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(Invited Paper)

Abstract—The paper explores the performance enhancement
of a photonic reservoir computer through the reconfigurability
of all-optical nonlinear node based on Fabry-Pérot laser diode.
By benchmarking various tasks with differing computational de-
mands, we demonstrate how reconfigurability offers flexible com-
putational capabilities, enabling the reservoir computer to adapt to
specific tasks while striking an optimal balance between nonlinear
transformation and linear memory. We achieve the state-of-the-art
results using a basic delay-line reservoir computer concept with a
small number of virtual nodes (∼30 nodes).

Index Terms—All-optical, delay-based reservoir computing,
reconfigurable activation function, semiconductor laser bistability,
time-series prediction.

I. INTRODUCTION

THE burgeoning era of Big Data analytics, driven by the
Internet of Things Cyber-Physical Society, heralds an un-

precedented demand for computing capabilities. As we confront
the limitations of Moore’s Law and Dennard’s Scaling Law,
the pursuit of enhanced computational prowess intensifies, all
while aiming to promote environmental sustainability [1]. In this
landscape, analog optical computing emerges as a compelling
alternative [2]. Advancements in photonic Ising machines and
vector/matrix manipulation pave the way for the evolution of
Reservoir Computing (RC) – a recurrent neural network (RNN)
architecture inspired by the human brain’s information process-
ing mechanisms. By leveraging machine learning within the
RC framework, efficient sequential information processing is
enabled, making it suitable for real-time analysis and prediction
of complex and chaotic dynamic systems, all while minimizing
training costs [3], [4].
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The applications of RC span over diverse disciplines, illus-
trating its versatility and relevance across various domains such
as economics [5], ecology [6], [7], power engineering [8], and
medicine [9], [10]. In ICT, RC applications range from speech
and context recognition [11], [12], which are among the most
crucial, to communication encryption [13], human identifica-
tion [14], advanced modulation formats generation [15], and
fiber transmission equalization [16]. While RC’s primary focus
is on sequential data prediction, it also demonstrates efficacy in
addressing classification tasks [17], [18].

One advanced feature of RC, compared to other artificial
neural networks, is that only the readout coefficients of the
output layer need to be trained and optimized using a simple
learning algorithm such as linear regression, while the input
and reservoir layers remain fixed. This simplification in the
network’s architecture is further extended by implementing RC
as time-delayed dynamical systems [19], based on a single
nonlinear node (NNode) subjected to a delayed feedback loop of
round-trip time τ , rather than on the usual structure of multiple
connected nodes. It allows for the excitation of several thousand
virtual neurons and processing of incoming information in a
highly dimensional reservoir.

Given its vast bandwidth, potential for WDM parallelization,
integration capabilities, power efficiency, and low latency, pho-
tonics has emerged as a promising platform for RC hardware im-
plementation, especially if data processing can be conducted di-
rectly in the optical domain, leading to the concept of all-optical
RC [3]. However, in photonic implementations, achieving the
separation of different inputs and their mapping by nonlinear
transformation onto distinct reservoir states poses a significant
challenge due to the weakly interacting nature of photons [20].

To date, numerous delayed-feedback RC photonics architec-
tures have been proposed, theoretically investigated and exper-
imentally demonstrated, differing in terms of platform (opto-
electronic or all-optical), NNode nonlinearity profile, network
complexity (single or multiple NNodes or delay-lines), and
the level of algorithm or network parameter optimization. In
numerical studies, the network is simulated in the time domain
using rate or traveling wave rate equations based on real-time
parameters such as node separation θ and feedback round-trip
time τ . However, some theoretical studies do not consider analog
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signals but rather their sampling values [21], [22], [23], [24],
categorizing them as studies based on digital RC model.

The basic delay-feedback RC experimental implementations
with a single optoelectronic NNode are commonly based on
Mach Zehnder modulators (MZM) [25], [26], [27], [28], [29],
[30], which provide sine or sine-squared nonlinear profiles,
depending on weather the value of electric field or optical
power, respectively, represents the quantity of the virtual nodes.
Additionally, a readout photodiode (PD) can serve as a nonlinear
element performing a quadratic transformation of the node elec-
tromagnetic field into photocurrent of RC output layer [11], [31].
More complex architectures, investigated numerically, also uti-
lize a readout PD, either for establishing single/double optoelec-
tronic feedback to a single [32] or mutually coupled LDs [33].
In these simulations, the input signal is directly injected into the
nonlinear element through current modulation, eliminating the
need for optical signal preprocessing. Advanced architectures
based on 2 MZMs as dual NNodes and double feedback loops are
also investigated [34], [35]. Generally, optoelectronic schemes
generate minimal noise and typically offer excellent memory
capacities [11]. However, the optical to electrical and vice-versa
conversion entails a significant trade-off in speed and power
efficiency, which additionally occurs due to amplification of
photocurrent signals [32], [33].

