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Abstract—Emotions arise from a complex interplay of various
factors, including conscious experience, physiological processes,
and contextual elements. Although emotions are inherently dy-
namic processes, this aspect is oftentimes neglected in experi-
mental protocols. In this study, we employed dynamical systems
theory to investigate the time-varying self-assessed emotion rat-
ings. We used the continuous ratings of the publicly available
CASE dataset, in which thirty individuals rated their level of
arousal and valence while watching videos designed to evoke
four different emotions. Firstly, we analyzed the univariate
dynamics by reconstructing the phase space from the arousal
and valence series separately, and quantified their regularity
and spatial complexity by using three metrics: Fuzzy, Sample,
and Distribution Entropy. Then, we combined the arousal and
valence series and proposed a novel index, the Multichannel
Distribution Entropy (MDistEn), to estimate the complexity of
the bivariate phase space. By coupling the two dimensions, we
found that MDistEn resulted as an effective marker of fear,
showing patterns statistically different from all of the other
stimuli (p-value≤0.001). These findings support the investigation
of the time-varying dynamics of annotated emotion ratings as
a promising pathway to discriminate the onset of fear-related
pathological states.

Index Terms—Affective Computing, fear, arousal, valence,
Fuzzy Entropy, Distribution Entropy, multivariate, Multichannel
Distribution Entropy.

I. INTRODUCTION

THE investigation of the dynamic nature of human emo-
tions constitutes a pivotal role in emotion science, albeit

it has long been overshadowed [1], [2]. An emotional state
arises, unfolds, and changes naturally over time. Consequently,
investigating the subjective experience of emotions with a fo-
cus on its temporal dimension yields significant computational
insights. This approach enables the identification, modelling
and recognition of emotional states as they occur and evolve,
thereby providing critical information.

By taking into account the temporal dimension, several
researchers have proposed a dynamical system-based theo-
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retical conceptualization of emotions and affects: in music-
induced emotions [3]–[5], infant emotional development [6],
for psychiatric disorders models of schizophrenia [7], and for
the design of cognitive architectures [8]. Particularly, in [3], it
is proposed a framework grounded on earlier evidence traced
by Russell [9], which suggests a complex system view of
emotions by identifying the affective dimensions of hedonic
tone (i.e., valence) and activation (i.e., arousal) as the two
basic emotional state-space coordinates. These two dimensions
were intended as parsimonious descriptors of the affective
space, onto which discrete emotions can be mapped, as well
as interacting emotional driving parameters [4]. A similar
approach was adopted in [5], where the researchers collected
and analyzed second-by-second evaluations of valence and
arousal in music excerpts. According to appraisal theories
[2], computational models of emotions have been proposed
as processes involving multiple interacting components over
time [10], hence inherently considering the dynamic essence
of emotional states.

In the field of Affective Computing, several studies have
been conducted with the aim of extracting objective infor-
mation from physiological dynamics in order to character-
ize emotional processes [11]–[13]. In particular, nonlinear
analysis techniques have already demonstrated remarkable
performance when deployed for the assessment of healthy
and pathological cardiac [14]–[17] and cortical [11], [18], [19]
dynamics. Among the available nonlinear metrics quantifying
chaos in a physiological dynamical system, spatial complexity
and irregularity indexes commonly describe the dynamical
behavior of a system in its phase-space domain. To date,
these nonlinear measures have proved their effectiveness in
differentiating between different cardiac conditions [20]–[23]
and emotional states [11], [14], [17], [24].

The dynamic aspect of the self-reported emotional experi-
ence has frequently been overlooked in practical terms. This
is primarily due to both the lack of proper investigation
techniques and the limitations imposed by the available data in
the field of emotion discrimination and recognition. The stan-
dard pipeline of experimental protocols for eliciting affective
responses comprises three key components: the presentation
of stimuli designed to evoke emotions, the self-assessment of
the subjective experience, and the acquisition of physiological
and/or behavioral data. Specifically, while the presentation of
stimuli and the acquisition of physiological or behavioral data
are usually time-varying, the self-assessment of the individ-
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ual’s emotional perception occurs only within a specific time
frame after the stimulation session. This assessment is often
conducted using self-report questionnaires that employ discrete
scales, such as PANAS [25] and SAM [26]. Not only does
this approach have some limitations as failing to capture the
temporal dynamics of the aroused emotional states, but it also
shows the inadequacy of using discrete scales to evaluate the
experienced emotions.

Recently, several researchers have redirected their focus to
novel annotation tools [27], [28] that enable the continuous
assessment of emotional perception throughout the process
of affective elicitation. Therefore, the continuous assessment
during the elicitation phase enables the collection of time-
varying ratings of the emotional variable of interest. Particu-
larly, the publicly-available Continuously Annotated Signal of
Emotion (CASE) dataset [29] was built up by continuous self-
assessed annotated ratings of the arousal and valence dimen-
sions, according to Russell’s Circumplex Model of Affects [9].
This dataset contains recordings of the annotated self-assessed
ratings and physiological signals collected from 30 healthy
participants elicited with short videos with emotional content.
In [28], the authors previously reported statistically significant
differences in the mean arousal and valence values.

Although emotions have already been investigated as com-
plex systems [1], [2], their characterization could benefit
from quantitative information-theoretic approaches, such as
entropy-based indexes, for determining the information content
embedded in their temporal dynamics. As observed in our
preliminary study [30], the annotated time-varying arousal
ratings showed different entropy levels when the perception
of fear and relaxing stimuli was compared. Remarkably, the
existing literature has not yet highlighted the importance of an-
alyzing and characterizing the complex dynamics of conscious
emotional perception through nonlinear time series analysis
techniques. The goal of this work lies in delving into the if and
how entropy indexes can differentiate between emotional states
when accounting for the dynamical behavior of time-varying
arousal and valence ratings. Furthermore, we propose a novel
multichannel complexity index, which describes the emotion
process in a comprehensive manner, taking into account both
the arousal and valence dimensions. In particular, we aim to
provide novel insights by computing synthetic indexes based
on the available time-varying ratings from the CASE dataset
rather than the discrete ones, which are typically used in
standard protocols for emotion evaluation [16], [31], [32].

