are truly the “critical” devel-
oper journeys that we want to track
and measure over time to ensure
that our tools and infrastructure
are helping developers achieve their
goals. When we set out to define a
collection of developer goals to track
and measure, we set the following
success criteria for well-defined indi-
vidual goals and a useful collection:

• Each goal needs to be durable:
We hope they will feel as relevant
five years from now as they did
five years ago. We can never an-
ticipate what changes the world
will throw at how we accomplish
our work. We didn’t anticipate
the rise of work-from-home due
to COVID3, which changed how
people work, although not their
goals. Now our industry is seeing
how artificial intelligence (AI) is
changing developer workflows,
and we need goals that will be
durable to that new context too.

• Each goal needs to make sense
to our developers: We knew we
were going to measure these via
a survey, so having goals that
our developers could intuit and
see as part of their workflows
was critical.

• Each goal needs to connect to
observable developer behaviors:
We also knew that we were going
to use logs to measure these goals,
so being able to map them to spe-
cific developer actions was vital.

• Collectively, goals need to be
consistent in altitude or scope:
We tested our goals to ensure
they feel similar in breadth even
when they are distant in devel-
oper workflows.

• Collectively, goals need to be
comprehensive: We anchored our
goals to the software develop-
ment lifecycle to ensure coverage.

Once we had articulated these
criteria, we completed an extensive

and iterative goal development pro-
cess. First, we gathered subject mat-
ter experts to create a list of goals
that spanned across each of the
software development phases. We
did this with a small group at first
to ensure focus, keep the list within
our target size of 30 goals, and to
maintain a consistent altitude. Sec-
ond, we mapped the draft list of
goals to the historical data from the
longitudinal, quarterly engineering
satisfaction (EngSat) survey4 related
to a (much longer) list of develop-
ment tasks. Comparing our draft
goal list to the existing, extensive
task list from the survey helped en-
sure we had sufficient coverage of
the breadth of development tasks.
Third, we went through a round of
cross-functional feedback followed
by two rounds of user research. The
research was a moderated card-
sort study with six internal Google

developers, which enabled us to
evaluate the clarity of the goals and
the organization of those goals into
phases. After the moderated card
sort, we ran a larger (n = 40) unmod-
erated card-sort to build confidence
in how the goals were organized
into phases. Finally, we ended the
development of our goal list with a
final round of cross-functional feed-
back and user research in the form
of a cognitive user testing during the
EngSat launch process.4

Durable Developer Goals
Figure 1 shows the final list of devel-
oper goals that we created. The bold
categories are the development phases,
which comprise our view of the soft-
ware development lifecycle and serve as
the organizing principle for our goals.

We also needed to contextualize
these goals within our existing eco-
system. Different teams across our
organization had already identified
their own developer tool-specific sets
of users, goals, and tasks, and we
needed a way to organize and com-
municate the relationship among our
consistent end-to-end goals and the
various developer tool-centric sets
of goals that existed if we wanted
to enable consistent measurement.
Because of the altitude and cross-
product nature of our goals, we sta-
tioned them as the highest point in
the information architecture. Spe-
cific developer tool goals and their

A CUJ captures who the user is,
their critical goal, and the journey of

tasks the user undertakes to achieve
that goal.

DEVELOPER PRODUCTIVITY FOR HUMANS

16 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

component tasks can map to one or
more of our higher-level developer
goals. This enables us to provide a
many-to-many mapping between de-
veloper tool goals and higher-order
developer goals that they support.

Figure 2 shows the subset of our
final list of developer goals associ-
ated with the Develop, Test, and
Commit Code phase of the software
development lifecycle. We’ve added
the bolded categories of developer
tool goals on the right to help ex-
plain the many-to-many relationship
that can exist between our developer
goals and individual developer tools

As mentioned earlier, it’s impor-
tant that our developer goals are
durable and will stand the test of
time and that they are written in a
way that is technology agnostic. Al-
though we want to be able to map
our goals to developer tool-specific
goals, we know that developer needs
and goals are not likely to evolve as
quickly as technology. For example,
software development practices and
tooling are at the beginning of sig-
nificant transformations as Genera-
tive AI reshapes how developers do
their work. That transformation will
be very apparent in developer tool-
specific goals, but will have much
less impact on our technology-agnos-
tic goals. By focusing on the latter,
we are better positioned to track and
understand the changing developer
experience as we roll out these AI in-
terventions across the workflows.