The majority of basic RC architectures with all-optical NN-
odes incorporate nonlinear transformation via injection-locking
in different types of laser diodes (LDs) [12], [36], [37], [38],
[39], [40], [41], [42], [43], [44], [45], [46], [47], ring lasers [48],
[49] and micro-ring resonators (MRRs) [50]. Borgis et al. [51]
utilize Fabry-Pérot laser diodes (FP-LDs) as both master and
slave lasers, numerically investigating parallel processing across
modes under multimode injection. Harkhoe et al. [52] numeri-
cally investigate the single-mode injection with a zero detuning
in a FP-LD. Tang et al. [40] employ experimental setup with
single-mode injection in a FP-LD to explore the impact of
frequency detuning and pump current, finding that the smallest
prediction error is achieved for the smallest detuning. Similar
conclusions regarding the smallest prediction error occurring at
zero detuning have been also drawn in other studies [41], [53].

In addition to lasers, all-optical nonlinearity in RC
schemes is achieved by using semiconductor optical amplifiers
(SOAs) [54], [55], reflective SOAs as a nonlinear mirror [45],
erbium-doped fiber amplifiers [56], and semiconductor saturable
absorber mirror (SESAM) [57]. SOAs introduce too much am-
plified spontaneous emission noise, while SESAM, despite its
weak quasi-linear nonlinearity, provides better RC performance
owing to a stabilizing negative curvature profile [57]. SOAs
and MRRs exhibit similar hyperbolic-like all-optical nonlinear
profiles.

In more complex all-optical implementations, architectures
with double feedback loops were numerically examined to
achieve higher operation speeds and reduce prediction er-
rors [58]. Furthermore, two-tasks parallelization was achieved
by investigating mutually delay-coupled LDs [59], [60], [61],
double optical injection in a single NNode based on VCSEL [62]
or parallel NNodes based on integrated LDs with separate delay
lines [63]. Additional degree of freedom leading to improved

results was attained by combining VCSEL with 2 or 4 MZMs
and by using polarization tracking [64]. Complex setups in-
corporating two connected reservoirs with a single NNode are
also investigated [65], [66]. Additionally, a simple delay-based
photonic reservoir, serving as a preprocessor for deep neural
networks can also contribute to error reduction in prediction
tasks [46].

The effectiveness of RC in predictive tasks hinges on a
small number of training coefficients and hyperparameters, with
minor variations significantly impacting performance. Hyper-
parameter optimization algorithms like grid search [28], [53],
Bayesian [24] and entropy-based optimizations [67], and gra-
dient boosting [65] are common, alongside training methods
such as the Kalman filter [38], online training with gradient de-
scent [29] or recursive least squares [68]. Moreover, bifurcation
diagrams can aid in determining optimal parameter values [69].

The advanced and usually rather complex RC architectures,
supported by network parameter optimization, have shown sig-
nificant potential in enhancing RC performance across diverse
benchmark tasks focused on achieving high levels of nonlinear
transformation or superior linear memory [70]. The concept of
RC reconfigurability has been recognized as beneficial in case
of magnetic metamaterials exploiting an array of interconnected
magnetic nanorings [71]. It may provide an additional degree
of freedom in designing superior RC networks by allowing
exploitation of the dynamical system versatility and keeping the
network relatively simple. However, the overview of previous
works has shown that reconfigurability of the NNode is not
systematically studied, although various nonlinear functions
have been proposed.

In this paper, we are focused to provide a detailed and
systematic study of all-optical reconfigurability of the NNode.
We employ a basic RC architecture with a single nonlinear
node and a delay line [12] to probe the boundaries of NNode
reconfigurability for performance improvement, with respect to
standard RC benchmark tasks. The NNode relies on the transient
response of a FP-LD, settled in the bistability regime through
optical injection of the input signal with a specific frequency
detuning relative to a side longitudinal mode. Optimal nonlin-
ear profile within family of sigmoid-like and PReLU profiles,
with gradually increasing threshold and saturation points, is
selected by adjusting the frequency detuning. Since our sim-
ulation is based on assumption that time separation between
nodes is sufficiently long to prevent node overlap or symbol
interference, we implement digital model, which accounts for
the stream of optical signal samples, while directly exploiting
nonlinear transfer function derived by transient solving of mul-
timode rate equations [72]. The study of NNode reconfigurabil-
ity is supported with optimization of RC network parameters,
also including analysis of RC performance on virtual nodes
number.