We used Takens’s theorem for the phase-space reconstruc-
tion [33] of arousal and valence signals, hence determining
their attractors (or trajectories). Firstly, we tested the low
fractal dimension of the attractors of arousal and valence
time series using the correlation dimension method [34].
Then, we applied entropy algorithms (i.e., Sample Entropy
(SampEn), Fuzzy Entropy (FuzzyEn) and Distribution Entropy
(DistEn) [11], [15], [17], [24]) on the reconstructed phase-
space trajectories, decoupling the information in the arousal
and valence signals by analyzing them separately. In addition,
we conducted a bivariate analysis on the combination of
both the valence and arousal signals resulting in the proposal
of a novel approach: the Multichannel Distribution Entropy

(MDistEn). Finally, to provide a comprehensive design of the
conscious and unconscious aspects of the emotional process,
we studied the linear and nonlinear cardiovascular dynamics
by analyzing the electrocardiographic (ECG) signals provided
by the CASE dataset.

The rest of this work is organized as follows: in Section
II, we describe the CASE dataset; in Section III we detail
the methodological steps to compute the complexity indexes
and the statistical analysis; experimental results are shown in
Section IV; and in Section V we discuss them together with
their implications.

II. MATERIALS: ANNOTATED AND PHYSIOLOGICAL DATA

A. The Continuously Annotated Signal of Emotion (CASE)
Dataset

The CASE dataset is a collection of both physiological and
annotated signals gathered from a cohort of 30 young adults
(15 females, aged 25.7 ± 3.1 years; 15 males, aged 28.6 ±
4.8 years) while they watched 8 different video clips [28],
[29]. The videos were selected from a list of 20 videos [29]
following guidelines by previous studies and the outcomes
of a preliminary study. They were specifically designed to
evoke four distinct emotions in the viewers: relaxation, fear,
amusement, and boredom. Two videos were used to induce
each emotion, each with a duration ranging from 119 to 197
seconds. During the experimental sessions, each participant
viewed the eight videos in a pseudo-randomized order to
discard any effects related to presenting the same sequence of
stimuli. A two-minute-long blue screen video was displayed
to separate two consecutive emotional stimulations (see Fig.
1, top panel).

In comparison with other datasets that offer continuous
ratings of emotions [35]–[39], the CASE dataset has the advan-
tage of providing self-assessed ratings of both the valence and
the arousal dimensions of the experienced emotion, according
to Russell’s bidimensional model of affects [9]. In contrast to
conventional approaches that rely on mouse-based annotations,
participants employed a Joystick-based Emotion Reporting
Interface [40], which enabled them the real-time annotation
of the valence and arousal dimensions when watching the
emotional videos. A training session, consisting of five short
videos, made participants familiarize themselves with the
annotation task and the user interface prior to the experiment
[29]. As shown in Fig. 1 (bottom panel), the graphical interface
for emotion ratings was set up on Russell’s Circumplex model
of affects [9]. Throughout the entire experimental session,
a visual display of the participant’s annotations was pre-
sented on the upper-right corner of the screen. This feature
allowed participants to receive real-time feedback on their
own annotations. The Self-Assessment Manikin [26] icons
were superimposed on the valence-arousal plane to support
users with the annotation task. Each participant was able to
rate his/her emotional state along the valence and arousal
dimensions, in the [0.5, 9.5] range, by moving and/or holding
a red pointer in the graphical interface through the joystick
(see Fig. 1, bottom).

Furthermore, during the experimental session, the acquisi-
tion of the following physiological signals took place [29]: the
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Fig. 1. (Top) Representation of the experimental timeline to collect the
annotated data in the CASE dataset. (Bottom) Graphical representation of the
joystick interface (left) and a picture of the display with the valence-arousal
plane superimposed to the video (right, adapted from [28]), whose details (the
valence-arousal plane and the red pointer) are highlighted in blue.

electrocardiogram, the respiration signal, the photoplethysmo-
graphic signal, the electrodermal activity, the skin temperature,
and the electromyographic signals of three facial muscles. A
Data Acquisition (DAQ) system was utilized to acquire both
physiological and annotation data, with sampling frequencies
of 1000 Hz and 20 Hz, respectively. In this work, we analyzed
the linearly interpolated arousal and valence annotation data
of all eight emotion-eliciting videos and the interbeat series
(hereinafter RR series). The linearly interpolated data were
provided in [29] as a convenient data source in which latencies,
possibly occurring due to problems in data acquisition and
logging, were solved through linear interpolation of the raw
data. This process did not alter the original sampling frequency
of the physiological and annotation data.

B. RR series Analysis

We analyzed the ECG time series for each participant
during each emotional stimulation. As a pre-processing step,
we employed the software Kubios HRV [41] (version 2.2)
to remove artifacts and ectopic beats from the ECG data.
Additionally, the software automatically extracted the R peaks
from the ECG, thus obtaining the RR series, which was further
resampled at a frequency of 4 Hz. According to [42], for
each RR series we computed the following standard time and
frequency domain features: mean; standard deviation (STD);
root mean square of successive differences (RMSSD) between
adjacent RR intervals; percentage of the number of pairs of
adjacent RR intervals differing by more than 50 ms (pNN50)
over all the RR intervals; power in the low frequency (LF
power) and high frequency (HF power) bands; ratio between
LF power and HF power (LF/HF ratio); HF in normalized
units (HFnorm=HF power/(HFpower + LF power)). In ad-
dition, following the methodologies we described in III-C,
we computed three nonlinear indexes: SampEn, FuzzyEn, and
DistEn.

III. METHODS

Nonlinear dynamical system analysis is extensively used to
model systems across biological sciences and engineering. A
nonlinear dynamical system changes its state over time and
can exhibit chaotic and unpredictable behavior. To study these
changes, we use a concept known as phase space representa-
tion [43], a powerful approach to studying the state trajectory
when an analytical approach can not be pursued. It is the case
of the annotated and physiological time series investigated in
this study. Since we do not dispose of a set of equations to
describe the temporal evolution of arousal, valence, and RR
series dynamics, we employed the measurements of these vari-
ables, as well as their availability in different conditions (i.e.,
emotional stimuli), using nonlinear time series approaches to
reconstruct their phase space. In the following Sections, we
describe the methodological steps to compute the correlation
dimension and three state-of-the-art entropy indexes com-
monly used to characterize the phase spaces: Sample Entropy,
Fuzzy Entropy, and Distribution Entropy. Moreover, since the
objective of this study is to comprehensively characterize the
dynamics of emotion processes, we will also delve into the
details of the computation of two multichannel entropy indexes
encompassing more than one phase space at the same time:
Multichannel Fuzzy Entropy and Multichannel Distribution
Entropy, the last one being an original contribution of this
work.

A. Time-Delay Reconstruction of Phase Space

To analyze the nonlinear dynamics of the annotated ratings
of arousal and valence dimensions and the RR series, the
starting point was the time-delay reconstruction of phase
space. We considered each participant’s annotated rating in
each video stimulation as a unique time series.