Measuring Sentiment and
Behavior Surrounding
Developer Goals

Survey-Based Attitudinal
Measurement of Developer Goals
We measure attitudes toward sup-
port of these goals through our
longitudinal, quarterly engineering

In
fo

rm
at

io
n

G
at

he
rin

g
P

la
n

an
d

Tr
ac

k
W

or
k,

an
d

M
an

ag
e

A
pp

ro
va

ls
D

ev
el

op
, T

es
t a

nd
C

om
m

it
C

od
e

E
xp

er
im

en
t,

R
el

ea
se

an
d

R
ol

lo
ut

E
ng

S
at

 U
se

r
G

oa
ls

 O
ve

rv
ie

w

A
s

a
D

ev
el

o
p

er
, I

 W
an

t
to

M
on

ito
rin

g,
 R

el
ia

bi
lit

y,
 a

nd
C

on
fig

ur
in

g
In

fra
st

ru
ct

ur
e

D
at

a
M

an
ag

em
en

t

5
G

oa
ls

6
G

oa
ls

6
G

oa
ls

3
G

oa
ls

6
G

oa
ls

4
G

oa
ls

•
E

ns
ur

e
D

oc
um

en
ta

tio
n

Is

 U
p

to
 D

at
e

•
U

nd
er

st
an

d
th

e
C

on
te

xt

to
 C

om
pl

et
e

a
W

or
k

Ite
m

•
E

xp
lo

re
 T

ec
hn

ic
al

S

ol
ut

io
ns

 (
e.

g.
, B

ug
s,

D

es
ig

n)
•

F
in

di
ng

 In
fo

rm
at

io
n

(e

.g
.,

D
oc

um
en

ta
tio

n,

C
od

el
ab

s,
 A

P
I E

xa
m

pl
es

)
•

F
in

d
an

 E
xp

er
t

•
S

af
el

y
R

ol
l O

ut

C
ha

ng
es

 to
 P

ro
du

ct
io

n

(e
.g

.,
F

ea
tu

re
s,

 M
od

el
s,

N

ew
 R

el
ea

se
s)

•
R

un
 a

n
E

xp
er

im
en

t
•

A
na

ly
ze

 E
xp

er
im

en
t

R

es
ul

ts

•
K

no
w

 W
ha

t t
o

W
or

k

on
 N

ex
t

•
C

oo
rd

in
at

e
W

or
k

W

ith
 P

ee
rs

•
E

ns
ur

e
M

y
La

un
ch

C

om
pl

ie
s

W
ith

 L
eg

al
,

P

riv
ac

y,
 a

nd
 S

ec
ur

ity

R
eq

ui
re

m
en

ts
•

H
av

e
M

y
C

ro
ss

-

F
un

ct
io

na
l T

ea
m

A

lig
ne

d
on

 L
au

nc
h

R

ea
di

ne
ss

•
G

et
 M

y
D

es
ig

n

A
pp

ro
ve

d
•

D
es

ig
n

an
d

D

oc
um

en
t a

C

on
si

de
re

d
P

la
n

•
E

ns
ur

e
M

y
P

ro
du

ct
 S

ta
ys

W

ith
in

 S
LO

 C
om

m
itm

en
ts

•
In

ve
st

ig
at

e
Is

su
es

 in

P
ro

du
ct

io
n

(e
.g

.,
C

ra
sh

es
,

O

ut
ag

es
, U

ne
xp

ec
te

d

B
eh

av
io

r)
•

Im
pr

ov
e

S
ys

te
m

P

er
fo

rm
an

ce
•

M
an

ag
e

C
om

pu
te

R

es
ou

rc
es

•
E

ns
ur

e
M

y
B

ui
ld

s

S
ta

y
G

re
en

 (
e.

g.
, B

ui
ld

G

ar
de

ni
ng

 R
ot

at
io

ns
)