In Chapter 2, we present our RC model and the forms of used
nonlinearities. In Chapter 3, we outline the benchmark tasks
performed. In Chapter 4, we discuss the impact of reconfigurable
nonlinearity on the RC results in benchmark tasks and provide
clear graphical comparison of our performance benchmarks
alongside those reported in the literature.
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Fig. 1. Reservoir architecture composed of three layers: input layer, reservoir
layer, and output layer. Schematic of the proposed hardware realization of
nonlinear node based on Fabry-Pérot laser diode under optical injection and
resulting family of normalized nonlinear functions for frequency detuning Δω
values starting from −36 Ω (#1) to −13 Ω (#47) with step 0.5 Ω. Circled
numbers represent ordinal number of nonlinear function with respect to Δω.

II. RESERVOIR COMPUTER MODEL

A. Reservoir Computer Architecture

The reservoir computer architecture based on a single delay
line with a single NNode is presented in Fig. 1. In the input layer,
the input dataset u(n1) is multiplexed using a mask M(n2) to
diversify the data entering to reservoir, J(n1, n2):

J(n1, n2) = Au(n1)M(n2) + J0 (1)

where A and J0 are scaling and offset parameters, respectively,
n1 is a counting iterator of the input dataset, while n2 counts
from 1 to the number of elements in the mask vector determined
with the number of virtual nodes Nv in the reservoir.

The core of the reservoir is a nonlinear element G, which
activates the input data in the reservoir layer with a simple
ring topology and generates the reservoir states S(n1, n2),
forming the total state matrix. The connection between reser-
voir states is achieved through a desynchronization process
between delay time and mask period, resembling a RNN and
leading to simplified calculations [3]. In the discrete domain,
the node separation time θ becomes equal to 1, while the
delay time becomes Nv + 1. The size of delay line is deter-
mined by the connection established between reservoir state
S(n1, n2) and the state entering the reservoir before Nv + 1
steps [3], [23], [55]. The strength of the recurrent connection
is determined by the feedback parameter F , defining the per-
centage of the nonlinear element’s response coupled with the
data J entering the reservoir. The interactions between non-
linearity and feedback create elements of the reservoir state
matrix:

S(n1, n2)

=

{
G (FS(n1 − 1, n2 − 1) + J(n1, n2)) , 2 ≤ n2 ≤ Nv

G (FS(n1 − 2, Nv) + J(n1, n2)) , n2 = 1.

(2)

Reservoir states are formed by the first element from the
input dataset u(n1 = 1). Coupling of the states starts from the
next element u(n1 = 2), except for n2 = 1, since the coupling
distance is Nv + 1. An extra column with bias values of 1,
S(n1, Nv + 1) = 1, is appended as the last column to introduce
a constant offset in the predicted values, thereby smoothing the
dynamics of the reservoir [12].

Finally, in the output layer, the predicted output data o is
determined as a linear combination of reservoir states o = SW .
The reservoir output is compared with the known target output
ô, and the goal of training is to find the weight matrix W that
minimizes the error metric. This is most efficiently achieved
through the application of ridge regression [22], [73]:

W =
(
STS + λI

)−1
ST ô, (3)

where I refers to the identity matrix, and λ is the Tikhonov
regularization parameter, which depends on the correlationSTS
and should be adjusted separately for each reservoir [73]. Since
this paper aims to demonstrate the impact of the reconfigurable
nonlinearity, including the optimized reservoir parameters, we
restrict the network degree of freedom and fix λ to λ = 5× 10−6

for all benchmark tests [23].

B. All-Optical Reconfigurable Nonlinear Node

The computational concept of a digital RC shown in Fig. 1
relays on the basic configuration of all-optical architecture pro-
posed by Brunner et al. [12], with the major novelty related to
implementation of a NNode.

Instead of the standard injection-locked DFB [74] or FP-
LD [52], we use a optically injected FP-LD operating in the
dispersive bistability regime [72]. The fundamental mechanism
behind this bistability is the refractive index and injection-locked
side-mode gain defect alteration, induced by change of the
carrier density in the active region of the LD. This change
is caused by variation of injected optical power Pin at certain
negative frequency detuning Δω with respect to the side-mode
frequency of the free-running LD, and supported by the contri-
butions of unlocked modes, including the free-running dominant
mode [75]. Under the injection composed of short optical pulses,
variation of Pin produces a bijective nonlinear dependence of
the LD output signals’ peak power Pout at the frequency corre-
sponding to the input signal. The output signal is extracted with
an optical band pass filter (OBPF) to prevent the contribution
of other longitudinal modes and corresponding noise emission.
The nonlinear profile of Pout(Pin) optical transfer characteristic
strongly depends on the injected light frequency detuning and
the LD bias current [72], providing the possibility to in-situ adapt
or reconfigure the nonlinear node to a task-at-hand [76], [77].
These activation functions are experimentally verified in [78].