To reconstruct the phase space from a time series we applied
Takens’s embedding theorem [33], which requires determin-
ing two parameters: the time delay (τ ) and the embedding
dimension (m). The time delay estimates how points in the
time series are connected, while the embedding dimension
conveys information on the dimensionality of the space we
are mapping the time series into. Specifically, we computed τ
as the first minimum of the auto-mutual information function
[44], through the method described in [45]. Basically, this
method takes advantage of kernel density estimation based
on standard Gaussian kernels to compute the auto-mutual
information, which is defined as the mutual information be-
tween the original time series and its delayed version. To
scale the variance of the kernel function we selected the
smoothing parameters according to Silverman’s rule of thumb,
which is robust to skew in the distribution of time series data
[45]. Regarding the embedding dimension m, we selected its
value according to the False Nearest Neighbors algorithm, as
originally conceived in [46]. This algorithm requires setting
as inputs the τ of the time series being reconstructed and
investigating how the number of neighboring points in the
phase space trajectory changes when the embedding dimension
increases [46].
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Starting from the original time series x = [x1, x2, . . . , xN ],
with N being the overall number of samples, and given the
parameters τ and m, we reconstructed the N−(m−1)τ phase-
space vectors in Rm. We computed each embedded vector ui
in the phase space as ui = [xi, xi+τ , . . . , xi+(m−1)τ ], with
i ∈ [1, N − (m − 1)τ ]. The embedded vectors’ coordinates
defined the states of the arousal and valence dimensions in
their phase spaces.

B. Correlation Dimension Analysis

Before applying information-theoretic measures to charac-
terize the annotated time series, we investigated the self-
similarity property of these signals. In a general sense, the
concept of self-similarity refers to the property of certain
objects having the same structure at different scales. When
applied to signals, this property manifests if the time series
shows long-range temporal correlations when changing the
temporal scales of investigation [43]. To this aim, we com-
puted the correlation dimension (CorrDim), an estimate of the
attractor’s dimension of the underlying dynamical system. This
measure, first described in [34], has been widely utilized to
effectively differentiate various dynamical behaviors, such as
deterministic chaos and random noise. It provides valuable
insights into the self-similarity property of time series, as self-
similar time series exhibit a non-integer attractor dimension
[43].

The CorrDim is estimated by looking at the scaling property
of the correlation integral, a measure of the spatial correlation
of the attractor, defined as:

C(l) = lim
N→∞

1

N2

N∑
i=1

N∑
j=1,j ̸=i

H(l − d(ui, uj)) (1)

with H being the Heaviside step function, d(ui, uj) the value
of the euclidean distance between two vectors ui and uj , and l
a threshold value. For small values of l, the correlation integral
shows a power law behavior depending on the CorrDim:

C(l) ∼ lD (2)

with the exponent D being the CorrDim.
Practically, since experimental time series are limited by

their sample size, the D exponent is usually computed as
the derivative of the curve given by C(l) with respect to l
in a logarithmic plot. For the computation of the derivative,
the number of points to consider (i.e., the scaling range)
can be related to the smallest available distance between the
embedded vectors, namely l0. In this study, we used the
algorithm proposed in [47] to estimate the CorrDim for each
video type’s arousal and valence time series. Specifically, to
calculate the CorrDim values only, we set the value of τ
computed as described in Section III-A, and m in the range
[2, 5], given the very short duration of the time series. The
length of the scaling range (l/l0) was set equal to 4, according
to the guidelines in [47]. We selected as the most reliable
estimate of the correlation dimension the value of d computed
by setting the maximum possible m inside the range.

C. Entropy Analysis

The nonlinear dynamics of the reconstructed attractors for
arousal, valence, and RR series were characterized using three
information-theoretic methods: Sample entropy (SampEn)
[48], Fuzzy entropy (FuzzyEn) [49], and Distribution Entropy
(DistEn) [21]. SampEn is a widely used measure of irregularity
for physiological series, FuzzyEn quantifies regularity based
on fuzzy theory, and DistEn is an index that captures the spatial
complexity of the dynamical system. Hereinafter we provide
a brief overview of these three algorithms.

1) Sample Entropy: The algorithm to compute SampEn
[48] was devised to quantify the irregularity of physiological
time series dynamics. According to its definition, SampEn is
the negative natural logarithm of the conditional probability
that two m-dimensional trajectories that are similar remain
similar when the value of m is increased by a unit, excluding
self-matches from the calculation. SampEn depends on three
parameters (τ , m, r), where r represents the threshold to
compare the distances between pairs of points belonging to
the phase space.

Given the parameters describing the reconstructed phase
space, our starting point to compute SampEn was evaluating
the point distances between all pairs of points. We calculated
the Chebyshev’s distance d(ui, uj) accounting for each pair
of vectors ui and uj , with i ̸= j to exclude self-matches, as
follows:

d(ui, uj) = max
k=1,...,m

{|xi+(k−1)τ − xj+(k−1)τ |} (3)

We employed the values d(ui, uj) to compute Bi
m(r), which

represents the average number of times the point distances are
lower than the threshold r:

Bi
m(r) =

1

N −mτ−1

N−mτ∑
j=1,j ̸=i

H(r − d(ui, uj)) (4)

for i ∈ [1;N −mτ ], with i ̸= j to exclude self-matches and
N being the overall length of the original time series. H is
the Heaviside step function. We chose the parameter r as the
20% of the standard deviation of each time series, according
to previous literature [48], [50], [51]. We computed the value
Bm(r) as follows:

Bm(r) =
1

N −mτ

N−mτ∑
i=1

Bi
m(r) (5)

with N −mτ being the total number of vectors. Then, after
increasing the embedding dimension value from m to m+ 1,
we computed Bm+1(r) according to the procedure pointed out
from equation (3) to equation (5). Finally, the SampEn value
results from the following equation:

SampEn(m, τ, r,N) = − ln (
Bm+1(r)

Bm(r)
) (6)

2) Fuzzy Entropy: In [49], Chen et al. introduced FuzzyEn
as a method to assess the regularity of reconstructed phase
spaces. FuzzyEn was designed to mitigate the influence of
the parameter r on measuring the distances between pairs of
points in the phase space. Specifically, it utilizes the concept
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of fuzzy sets to measure the closeness of points in the phase
space by assigning a continuous value between 0 and 1 to
each distance between pairs of points based on a membership
degree function. This means that each distance between points
contributes to the estimation of trajectory similarity using
its fuzzy measure. In contrast, SampEn relies on a binary
comparison between distances of points in the phase space
and a specific threshold (see eq. (4)).