•
Im

pr
ov

e
R

el
ia

bi
lit

y
an

d

A
vo

id
 P

ro
du

ct
io

n

P
ro

bl
em

s

•
E

ns
ur

e
D

at
a

I’m

R
es

po
ns

ib
le

 fo
r

Is
 F

re
sh

,

R
el

ia
bl

e
an

d
of

H

ig
h

Q
ua

lit
y

•
D

ev
el

op
 a

nd
 M

an
ag

e

D
at

a
P

ro
ce

ss
in

g
P

ip
el

in
es

•
E

ns
ur

e
D

at
a

I’m

R
es

po
ns

ib
le

 fo
r

Is
 S

ec
ur

e

an
d

C
om

pl
ie

s
W

ith

R
eg

ul
at

io
ns

•
A

na
ly

ze
, V

is
ua

liz
e,

 a
nd

U

nd
er

st
an

d
D

at
a

to

G
en

er
at

e
In

si
gh

ts

•
W

rit
e

H
ig

h
Q

ua
lit

y

C
od

e
•

E
ns

ur
e

th
e

C
od

e

C
on

tr
ib

ut
ed

 b
y

O
th

er
s

(e

.g
.,

Te
am

m
at

es
,

A

l,
et

c.
)

Is
 H

ig
h

Q
ua

lit
y

•
U

nd
er

st
an

d
th

e
B

eh
av

io
r

of

 E
xi

st
in

g
C

od
e

•
C

re
at

e
or

 M
ai

nt
ai

n

H
ol

is
tic

 T
es

t C
ov

er
ag

e
•

In
ve

st
ig

at
e

U
ne

xp
ec

te
d

B

eh
av

io
r

Lo
ca

lly
•

In
te

gr
at

e
N

ew
 T

oo
ls

/

Te
ch

no
lo

gy
 in

to
 E

xi
st

in
g

S

er
vi

ce
s

an
d

S
ys

te
m

s

F
IG

U
R

E
 1

.
P

ha
se

s
of

 th
e

so
ft

w
ar

e
de

ve
lo

pm
en

t l
ife

cy
cl

e
an

d
as

so
ci

at
ed

 d
ev

el
op

er
 g

oa
ls

 fo
r

ea
ch

 p
ha

se
.

DEVELOPER PRODUCTIVITY FOR HUMANS

 SEPTEMBER/OCTOBER 2024 | IEEE SOFTWARE 17

satisfaction (EngSat) survey.4 We
ask developers how well supported
they feel for each of the 30 developer
goals and provide one open-ended
question where respondents can
share any feedback on specific pain
points or general dissatisfaction re-
lated to development goals.

Logs-Based Behavioral Measurement
of Developer Goals
Our team maintains a cross-product
logs-based measurement system5 and
spent the past few years extending
this system to measure the journeys
developers take in pursuit of accom-
plishing their goals. We have found
benefits in the log-based system for
developer tool teams beyond just the
data outputs. We recognize building
and maintaining such a system is not
commonplace in most engineering

workplaces; however, we want to
share the lessons we have learned in
working with these logs.

As mentioned above, and by de-
sign, our list of goals are mappable to
observable logs-based measurement.
That means that we have to be pre-
cise about what log points indicate the
start and the end of a journey, as well
as what interesting points might hap-
pen to differentiate one journey from
another. By working with developer
tool teams and translating a natural
language version of a developer goal
into the set of log points that uniquely
identify that a developer is taking ac-
tion toward that goal forces that de-
veloper tool team to be really concrete
about what they mean a developer’s
goal is. For example, heading into
measurement definition, one of our
teams articulated the developer goal of

“As a software engineer, I want to de-
ploy my server into production”; how-
ever, after a workshop to translate this
goal into the journey a single developer
would take and map that to log points
along the way, the goal was redefined
to be “As a software engineer, I want
to identify the necessary configura-
tion settings to deploy my server into
production.” While the initial articu-
lated goal was broader, it was unlikely
to be something a single developer
would do by themselves and the reart-
iculated goal was a necessary initial
step that a single developer would take
in pursuit of the larger goal.

Second, we designed our system to
be flexible about the order in which
events occur and to provide con-
figuration options that address the
iterative nature of software develop-
ment. Developer goals are often quite

FIGURE 2. An example of how our higher-level developer goals (here, the subset associated with the Develop, Test, and Commit

Code phase of the SDLC) maps to lower-level developer tool goals as articulated by developer tools teams. IDE: integrated developer

environment; SDLC: software development lifecycle.