The theory behind bistability and corresponding NNode out-
put is thoroughly discussed in [72], [75]. Here we focus only on
numerically simulated and analytically fitted nonlinear transfer
characteristics of optically injected FP-LD with the same ma-
terial and geometrical characteristics as in [72]. A temperature
controller (TEC) shown in Fig. 1 is used to prevent the optical
spectrum drifting and consequently a change in the applied
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frequency detuning. For small laser bias current of 2Ith, where
Ith = 8.2 mA represents the threshold current, and under in-
tramodal injection of Gaussian pulses with FWHM = 60 ps in
the side modem = −3 (red spectrum side), a change inΔω from
−36 Ω to−13 Ωwith a step of 0.5 Ω (Ω = 1010 rad/s) produces
a family of 47 sigmoid- and PReLU-like profiles with gradually
decreasing threshold points, shown in Fig. 1, after normalization
to the range from 0 to 1. The activation functions are labeled with
ordinal numbers, starting with#1 corresponding to the detuning
Δω = −36Ω.

For implementation of NNode in reservoir computer model
we use a custom-defined analytical function [72]:

Pout = b1 ln
{
1 + b2Pin + b3 ln

[
1 +

(
eb4Pin − 1

)b5]}
+ b6Pin

(4)
with coefficients bk = bk(Δω) and k = 1, . . .6 fitted to nu-
merically calculated data points corresponding to each of the
normalized transfer functions obtained for particular Δω in
the family of functions shown in Fig. 1. Therefore, reversible
switching among different activation functions can be achieved
by using frequency detuning Δω as a control parameter.

III. BENCHMARK TASKS

The overall RC performance is estimated numerically by
determining task-independent indicators such as memory ca-
pacity and memory quality, and by general benchmark testing
on standard datasets for time-series prediction.

The general procedure is straightforward: for each test the
dataset is split into two sets, one for training and the other for
testing. In the training set, the initial 100 samples are excluded
and used to initialize the reservoir. Similarly, within the testing
set, 100 samples are discarded to warm the reservoir and serve as
a buffer. The reservoir output o(n1) is computed using input val-
ues from the test set and the known weight coefficients acquired
during training. This output is compared with the expected target
output ô(n1) from the test set to calculate the Normalized Mean
Square Error (NMSE):

NMSE =

〈
(ô(n1)− o(n1))

2
〉

〈
(ô(n1)− 〈ô(n1)〉)2

〉 , (5)

or Symbol Error Rate (SER), representing the ratio of incorrectly
predicted symbols and total number of tested symbols.

A. NARMA10

The Non-Linear Auto-Regressive Moving Average
(NARMA) represents one of the fundamental tests for
evaluating the quality of RC [34]. The NARMA10 dataset
is generated based on the following analytical form:

ô(n1 + 1) = 0.3ô(n1) + 0.05ô(n1)
9∑

i=0

ô(n1 − i)

+ 1.5u(n1 − 9)u(n1) + 0.1, (6)

where u(n1) are randomly selected values from the range 0
to 0.5 with a uniform distribution. The task is to predict the

behavior of this 10th-order nonlinear system in the next step
ô(n1 + 1). Training and testing utilize sets of 1000 elements
each. Averaging is performed for 10 different input datasets,
due to the inherent randomness of the input dataset [34].

B. Santa Fe Laser

Santa Fe laser dataset represents a time series of intensities
experimentally obtained for a far-infrared laser operating in a
chaotic state [61]. The task is to predict one step ahead in a
chaotic time series. The dataset consists of 9000 elements, with
3000 used for training and 1000 for testing [61].