The first step of the algorithm to compute the FuzzyEn
is the calculation of the Chebyshev distances d(ui, uj) be-
tween each pair of embedded vectors ui and uj in the phase
space, according to eq. (3). Then, as a membership degree
function, the FuzzyEn algorithm uses the exponential function
exp (−xn/r), which allowed us to compute the similarity
degree Dm

ij (n, r) of the embedded vectors ui and uj based
on the vector distance, as follows:

Dm
ij (n, r) = exp (−[dm(ui, uj)]

n/r) (7)

with m being the embedding dimension; n and r are param-
eters related to the width and the gradient of the boundary
of the exponential function, respectively. We chose r equal
to the 20% of the standard deviation of the time series and
the parameter n equal to 2, according to previous literature
in physiological time series analysis [49]. Then, the sample
correlation measure Am(n, r) is used to compute the value of
the similarity degree for all vectors in the space, averaged by
the total number of vectors N−mτ , according to the following
formula:

Am(n, r, τ) =
1

N −mτ

N−mτ∑
i=1

[
1

N −mτ − 1

N−mτ∑
i=1,i̸=j

Dm
ij (n, r)]

(8)
Afterwards, we increased the value of the embedding dimen-
sion from m to m + 1 and we computed the new values of
Dm+1

ij (n, r) and Am+1(n, r) following the formulas in eq. (7)
and (8). The FuzzyEn is then defined as the negative natural
logarithm of the deviation of Am(n, r, τ) from Am+1(n, r, τ):

FuzzyEn(n, r,m, τ) = −ln(
Am+1(n, r)

Am(n, r)
) (9)

3) Distribution Entropy: We computed the DistEn [21] to
quantify the spatial complexity of the reconstructed phase
space. The DistEn, in comparison to the SampEn and similar to
FuzzyEn, uses all the distances between vectors in the recon-
structed phase space. However, the DistEn value relies on the
computation of a probability density estimate of distances. The
robustness of the input parameters and the time series length
represents a significant advantage of the DistEn algorithm [21].

Firstly, we computed the Chebyshev distance d(ui, uj)
between each pair of points ui and uj in the phase space,
without taking into account self-matches (eq. 3). Then, we
employed a histogram-based approach to compute the empir-
ical probability density function (ePDF) of all distance values
with i ̸= j. Given that the overall number of bins equals B, we
indicated the probability of the distance value falling in each
bin with pb, with b ∈ [1, B]. We set B according to the method
proposed by Friedman and Diaconis [52]. For computational
purposes, we rounded the value of B to the nearest power of

2. Finally, we calculated the value of DistEn as the Shannon
entropy of the ePDF, normalized by the base 2 logarithm of
the number of bins, according to the following equation:

DistEn(B,m, τ) = − 1

log2(B)

B∑
b=1

pb log2(pb) (10)

Normalization is performed in order to restrict the computed
values of DistEn within the range [0, 1].

Table I summarizes the key features of the three entropy
measures used in this study. Specifically, in the first and
second columns of Table I, we explicitly outlined two technical
features of the algorithms, i.e., the required parameters and
the method used to weigh the distances between points in
the phase space. In addition, the third and fourth columns
point out each approach’s main advantages and disadvantages,
respectively. The DistEn index is mainly distinguished from
the others by the higher stability with respect to parameter
settings, accounting for all distances in the phase space,
and its global boundedness by definition [21]. Finally, we
provided a brief interpretation of each index in the last column.
More in detail, the SampEn and FuzzyEn indexes point out
similar behaviors of the phase space characteristics derived
from the time series, which is its regularity [21], [48], [49].
In contrast, the DistEn gives information about the spatial
organization of the phase space. Therefore, it was deemed
informative of the spatial complexity due to its sensitivity only
to the histogram morphology which, in turn, depends on the
probability arrangement (i.e., ePDF) of all distances between
points in the phase space [21]. The CASE dataset offers the
possibility of studying the temporal transients of emotional
perceptions during very different stimuli in terms of arousal
and valence. Therefore, we investigated the performance of
the aforementioned entropy metrics as significant descriptors
of the emotion unfolding process, since they quantify the
regularity and complexity of the system dynamics.

D. Bivariate Entropy Analysis: Multichannel Fuzzy Entropy
and Multichannel Distribution Entropy

We performed a nonlinear analysis of the bivariate phase
space to analyze the information of both the arousal and
the valence time series as two variables of the same system.
As for the univariate case, the first step involved time-delay
reconstruction. We followed the approach proposed in [23]
for the multivariate phase-space reconstruction to compute the
Multichannel Complexity Index.

Specifically, before reconstructing each multivariate phase
space, we normalized the amplitudes of the two time series
by means of the z-score method [23], [53]. For the general
case of a c-variate process, we defined the vectors in Rc of
time delays τ = [τ1, . . . , τc] and of embedding dimensions
m = [m1, . . . ,mc], in which each k-th entry of the vector
corresponds to the parameter related to the original k-th time
series (xk). We computed the multivariate embedded vectors
UM in RM as follows:

UM (i) = [ui,1, ui,2, . . . , ui,M ] (11)
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TABLE I
SUMMARY OF THE CHARACTERISTICS OF EACH ENTROPY INDEX

CHARACTERISTICS

ENTROPY
INDEX Parameters Distance Usage Advantages Disadvantages Interpretation

SampEn
[48] m, τ , r H(r − di,j)

- stable for N > 10m

- reduces the biases of previous
algorithms (e.g. ApEn [48])

- strong sensitivity to m, τ, r;
- does not consider all vector
distances;
- undefined values for short se-
ries;
- N-dependent range of values.

Regularity:

- high for noisy series;
- intermediate for chaotic and mixed series;
- low for periodic series.

FuzzyEn
[49] m, τ , r, n exp (−dn

i,j/r)

- less dependence on series length;
- assign a weight to all vector dis-
tances

- sensitivity to m, τ , r, n;
- N-dependent range of values

Regularity:

- high for noisy series;
- intermediate for chaotic and mixed series;
- low for periodic series.

DistEn
[21] m, τ , B ePDF (di,j , B)

- stable for short series;
- consider all vector distances in
the corresponding ePDF;
- bounded in the range [0,1]

- sensitivity to m, τ , B.