Information
Gathering (5)

Plan and Track Work,
and Manage Approvals (6)

Develop, Test and
Commit Code (6)

Experiment, Release
and Rollout (3)

Monitoring, Reliability, and
Configuring Infrastructure (6)

Data Management (4)

As as Developer, I Want to...

... write high quality code.

... ensure the code
contributed by others

(e.g., teammates, AI, etc.)
is high quality.

... understand the
behavior of existing code.

... create or maintain
holistic test coverage.

... investigate unexpeted
behavior locally.

... integrate new tools/
technology into existing
services and systems.

Tool Team 1 Goals
(Testing Suite)

Tool Team 2 Goals
(IDE)

Tool Team 3 Goals
(Code Review)

Tool Team 4 Goals
(Code Search Tooling)

Tool Team 5 Goals
(Knowledge Management)

DEVELOPER PRODUCTIVITY FOR HUMANS

18 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

complicated and could be achieved
in a variety of ways. Our developer
tool teams have found value in being
able to quantify how often develop-
ers take a “golden path” versus other
less well-supported paths to complete
their goals. If a system was designed
to only capture those that take the
“golden path,” we would miss in-
sights into why developers take those
less-desired paths. Additionally, those
configuration options let us do things
like count how many iterations were
required for someone to debug a fail-
ing test. In this case, just capturing
the time between the most proximate
failing test and a passing one would
miss all of the work that went into
understanding and debugging that
test when it was still failing.

The balance of requiring speci-
ficity in the end points because you
have to know what log points to
measure, but allowing flexibility in
how developers actually get from a
start to an end, enables a rich under-
standing of how developers navigate
development systems.

Deepen Understanding by Combining
Attitudinal and Behavioral Data
By triangulating data from EngSat sen-
timent measurement and logs-based

measurement in our Developer Jour-
neys system, we can identify patterns
of usage that are shared by our most
satisfied or productive developers,
enabling an even deeper level of in-
sight into ways we can make their
work days even more productive and
satisfying or learn from how they
navigate a journey to be able to make
improvements for developers who
feel less well supported.

For example, we might find that
developers who express positive
goal sentiment in EngSat also ex-
hibit specific usage patterns, such as
more frequent code review sessions
or sessions with longer duration.
Conversely, developers who report
negative sentiment might show dif-
ferent behavioral patterns, such as
more switches between tools or con-
text switches. By identifying these
correlations, we can pinpoint areas
that would benefit from integration,
improved onboarding, or further
investigation. It is the combination
of survey and logs data that enables
us to make data-informed improve-
ments that enhance the devel-
oper experience.

Ultimately, the value of combin-
ing sentiment and behavioral data
lies in its ability to provide a more

holistic and thorough understanding
of developer goals. This approach
lets us move beyond surface-level
metrics and uncover deeper insights
that can inform product develop-
ment, improve developer satisfac-
tion, and drive business success.

Getting Specific: Anchoring on
Ensuring Quality as the Goal
of Code Review
Let’s see what this looks like in
practice. Prior to switching to a de-
veloper journey-focused set of ques-
tions, we had asked engineers for six
years about code review. The actual
question on the survey was “How
well do the developer tools you cur-
rently use at Google support you in
the following developer tasks” with
“code review” listed as one among
70 other tasks. In the evolution of
this list from tasks to goals, this
turned into the question “How well
did the developer tools you currently
use at Google support you in the fol-
lowing developer activities” with the
option text being “Ensure the code
contributed by others (e.g., team-
mates, AI, etc.) is high quality.” This
language change made the survey
item much broader and refocused
on the goal—ensuring code that gets

FIGURE 3. Charts that display the combination of logs-based behavior measurement of completing a code review segmented by

survey-based attitudinal measures with support for completing that goal. SWE: software engineer.

Data on the Canonical Logs-Based Version of the Journey

How Often Does a Typical SWE Perform This Journey Each Week How Long Does This Journey Take a Typical Engineer?