C. Nonlinear Channel Equalization

The Nonlinear Channel Equalization (NCE) task consid-
ers intersymbol interference and noise [11]. The input signal
d(n1) represents a random sequence with values from the set
{−3,−1, 1, 3}, 10 consecutive elements of which are used to
form a new sequence q(n1):

q(n1) = 0.08d(n1 + 2)− 0.12d(n1 + 1) + d(n1)

+ 0.18d(n1 − 1)− 0.1d(n1 − 2)

+ 0.091d(n1 − 3)− 0.05d(n1 − 4)

+ 0.04d(n1 − 5) + 0.03d(n1 − 6) + 0.01d(n1 − 7).
(7)

Finally, the reservoir input sequence u(n1) takes into account
2nd and 3rd nonlinear distortion and Gaussian noise:

u(n1) = q(n1) + 0.036q2(n1)− 0.011q3(n1) + noise. (8)

Noise is typically chosen to achieve a signal-to-noise ratio
(SNR) of 12− 32 dB. The task of the reservoir is to reconstruct
ô(n1) = d(n1 − j) for the input signal u(n1), i.e., to predict the
input sequence j steps backward based on the output sequence.
The value of j varies in the literature, with one case being j = 0,
which involves directly predicting d(n1) based on u(n1) [11],
[26], [37], [55], [57], [79]. Another case is j = 2, where the
prediction is made for d(n1 − 2) based on u(n1) [22], [48],
[49], [80]. Since d(n1) consists of a random sequence, the
results are averaged over 5 different sequences [57]. The training
set consisted of 3000 samples and the test set size was 6000
samples [11].

D. Memory Capacity

Linear memory in RC refers to its capability to reconstruct
input data that entered the delay line k steps earlier. Thus, for the
linear memory, the targeted output of the reservoir is the delayed
input ôk(n1) = u(n1 − k). While the parameter k theoretically
spans from 1 to infinity, in practice, contributions to memory
capacity are not significant for k values greater than the number
of virtual nodes.

Memory Capacity (MC) is a measure of the normalized cor-
relation between the predicted output from the reservoir and the
target value across delayed steps k [11]:

MCk = corr [ok(n1), ôk(n1)] = 1− NMSE. (9)
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Fig. 2. (a) NMSE with respect to the activation function ordinal number
for the NARMA10 dataset. Inset shows activation functions yielding the best
NMSE (#12) and the worst NMSE (#1). The smallest and largest values
entering the reservoir are marked with square and triangle markers, respectively.
(b) Comparison between target and predicted signal for activation #12 and
Nv = 50 virtual nodes.

The total capacity of linear memory is obtained by summing
the memory capacities for each delay k [19]:

MCtot =
∞∑

k=1

MCk. (10)

The memory capacity plotted against delayed input step k forms
the memory curve. The total memory capacity is determined
by the area under this curve, as defined by (10).

For testing the RC memory capacity the input data u(n1)
takes random values from a uniform distribution in the interval
[0, 1] [57], eliminating the need to separate the data into training
and test sets. A total of 2200 data points are utilized.

E. Memory Quality

Since the total memory capacity doesn’t indicate the con-
stancy of the memory curve, i.e., the number of steps k for
which it maintains a rectangular shape [81], Memory Quality
(MQ), as an additional task-independent property, is used to
address the accuracy and integrity of information stored in the
reservoir memory [82]:

MQ =
1

MCtot

[MCtot]∑
k=1

MCk. (11)

For the frequently used NARMA10 dataset, it’s crucial to
retain the values of the ten preceding steps, necessitating a
strong memory of these ten steps, while anything beyond that
is irrelevant. However, in other tasks, remembering only one or
two previous steps may suffice.

IV. RESULTS

For all benchmark tasks, the goal is to determine the reservoir
parameters A, J0 and F , as well as to select the activation
function that optimizes the chosen performance metric, e.g.
prediction accuracy, memory capacity or quality. To maintain
consistency in parameter values across all datasets, normalized
activation functions are utilized, and the datasets themselves
are normalized to a range from 0 to 1. Additionally, a uniform
distribution of random values between 0 and 1 is applied to
each element of the mask M . The results are averaged over
100 different random masks to mitigate the impact of specific
individual mask values, similarly as in [23].

The employed algorithm for determining the optimal param-
eters A, J0 and F for task-dependent tests is straightforward to
implement but computationally intensive. The algorithm per-
forms a grid search in a 3D space, with the constraint that
the data entering reservoir J(n1, n2) does not exceed 1 due
to activation normalization. Each parameter set is tested across
all 47 activation functions, and the set yielding the minimal
prediction error, regardless the activation function, is defined as
optimal. Finally, the impact of increasing the number of virtual
nodes is assessed for the obtained parameters.