Spatial Complexity:

- high for chaotic series;
- intermediate for noisy and mixed series;
- low for periodic series.

ui,j = F(x1,(i+(j−1)τ1), x2,(i+(j−1)τ2), . . . ,

xk,(i+(j−1)τk)),
(12)

with F being the median value of the k samples and
j ∈ [1,M ]. Since the median of m was equal to 3 for
both the arousal and valence dimensions of each emotion-
inducing video type, we set M = 3 for the bivariate anal-
ysis. Subsequently, we constructed the vectors UM (i) for
i ∈ [1,mink(Nk −Mτk)], with Nk being the length of the
k-th time series and τk its time lag. Then, we calculated the
Chebyshev distance d(UM (i), UM (j)) between each pair of
embedded vectors UM (i) and UM (j) in the bivariate phase
space, without accounting for self matches. According to [23],
we computed the Multichannel Fuzzy Entropy (MFuzzyEn)
starting from the embedded vectors UM , as a measure of
regularity of the bivariate process. We set the parameter
R = .2×

∑
k std(xk) and n equal to 2, according to previous

literature in the field [23], [49], [53]. However, it was not
possible to apply a multiscale approach to MFuzzyEn, which
would have provided specific information on the complexity
of the multichannel system, as in [23], since the time series
analyzed in this study all had an ultra-short duration. For
this reason, we propose a new multichannel complexity index
based on the calculation of the Multichannel Distribution
Entropy (MDistEn) with a single-scale approach. Following
this method, the structural complexity of the reconstructed
bivariate attractor is quantified by the DistEn value, found
by applying the algorithm described in Section III-C3 to
the reconstructed bivariate vectors. The Matlab code of the
MDistEn algorithm we have developed is publicly available1.

1https://github.com/grgn96/MDistEn/tree/v0.0.1

E. Statistical Analysis

We computed the values of the nonlinear indexes from the
arousal and valence ratings and the standard and nonlinear
indexes from the RR series, for each participant and for each
video stimulation. Then, for each index and for each induced
emotion (scariness, amusement, relaxation, and boredom), we
averaged the values computed for the two videos. As an
example, all the features belonging to the “SCARY” sample
resulted from the average of the values of the “scary-1” and
“scary-2” videos.

As a first statistical analysis, we compared the CorrDim and
the entropy indexes computed from the valence and arousal
time series separately. Therefore, we compared the CorrDim,
SampEn, FuzzyEn, and DistEn values through a within-subject
statistical comparison between the four emotions induced by
the videos. Then, we performed the statistical comparison
of the multivariate measures, thus obtained by coupling the
information in the valence and arousal time series. Specifically,
we compared the MDistEn and MFuzzyEn values. Again, we
performed a within-subject statistical comparison between the
four emotional stimulations.

In both analyses, for each measure, we applied the non-
parametric Friedman test to investigate differences between
the medians of the four samples. If a difference was found,
we employed the Wilcoxon signed-rank test for paired samples
as the multiple comparison test to compare each combination
of two groups. We set the statistical significance level at
α=0.05 and we applied the Bonferroni correction when testing
for multiple comparisons. We used non-parametric statistical
tests due to the non-gaussianity of the sample distributions,
demonstrated by testing each sample with the Shapiro-Wilk
test. The same statistical tests were applied to investigate the
differences in the RR series features for the four emotional
stimulations.
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TABLE II
VALUES OF CORRELATION DIMENSION FOR THE AROUSAL TIME SERIES,

GROUPED BY VIDEO TYPE

Video Type CorrDim
Median MAD Integer %

Scary-1 0.842 0.269 0
Scary-2 0.830 0.208 0
Amusing-1 0.845 0.397 0
Amusing-2 0.653 0.386 0
Relaxing-1 0.683 0.300 3.85
Relaxing-2 0.794 0.426 3.85
Boring-1 0.562 0.198 0
Boring-2 0.505 0.326 0

TABLE III
VALUES OF CORRELATION DIMENSION FOR THE VALENCE TIME SERIES,

GROUPED BY VIDEO TYPE

Video Type CorrDim
Median MAD Integer %

Scary-1 0.613 0.274 0
Scary-2 0.604 0.277 0
Amusing-1 0.749 0.444 0
Amusing-2 0.485 0.282 0
Relaxing-1 0.439 0.208 4
Relaxing-2 0.500 0.447 0
Boring-1 0.272 0.203 0
Boring-2 0.325 0.280 0

According to the quality of the signals, we performed all the
statistical analyses on a sample of 26 participants. We executed
all the analyses using Matlab (Release 2021b, Mathworks Inc.,
Natick, MA).

IV. RESULTS

A. Correlation Dimension

For the correlation dimension, we listed in Tables II and
III the median, the median absolute deviation (MAD), and
the percentage of integer values (within a tolerance of 0.01)
found for the arousal and valence time series, respectively.
The median values show a decreasing trend from the fear- and
amusement-inducing videos to the relaxing and boring ones,
for both the arousal and valence series. Regarding the per-
centage of integer values, it is 0 for all video types, except for
the “relaxing-1” and “relaxing-2” videos exclusively. However,
in these cases, the percentages were always lower than 5%.
Statistical tests outlined that no significant differences held for
the CorrDim values of the arousal data among stimulations
(Friedman test χ2(3) = 5.123, p = 0.163), even if a clear
trend appears for these values (Fig. 2, left panel). On the
other hand, not only there is a similar trend shown by the
CorrDim values of the valence data (Fig. 2, right panel), but
post hoc analysis (Friedman test χ2(3) = 8.472, p = 0.037)
also reveals a significant difference between the scary sample
and the boring one (p=0.017). A report of all post hoc tests
for the CorrDim of the valence data is available in Table IV.

B. Univariate entropy analysis

1) Arousal: In Fig. 3a we reported the DistEn, SampEn,
and FuzzyEn values for the arousal time series of the four
video types. A clear decreasing trend is shown for the DistEn

TABLE IV
ADJUSTED p-values OF THE CORRELATION DIMENSION FOR THE

VALENCE TIME SERIES, GROUPED BY EMOTION TYPE

Emotion Amusing Relaxing Boring
Scary 1 0.605 0.017

Amusing 1 0.088
Relaxing 1

from the scary to the boring sample (Fig. 3a, left panel).
Specifically, the DistEn for the scary videos has a higher
median (± MAD) value (0.898 ± 0.030) compared to the
amusing (0.881 ± 0.033), the relaxing (0.856 ± 0.057), and
the boring (0.801 ± 0.046) videos. The outcome of the
Friedman test revealed differences among the four samples
(χ2(3)=19.154, p=2.5×10−4). After correcting the p-values
with Bonferroni’s method, we found statistically significant
differences between the scary and boring (p≤0.001) and the
amusing and boring stimulations (p=0.002).