M
ed

ia
n

 N
um

be
r

of
T

im
es

 p
er

 W
ee

k

M
ed

ia
n

 D
ur

at
io

n
in

 M
in

ut
es

Good to Great Support Good to Great SupportPoor to No Support Poor to No Support

DEVELOPER PRODUCTIVITY FOR HUMANS

 SEPTEMBER/OCTOBER 2024 | IEEE SOFTWARE 19

submitted is of high quality—rather
than the mechanics around the task
of executing a code review. We saw
survey scores shift downward mod-
estly with the language change,
opening up new questions for the de-
veloper tool team around how they
can ensure our internal coding tools
are best supporting developers in
writing and reviewing high-quality
code and opposed to just completing
a “code review.”

In addition to the insights from
broadening language in the survey
question, we have data on what com-
pleting a code review looks like from
tooling logs. We can now bring these
data sources together to see differ-
ences in the behavior of developers
who feel well supported in complet-
ing code reviews versus those who
feel less well supported. Figure 3
shows a snapshot of our internal
dashboard displaying how often the
typical developer completes the goal
of “ensure the code written by oth-
ers is high quality” and how long
that takes for the most and least
well-supported groups. In this case,
we see that developers who feel less
supported actually review code more
often and do so in less time than de-
velopers who feel well supported.
These data prompted new studies
around understanding the review
loads and practices of these engi-
neers who don’t feel well supported;
with the aim of providing new fea-
tures to support these engineers.

Understanding and effec-
tively measuring developer
goals is critical for enhanc-

ing developer experience and pro-
ductivity. By focusing on durable,
consistent, relatable, sensical, and
observable goals, we create a more
robust view into our developers’

days. By combining sentiment and
behavioral data to measure these
goals, we enable data-driven and
human-centered insights: insights
like the differences in frequency and
duration of journeys taken by our
most- versus least-well supported
developers as they work to “en-
sure the code written by others is
high quality.”

As developer tools and infra-
structure evolve, especially with
large changes like the integration
of AI tools, the ability to center the
developer through goal-based and
technology-agnostic frameworks
will become an even more critical
piece of our decision-making in-
frastructure. Our list of 30 goals,
grounded in extensive research and
designed to be adaptable to future
technological shifts, provides a solid
foundation for this type of ongo-
ing work. Ultimately, this approach
empowers us to create tools and
infrastructure that truly support
developers in achieving their goals,
driving innovation, and deliver-
ing value.

References
 1. C. Jaspan and C. Green, “A human-

centered approach to developer

productivity,” IEEE Softw., vol. 40,

no. 1, pp. 23–28, Jan./Feb. 2023, doi:

10.1109/MS.2022.3212165.

 2. J. Tan, “User ‘Journeys’: A tool to

align cross-functional teams,” in

Proc. Int. Commun. Comput. Inf.

Sci. (HCI), C. Stephanidis, M. An-

tona, S. Ntoa, and G. Salvendy, Eds.,

Cham, Switzerland: Springer-Verlag,

2023, vol 1834, pp. 163–167.

 3. C. Jaspan and C. Green, “Developer

productivity for humans, part 1: Hy-

brid productivity,” IEEE Softw., vol.

40, no. 2, pp. 13–18, Mar./Apr. 2023,

doi: 10.1109/MS.2022.3229418.

 4. S. D’Angelo et al., “Measuring devel-

oper experience with a longitudinal

survey,” IEEE Softw., vol. 41, no.

4, pp. 19–24, Jul./Aug. 2024, doi:

10.1109/MS.2024.3386027.

 5. C. Jaspan et al., “Enabling the study

of software development behav-

ior with cross-tool logs,” IEEE

Softw., vol. 37, no. 6, pp. 44–51,

Nov./Dec. 2020, doi: 10.1109/

MS.2020.3014573.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

BENJAMIN FERRARI-CHURCH is a user experience research

manager on the Developer team at Google in Sunnyvale, CA 94089

USA. Contact him at ferrarichurch@google.com.

CAROLYN EGELMAN is a quantitative user experience researcher

on the Engineering Productivity Research team at Google in Sunny-

vale, CA 94089 USA. Contact her at cegelman@google.com.

http://dx.doi.org/10.1109/MS.2022.3212165
http://dx.doi.org/10.1109/MS.2022.3229418
http://dx.doi.org/10.1109/MS.2024.3386027
http://dx.doi.org/10.1109/MS.2020.3014573
http://dx.doi.org/10.1109/MS.2020.3014573
mailto:cegelman@google.com

	14_41ms05-developerprod-3410830