A. NARMA Test

Fig. 2(a) illustrates the impact of activation function profile on
NMSE for the NARMA dataset, using optimal reservoir parame-
tersA = 0.08,F = 0.3 andJ0 = 0.3 forNv = 50 virtual nodes.
The graph highlights that the lowest NMSE < 0.15 is obtained
for activation function#12. The inset displays the profiles of this
best (#12) and the worst (#1) performing activation functions.
The range of input values for these functions, delineated by
square and triangle markers, is dictated by reservoir parameters.
In Fig. 2(b), the predicted test output is shown alongside a
comparison to the target output. The smaller value of A = 0.08
indicates utilization of only a fraction of the activation function’s
linear portion. The optimal activation function exhibits the high-
est slope around the offset parameter J0, promoting input values
clustering in this region and leading to distinct output separation.
Additionally, due to the steep slope and feedback influence, the
input value range for activation functions is expanded, resulting
in an expansion of reservoir state value regions. Conversely,
activation function #1 with a lower slope in the region of input
value clustering, yields poorer NMSE performance, indicating
less distinct reservoir state separation.

In Fig. 3, we illustrate the dependency of NMSE on the
number of virtual nodes and compare our results with those from
the literature. Our approach can provide competitive accuracy
for small number of virtual nodes (≤ 50). For Nv = 30, better
accuracy is achieved only in a digital reservoir with dual input,
and consequently dual masking of both input signals, partic-
ularly when considering both the current input and the input
delayed by 9 steps [23]. However, in contrast to previous find-
ings [22], [81], our model exhibits a different trend: increasing
the number of nodes does not significantly reduce NMSE. For
instance, with Nv = 30 nodes, the best-case NMSE is 0.1278,
while with 200 nodes, it is 0.105. This is due to a small gain
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Fig. 3. NMSE for NARMA10 dataset with respect to the number of virtual
nodes for digital reservoir computer proposed in this paper and for available
results from the literature. Results from the literature are categorized based on
the RC implementation platform: digital (circle markers), optoelectronic (square
markers), and all-optical (diamond markers), as well as in terms of complexity
(shaded markers correspond to simple RC architectures mainly based on a single
NNode and a delay loop). Results with experimental verification are denoted
with black dots inside markers.

coefficient A, which limits the range of utilized node nonlinear-
ity and together with memory of network, significantly affects
NMSE of NARMA test. Nevertheless, the network parameters
in our approach are already optimized to provide relatively
small values of NMSE, even for small number of nodes (30)
using the basic delay-line architecture. A modified architecture
with an additional delay-line [23], would provide further re-
duction of NMSE and more significant dependence on node
number.

B. Santa Fe Test

For the Santa Fe laser dataset, optimal values of reservoir
parameters are A = 0.6, J0 = 0.2, and F = 0.2. Fig. 4 illus-
trates the NMSE dependency on the activation function ordinal
number for various numbers of virtual nodes and comparison
between the predicted and target outputs. Notably, activation
functions near #20 consistently yield the best NMSE values
regardless of the number of nodes. Increasing Nv from 30 to 400
leads to a negligible NMSE reduction from 0.0082 to 0.0029,
while prolonging the simulation time. The reduction in NMSE
by increasing Nv is more significant for activation functions
from #1 to #20, but these functions do not yield the best
NMSE values. The inset in Fig. 4 shows the profiles of the
best (#20) and the worst (#1) performing activation functions.
Unlike for the NARMA dataset (Fig. 2), sigmoid-like activation
profiles yield superior results for the Santa Fe dataset compared
to PReLU type profiles.

A comparison with results from the literature is presented in
Fig. 5, alongside the impact of increasing the number of nodes
on NMSE. In our case, achieving NMSE values below 0.01,
considered as the state-of-the-art [37], [46], requires only 30
NNodes. Lower NMSE values are typically attained in stud-
ies employing either a more complex architecture or a more

Fig. 4. (a) NMSE with respect to activation function ordinal number for the
Santa Fe dataset and different number of virtual nodes (30, 50, 100, 200). Inset
shows the range of input values for the activation function yielding the smallest
(#20) and the largest (#1) NMSE value. (b) Comparison between target and
predicted signal for activation #20 and Nv = 50 virtual nodes.

Fig. 5. NMSE for the SantaFe dataset with respect to the number of virtual
nodes for digital reservoir computer proposed in this article and for available
results from the literature.

intricate optimization process, which includes parameter tuning
and training [24], [38], [59], [60].