The SampEn and FuzzyEn median values do not show the
same decreasing trend as the DistEn values. The SampEn
exhibits a significantly higher median value (Friedman test
χ2(3) = 23.769, p = 2.8×10−5) for the amusing (0.413 ±
0.039) videos, compared in decreasing order to the relaxing
(0.330 ± 0.087, p = 0.007), the scary (0.320 ± 0.036,
p≤0.001), and the boring (0.266 ± 0.071, p=0.002) videos
(Fig. 3a, central panel). Similarly, the FuzzyEn presents the
highest median value for the amusing (0.302 ± 0.090) videos,
followed in decreasing order by the scary (0.263 ± 0.041),
the relaxing (0.262 ± 0.065), and the boring (0.181 ± 0.085)
videos (Fig. 3a, right panel). However, the only statistically
significant differences (Friedman test χ2(3) = 12.831, p =
0.005) are between the scary and boring (p=0.048) and the
amusing and boring stimulations (p=0.005).

Table V summarizes the results of the statistical tests among
emotion types for the three entropy indexes computed on
the arousal series. Moreover, as depicted in summary in
Fig. 5 (left panel), for the arousal data the median of the
DistEn values peaks toward the scary stimulation while the
amusement stimulation achieves the highest values for the
metrics of regularity. Boredom shows the lowest values for
all metrics among the four emotion categories.

2) Valence: Fig. 3b shows the DistEn, SampEn, and
FuzzyEn values for the valence time series of the four video
types. As for the arousal data, the DistEn shows a decreasing
trend when comparing all stimulations from the scary to the
boring (Fig. 3b, left panel). The DistEn computed for the
scary videos presents a higher median value (0.859 ± 0.036)
compared to the amusing (0.836 ± 0.063), the relaxing (0.811
± 0.063), and the boring (0.756 ± 0.063) videos. Furthermore,
after testing for differences among groups (Friedman test
χ2(3)=17.954, p=4.5×10−4), post hoc analysis revealed that
the scary stimulation is significantly different from the relaxing
(p = 0.028) and the boring stimulation (p ≤ 0.001). Also,
we found the amusing and boring stimuli to be significantly
different (p = 0.019). The SampEn values show a similar
tendency as the DistEn values (Fig. 3b, central panel), whereas
the FuzzyEn values point out a different behavior (Fig. 3b,
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Fig. 2. Violin plots showing the distribution of the CorrDim values for the annotated arousal (left) and valence (right) time series. The values reported
here correspond to the average values of the CorrDim, computed by averaging for the same participants the indexes computed from the time series of the
two videos (i.e., the two videos for each induced emotion). We reported statistically significant p-values, corrected by the number of multiple comparisons,
according to the following legend: ∗ p ≤ 0.050; ∗∗ p ≤ 0.010; ∗∗∗ p ≤ 0.001.

TABLE V
ADJUSTED p-values OF THE INDEXES FOR THE UNIVARIATE ENTROPY

ANALYSIS OF THE AROUSAL TIME SERIES, GROUPED BY EMOTION TYPE

DistEn
Emotion Amusing Relaxing Boring

Scary 1 0.061 3×10−4

Amusing 0.534 0.002
Relaxing 0.451

SampEn
Emotion Amusing Relaxing Boring

Scary 4×10−4 1 1
Amusing 0.007 0.002
Relaxing 1

FuzzyEn
Emotion Amusing Relaxing Boring

Scary 1 1 0.047
Amusing 0.378 0.005
Relaxing 0.187

right panel), more comparable to the tendency of the FuzzyEn
values for the arousal time series. For the SampEn values,
we report no statistically significant comparisons (Fig. 3b,
central panel), although the Friedman test highlighted group
differences (χ2(3) = 10.061, p = 0.018). Conversely, the
FuzzyEn values show a higher median value for the amusing
videos (0.328 ± 0.065), followed in decreasing order by the
scary (0.254 ±0.070), the relaxing (0.243 ±0.072), and the
boring (0.193 ±0.062) videos. We found statistically signif-
icant differences (Friedman test χ2(3) = 13.338, p = 0.004)
between the scary and boring stimulations (p = 0.004) and
the amusing and boring stimulations (p = 0.010) (Fig. 3b,
right panel). A summary of the statistical tests among emotion
types for the three entropy indexes computed on the valence
series is available in Table VI. Moreover, Fig. 5 (central
panel) shows a summary of the performances of the metrics
for the valence data. As for the arousal data, the DistEn
metric appears the best at discriminating the scary stimulation
from the other emotion categories (with the only exception
of amusement). By contrast, the FuzzyEn peaks toward the
amusing stimulation. Boredom achieves the lowest values for
all metrics.

TABLE VI
ADJUSTED p-values OF THE INDEXES FOR THE UNIVARIATE ENTROPY

ANALYSIS OF THE VALENCE TIME SERIES, GROUPED BY EMOTION TYPE

DistEn
Emotion Amusing Relaxing Boring

Scary 1 0.028 3×10−4

Amusing 1 0.019
Relaxing 1

SampEn
Emotion Amusing Relaxing Boring

Scary 1 0.356 0.078
Amusing 0.098 0.663
Relaxing 1

FuzzyEn
Emotion Amusing Relaxing Boring

Scary 1 0.335 0.004
Amusing 0.175 0.010
Relaxing 1

C. Bivariate entropy analysis

Fig. 4 shows the MDistEn and MFuzzyEn values for the
multivariate analysis based on the valence and arousal time
series of the four video types.

The MDistEn values show an almost decreasing trend from
the scary to the boring stimulation (Fig. 4, left panel). After
testing for differences among the stimulations (Friedman test
χ2(3)=32.908, p=3.4×10−7), we outlined that the MDistEn
values computed for the scary videos present a significantly
higher median value (0.834 ± 0.055) compared to the amusing
(0.533 ± 0.070, p≤0.001), the relaxing (0.615 ± 0.091, p≤
0.001), and the boring (0.498 ± 0.077, p ≤ 0.001) videos.
Conversely, for the MFuzzyEn we found an increasing trend
when going from the scary to the boring stimulation (Fig. 4,
right panel). As for the MDistEn values we found significant
differences among groups (Friedman test χ2(3)=17.031, p=
6.9×10−4). However, the MFuzzyEn values of the scary videos
present a significantly lower median value (0.605 ± 0.082)
with respect to the amusing (0.771 ± 0.125, p≤ 0.001), the
relaxing (0.884 ± 0.193, p=0.011), and the boring (0.896 ±
0.179, p≤0.001) videos.

In Table VII we reported the post hoc test outcomes for
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(a)

(b)
Fig. 3. Violin plots pointing out the dispersion of the Distribution entropy (DistEn) values (left), the Sample entropy (SampEn) values (center), and the Fuzzy
entropy (FuzzyEn) values (right) for the arousal (a) and valence (b) time series annotated during the emotional video stimulations. The values reported here
correspond to the averaged values of the entropy indexes, computed by averaging for the same participants the two entropy indexes calculated from the time
series of the two videos (i.e., the two videos for each induced emotion). We reported statistically significant p-values, corrected by the number of multiple
comparisons, according to the following legend: ∗ p ≤ 0.050; ∗∗ p ≤ 0.010; ∗∗∗ p ≤ 0.001.