C. NCE Test

Fig. 6 presents averaged values of NMSE and SER for the
NCE dataset across different SNR values (ranging from 12
to 32 dB), plotted against the ordinal number of the activa-
tion function. Since simulations do not show significant error
reduction with an increase in the number of nodes, we use
relatively smallNv = 50 for which optimal reservoir parameters
are determined as A = 0.2, J0 = 0.4 and F = 0.2. The impact
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Fig. 6. (a) NMSE in linear and (b) SER in logarithmic scale with respect to
activation function ordinal number for NCE dataset with different SNR. Dots
and squares indicate optimal activation functions for d(n1) (solid lines) and
d(n1 − 2) (dashed lines), respectively. Comparison between target and pre-
dicted signal for Nv = 50 virtual nodes and SNR = 20 dB, for (c) d(n1) and
activation #7, and for (d) d(n1 − 1) and activation #10.

of changing the activation function is more pronounced for
SER than for NMSE. This influence is even more pronounced
when predicting d(n1 − 2). Finally, a comparison between the
optimal activation functions in Figs. 6(a) and (b) reveals that
the activation function minimizing NMSE does not necessarily
minimize SER. In Fig. 6(c) and (d), the predicted and target
outputs are shown for SNR = 20 dB.

In Fig. 7, we depict the minimum SER as a function of SNR,
comparing it with published results. The minimum SER was
determined from the previous figure for each SNR value, con-
sidering the optimal activation function. As the input sequence is
a random, the results are significantly influenced by the specific
random number generator. Therefore, in addition to markers
denoting averaged SER values for 5 independent simulation
runs, we use shaded area to represent the range of values obtained
in each simulation run. For specific input sequences and high
SNR values (> 30 dB), the number of misinterpreted symbols
can even be zero.

While our SER results for predicting d(n1) align with ex-
isting literature, predictions for d(n1 − 2) with SNR > 25 dB
outperform previous studies in both NMSE and SER [48], [49],
[80]. As shown in Fig. 7, we achieve satisfactory SER values

Fig. 7. Minimum SER values for the NCE dataset with respect to SNR for
optimal activation function for predicting d(n1) and d(n1 − 2), compared with
the literature. All literature results refer to the prediction d(n1). Average SER
values are marked with markers and shaded areas represent the range of values
obtained in each simulation run.

Fig. 8. Memory capacity MCk with respect to activation function ordinal
number and for predicting input for k = 1–10 steps in past. Dots indicate the
optimal activation function.

(< 0.01 [60]) for d(n1 − 2)@ SNR > 16 dB and for d(n1)@
SNR ≥ 20 dB. Previous studies with similar simple reservoir
architectures reported NMSE of 0.058 at SNR = 30 dB [80],
whereas more complex architectures based on delay-decoupled
or -coupled reservoirs achieved a minimum NMSE of 0.026.
Our results show this low NMSE even for SNR = 28 dB.

D. Memory Capacity

The purpose of memory capacity evaluation is to assess the
reservoir effectiveness in retaining past inputs. To investigate
potentially high MC, we fix large feedback parameter, F = 0.6,
and adjust the remaining reservoir parameters to A = 0.4 and
J0 = 0, ensuring that the data J entering the reservoir falls
within the range [0,1], aligning with normalized activation
functions. In Fig. 8, we present MCk with respect to activation
function for predicting the last 10 input values, corresponding
to k values from 1 to 10.
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Fig. 9. MCk for two sets of reservoir parameters. Solid lines represent memory
curves for MCk calculated for optimal activation in each step k. The ordinal
number of the selected activation function is displayed on the right axis with
circle markers (set 1) and square markers (set 2). Dashed lines show MCk for
only one activation function for which the total memory is the largest (#19) and
(#1), for parameter sets 1 and 2, respectively.

For k values 1 and 2, activation functions with a steep
slope at either large input values (ranging from #1 to #10)
or small values (ranging from #25 to #47) yield similarly good
outcomes. However, as k increases, activation functions posi-
tioned between these extremes emerge as optimal. The reservoir
demonstrates efficient memory retention, with MCk ≥ 0.9 for
k ranging from 1 to 4.

To enhance memory capacity we further adjust reservoir
parameters. While keeping the relatively high feedback param-
eter of F = 0.4, we decrease the reservoir scaling parameter
to A = 0.02 to reduce the range of input values, and adjust
the offset parameter to J0 = 0.5 thus positioning data in the
region of the activation function’s steepest slope. Fig. 9 shows
memory curves MCk for predicting delayed input at step k,
for two parameter sets, {A, J0, F}, set 1: {0.4, 0, 0.6}, and
set 2: {0.02, 0.5, 0.4}. Dashed lines represent memory curves
calculated for a single activation function identical in every
k step. To select the optimal activation function, we calculate
the total memory for each activation function and choose the
one that maximizes the total memory MCtot. For set 1, this is
activation function #19, while for set 2, it is #1. Solid lines
in Fig. 9 represent memory curves where the optimal activation
function, yielding maximal MCk, is chosen for each k, as read
on the left axis in Fig. 9. The ordinal number of the optimal
function for each k is denoted with markers and can be read
on the right axis in Fig. 9. It can be noted that for sufficiently
large number of steps, the optimal activation function saturates
and remains fixed (#20 for set 1, #1 for set 2). The critical
number of steps before the optimal activation function saturates
depends on the reservoir parameters. For set 1 (A = 0.4, J0 = 0,
and F = 0.6) the critical number of steps is k = 15. In this
case, the activation function #20 that becomes and remains
optimal does not correspond to the activation function #19 for
which the total memory is maximal, since the contribution to
the total memory of these steps is small (MCk ≤ 0.2). For set
2 (A = 0.02, J0 = 0.5, and F = 0.4) and prediction of 13 and

Fig. 10. Total memory capacity MCtot relative to the number of virtual nodes
for two combinations of scaling coefficients and a comparison with results from
the literature.

TABLE I
MEMORY QUALITY FOR TWO SETS OF RESERVOIR PARAMETERS WITH

RESPECT TO THE NUMBER OF VIRTUAL NODES

more steps, the optimal activation settles at #1, aligning with
the activation function providing maximal total memory. This
is evidenced by a complete overlap between solid and dashed
lines for k ≥ 13. MCk versus ordinal number of the activation
function for k ≥ 13, resembles the sharp dependence seen in
Fig. 2 for small value of scaling parameter A, where we have a
distinctive optimal activation function.

Fig. 10 presents the total memory capacity (MCtot) in com-
parison with relevant literature results concerning the number of
nodes. Total memory capacity increases in line with increasing
Nv. We compute MCtot for k ≤ Nv, as for k > Nv, MCk is more
a result of the limited dataset and statistical approach rather than
actual memory. Fig. 10 illustrates the contribution of both sets of
reservoir parameters, and covers the cases when the activation
function changes with respect to step k, and when only one
activation function is used (the one yielding the highest total
memory). Fig. 9 shows that for the second set of reservoir pa-
rameters, there is less difference in total memory between these
two cases, diminishing as the number of nodes increases. This
underscores how a reconfigurable nonlinear activation function
with sufficiently high slope and offset J0, along with reservoir
feedback parameter optimized to provide strong feedback, can
significantly enhance memory and total memory capacity in an
all-optical RC architecture.

E. Memory Quality

The memory quality was assessed for reservoir parameters
sets 1 and 2 with respect to the number of virtual nodes, as shown
in Table I. Two MQ values are presented: one corresponding to
the case of single activation function, yielding the highest total
memory capacity, and the other (in parentheses) corresponding
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to optimal activation function determined for each delay step k.
As expected, the second value surpasses the first, commending
the adaptability of the activation function.

Generally, a smaller parameter A value results in a larger
MQ since the shape of the memory curve tends to resemble a
rectangle. However, even with a low MCtot value, a high MQ
can be achieved, particularly if the number of nodes is small
enough. Increasing the MCtot due to the augmentation of the
number of nodes results in a decrease in MQ. This is attributed
to the contribution of predicting larger backward steps to MCtot,
causing the memory curve to exhibit a gradually declining trend.
However, for a steep transition between different steps on the
memory curve, Moran [83] achieved MQ of approximately 0.86
with MCtot = 17.6 for 400 nodes, a value comparable to our
result obtained with 30 nodes.

V. CONCLUSION

In this paper, we investigate how nonlinear node reconfigura-
bility, coupled with network parameter optimization, enhances
the performance of photonic reservoir computers. To isolate the
impact of reconfigurability and minimize the influence of RC
architecture, we focus on the basic delay-line architecture, com-
prising a single delay-line and all-optical reconfigurable non-
linear node based on Fabry-Pérot laser. Our findings reveal that
node reconfigurability can provide both high quality nonlinear
transformation and memory, traits typically considered mutually
exclusive. Optimal nonlinear profiles, combined with optimized
network parameters, yield excellent predictions on chaotic time
series like the Santa Fe dataset, demonstrating efficiency of RC
in nonlinear transformations, with small NMSE (3.4× 10−3

for 200 nodes) rivaling state-of-the-art performance. By sim-
ply reconfiguring the nonlinear profile, high memory capacity
becomes attainable, resulting in reduced NMSE for datasets
like NARMA10 and NCE, especially for d(n− 2), with no-
tably low number of nodes (30 nodes). Additionally, nonlinear
profile optimization allows for competitive total memory ca-
pacity and quality, aligning closely with the best results in the
literature.
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