Fig. 4. Violin plots showing the dispersion of the Multichannel Distribution entropy (MDistEn) values (left) and the Multichannel Fuzzy entropy (MFuzzyEn)
values (right) for the multivariate analysis of the arousal and valence time series. The values reported here correspond to the average values of the entropy
indexes, computed by averaging for the same participants the indexes computed from the time series of the two videos (i.e., the two videos for each induced
emotion). We reported statistically significant p-values, corrected by the number of multiple comparisons, according to the following legend: ∗ p ≤ 0.050;
∗∗ p ≤ 0.010; ∗∗∗ p ≤ 0.001.

the bivariate entropy analysis. Finally, a summary of the two
metrics for the bivariate analysis (Fig. 5, left panel) shows that
the MDistEn is picking toward the scary stimulation, with this
metric behaving as a clear marker of fearful dynamics. By
contrast, the MFuzzyEn peaks toward all the other emotion
categories and decreases for the scary one.

D. RR series parameters
Regarding the temporal features, statistical tests highlighted

that the median (± MAD) value of the mean RR for the

scary stimulation (830 ± 84 ms) was significantly lower than
the boring one (861 ± 60 ms, p = 0.011; Friedman test
χ2(3)=11.400, p=0.010). Moreover, the STD for the scary
stimulation (61 ± 12 ms) was higher than the relaxing one (49
± 12 ms, p=0.018; Friedman test χ2(3)=9.923, p=0.019).
For the other temporal parameters, the Friedman test outlined
no differences among groups for the RMSSD (χ2(3)=2.815,
p = 0.421) and the pNN50 (χ2(3) = 6.190, p = 0.103),
respectively.

In addition, for the frequency domain features, the LF/HF
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Fig. 5. Radar plots summarizing the capability of each entropy measure to discriminate the four emotion categories (i.e., scariness, amusement, relaxation,
and boredom). For each entropy measure, we represented the median of each measure along all emotion categories. Data were normalized in the range [0, 1]
through max-min normalization. Plots on the left and at the center show the univariate analysis for arousal and valence, respectively, whereas the plot on the
right shows the bivariate analysis.

TABLE VII
ADJUSTED p-values OF THE INDEXES FOR THE BIVARIATE ENTROPY

ANALYSIS, GROUPED BY EMOTION TYPE

MDistEn
Emotion Amusing Relaxing Boring

Scary 2.50×10−6 1.97×10−5 1.25×10−5

Amusing 1 1
Relaxing 0.132

MFuzzyEn
Emotion Amusing Relaxing Boring

Scary 2.64×10−4 0.011 9.97×10−4

Amusing 1 0.736
Relaxing 1

ratio showed a significant increase for the amusing stimulation
(2.177 ± 0.761) compared to the scary one (1.874 ± 0.693,
p=0.021; Friedman test χ2(3)=9.092, p=0.028). However,
the Friedman test found no differences among groups for
the LF power (χ2(3) = 4.846, p = 0.183) and the HFnorm
(χ2(3) = 4.754, p= 0.191), respectively. In addition, even if
we found group differences for the HF power (χ2(3)=8.354,
p= 0.039), post hoc analysis revealed no differences among
specific emotion types after Bonferroni correction.

Finally, the statistical analysis of the nonlinear features
pointed out that the SampEn for the scary stimulation (1.102
± 0.220) was significantly lower than the relaxing (1.334 ±
0.295, p=0.019; Friedman test χ2(3)=8.215, p=0.042). We
found no differences among groups for the other nonlinear
indexes, neither for the FuzzyEn (χ2(3) = 7.246, p= 0.065)
nor for the DistEn (χ2(3)=2.308, p=0.511), respectively. We
reported all adjusted p-values of multiple comparison tests for
parameters whose Friedman test rejected H0 in Table VIII.

E. Summary of Results

We summarize the results reported in Sections IV-A, IV-B,
IV-C, IV-D to show several noteworthy findings of this work.
Firstly, overall, the CorrDim index showed no significant sta-
tistical differences considering the four emotional stimuli for
both valence and arousal dimensions, with the only exception
being the difference between scary and boring stimuli for the
valence series. Results of the univariate entropy analysis, in

TABLE VIII
ADJUSTED p-values OF THE RR SERIES PARAMETERS, GROUPED BY

EMOTION TYPE

mean RR
Emotion Amusing Relaxing Boring

Scary 0.261 0.066 0.011
Amusing 0.335 0.123
Relaxing 1

STD RR
Emotion Amusing Relaxing Boring

Scary 0.335 0.018 0.245
Amusing 0.401 1
Relaxing 0.123

LF/HF
Emotion Amusing Relaxing Boring

Scary 0.021 1 1
Amusing 0.663 0.175
Relaxing 1

HF power
Emotion Amusing Relaxing Boring

Scary 0.451 0.296 0.663
Amusing 1 1
Relaxing 1

SampEn
Emotion Amusing Relaxing Boring

Scary 1 0.019 0.356
Amusing 1 1
Relaxing 0.296

Section IV-B, reported the same trends for both annotated
dimensions when evaluating the DistEn and FuzzyEn indexes:
scary and amusing stimuli resulted to be more complex and
irregular than boring. In addition, focusing on the DistEn
index, scary stimuli presented significantly higher complexity
than relaxing ones along the valence dimension only. By
coupling the arousal and valence dimensions and studying
the characteristics of the bivariate phase space (Section IV-C),
we reported coherent findings, tailored towards a significant
difference in fear dynamics compared to the other elicited
emotions. Specifically, scary stimuli were found to be the
most complex and regular, after statistical analysis. Finally,
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as outlined in Table VIII, the analysis of the RR series mainly
supported our findings on scary stimuli showing a different
physiological behavior from other induced emotions: mean RR
decreases compared to boring stimulation, STD RR increases
and SampEn decreases (i.e., regularity increases) compared to
relaxing stimulation.

V. DISCUSSIONS AND CONCLUSION

Previous studies accurately portrayed the importance of
accounting for the dynamic nature of human emotions [1],
[2], [10]. In the emotion recognition field, the dynamics of
physiological signals have been investigated to find objective
markers for distinguishing specific emotions [15], [17] and to
understand how affective states influence both the peripheral
and central nervous systems [5], [11], [19]. However, to
date, very few studies specifically focused on analyzing the
conscious perception of emotions [5], [30], with a particular
focus on nonlinear dynamics. In this work, to explore the
complex dynamics of conscious emotions acquired through
a continuous annotation of self-assessed scores in real-time
[29], we applied nonlinear time series analysis techniques [43],
successfully adopted in previous literature for the analysis of
physiological dynamics [11], [15], [17].

We used the time-varying self-assessed arousal and valence
ratings of the CASE dataset [29], collected during a protocol
of emotion elicitation with eight video clips aiming at inducing
four distinct emotions (i.e., scary, amusing, relaxing, and
boring). As the first step, we separately reconstructed the
phase-space trajectories of the available annotated arousal and
valence time series. However, since no empirical knowledge
was already available about these annotated data, we estimated
the value of their fractal dimension by computing the corre-
lation dimension [34] to ensure the applicability of nonlinear
analysis techniques. The correlation dimension values for both
series showed very low percentages of having integer values
- the latter being a marker of periodic time series [43].

To characterize the trajectories of arousal and valence in the
reconstructed phase space, we studied the spatial complexity of
their attractors using the DistEn algorithm and quantified their
regularity employing the SampEn and FuzzyEn algorithms.
Furthermore, we analyzed the cardiac dynamics through the
RR series, the most analyzed physiological signal in affecting
computing applications [11], [14], [15], [17]. We obtained
promising results on each emotion dimension (i.e., arousal
and valence), finding similar coherent trends for the DistEn
and FuzzyEn measures. For the arousal and valence data,
boredom was less complex and more regular than scariness
and amusement, according to the DistEn and FuzzyEn data.
However, SampEn partially supported these findings, showing
a difference between amusement and all other emotion types,
although it was confined to the arousal series alone. Even
if the SampEn is recognized as the gold standard measure
for time series irregularity, its dependence on signal length
was already established and was deemed not suitable for short
series [21], [49], [54]. Indeed, since annotated data consist
of ultra-short signals, we did not consider the SampEn for
further analysis. Finally, we performed a multivariate analysis

by combing the valence and arousal data in the bivariate phase
space, extracting the MFuzzyEn [23] and applying a novel
index: Multichannel Distribution Entropy (MDistEn). More in
detail, we employed the approach proposed in [23] to embed
the reconstructed trajectories from their different spaces into
the same multivariate space, before characterizing the novel
dynamics in this new multivariate space. According to this
bivariate analysis, the fearful stimulation showed a strikingly
different behavior from other emotions, resulting in the most
regular and complex emotion type.

Recent works in physiological time series analysis for emo-
tion recognition showed the possibility of reliably modeling
fear perception [55], [56]. However, very little is known about
the characteristic of the conscious perception of fear when
self-rated in an emotion elicitation protocol. Neuroscientific
evidence suggests that fear is a complex emotion that operates
not only at the conscious level but also at the unconscious level
[57]. Indeed, our findings seem to support that, at least at a
conscious level, during a fearful video-based elicitation, fear
perception appears more complex and stable when compared
to other emotions. However, our results support that fear can
be partially discriminated from other emotions if accounting
for a single emotional dimension only but that the difference
always emerges when the information in both dimensions is
combined.

Regarding the cardiac dynamics, we analyzed the RR signal
and computed time and frequency domain features, as well as
nonlinear ones. According to the time domain analysis, scary
elicitation was linked to an increase in heart rate, whereas the
amusing clips were reported to be the most arousing stimuli
according to LF/HF results. SampEn was the only feature
supporting a difference between the scary and the relaxing
stimulation, highlighting the more regular dynamics of the RR
series during fear-inducing stimuli. Indeed, the trend portrayed
by the nonlinear analysis of physiological signals lends support
to the findings of the entropy of the bivariate arousal-valence
attractor via the MFuzzyEn algorithm [23], namely that fear
exhibits more regular emotional dynamics compared to other
emotional stimuli.

A relevant contribution of this work is the application of the
here proposed MDistEn algorithm to characterize the multi-
variate complexity of annotated time series. This approach,
being based on the DistEn algorithm, preserves its crucial
advantages [54], such as being (almost) parameters-free and
showing less dependence on the time series length compared to
other multivariate approaches [23]. More in details, compared
to MFuzzyEn [23], the MDistEn metrics inherited an impor-
tant property from DistEn, namely having normalized values
always belonging to the range [0, 1]. Therefore, it is more
suited to effectively compare different processes. For instance,
future investigations could establish a subject-dependent cut-
off threshold to determine the onset of fear, providing the
premises for the use of nonlinear analysis techniques to deepen
the understanding of fear-related pathological phenomena,
such as anxiety, phobias, and depressive disorders.

The results presented in this work are inherently affected
by the length of the inspected annotated signal. Although it
is recognized that emotions are short-term affective states,
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from a signal-processing viewpoint a reasonable balance ex-
ists between the length of the analyzed time series and the
reliability of the resulting measure. Indeed, we have chosen
algorithms whose performances are minimally affected by time
series length (i.e., FuzzyEn and DistEn). Future studies should
be directed toward lengthy annotated time series collection
in emotion-induction protocols. These should be employed
to corroborate the validity of our results and investigate the
performance of other metrics. In addition, fear was the only
emotion with low valence and high arousal provided by the
CASE dataset. Future works should extend similar analyses to
other emotions, also focusing on more stimuli with comparable
expected arousal and valence ratings (i.e., anger, sadness),
aiming to validate the specificity of the findings to scary stim-
uli. In fact, in the case of annotated ratings of emotions with
comparable averaged values of arousal and valence, taking into
consideration the entire temporal dynamics and quantifying
its aspects through dynamical systems theory could bring
significant added value. Similar protocols would benefit from
recruiting a larger cohort than the currently publicly available
dataset, as one of the disadvantages of the CASE dataset is
the limited sample size, which inhibits the generalization of
findings.

A still unexplored research line envisages the combination
of self-assessed conscious emotional experiences (i.e., anno-
tated ratings) and unconscious physiological responses (i.e.,
physiological signals), aiming at investigating the possible
existing linear and nonlinear relationships between them. In-
vestigating linear and nonlinear signal processing approaches
of physiological signals and combining these signals with con-
tinuous measurements of the conscious emotional experience
could disclose still unnoticed psycho-physiological dynamics.
Notably, the coupling between the self-assessed conscious
experience and the underlying physiological mechanisms holds
an impactful potential for novel applications. Accordingly, the
use of a continuous emotion tracker in ecological conditions
for long-term recording or with pervasive technologies (i.e.,
smartphones) would facilitate the study of hitherto unknown
connections between different conscious and physiological
emotion-related components. This could, in turn, potentially
pave the way for the development of innovative scenarios
aimed at predicting pathological conditions such as panic,
anxiety, and phobias.
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