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Abstract—Brillouin optical correlation-domain reflectometry
(BOCDR) is a technique for measuring the distribution of strain
and temperature along an optical fiber, offering advantages such
as operation with light injection from one end of the sensing fiber,
relatively high spatial resolution, and random-access capability
to sensing points. However, it faces a trade-off between spatial
resolution and measurement range. In response, low-coherence
BOCDR using a randomly modulated light source has been pro-
posed, but this method requires a variable delay line for scan-
ning the measurement position, limiting the measurement range.
This paper proposes low-coherence BOCDR based on periodic
pseudo-random modulation to address this issue and demonstrates
its proof-of-concept operation. First, the dependence of the light
source output spectrum on modulation parameters is investigated
using a delayed self-homodyne method, showing the potential to
resolve the trade-off between spatial resolution and measurement
range. Subsequently, we demonstrate the capability of measuring
strain distribution along optical fibers without a variable delay line
under multiple conditions. Further, we show through simulation
that this method can perform more accurate distributed strain
measurements than standard BOCDR.

Index Terms—Brillouin optical correlation-domain reflecto-
metry, distributed sensing, low coherence, pseudo-random
modulation, strain sensing, temperature sensing.

I. INTRODUCTION

D ISTRIBUTED optical fiber sensors using Brillouin scat-
tering have been extensively studied as key technologies
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in smart structures and materials [1], [2]. These sensors utilize
Brillouin frequency shift (BFS) changes dependent on strain
and temperature to interpret distributed strain and tempera-
ture information. Among various spatial resolution principles—
time-domain [3], [4], [5], [6], frequency-domain [7], [8], and
correlation-domain [9], [10], [11], [12], [13], [14], [15], [16],
[17] —the focus in this context is on correlation-domain meth-
ods, which are known for their relatively high spatial resolution
and unique random-access capability.

Brillouin-based correlation-domain methods can be di-
vided into two: Brillouin optical correlation-domain analysis
(BOCDA) [9], [10], [11], [12] and Brillouin optical correlation-
domain reflectometry (BOCDR) [9], [13], [14], [15], [16], [17],
[18], [19]. BOCDA, utilizing stimulated Brillouin scattering
(SBS) in a two-end injection system, achieves a high signal-to-
noise ratio (SNR) and rapid operation due to the strong signal
power of SBS and lock-in detection. However, its reliance on
electro-optic modulators, including a single-sideband modulator
and an intensity modulator, and a lock-in amplifier leads to
higher cost and system complexity. In contrast, BOCDR, em-
ploying spontaneous Brillouin scattering, operates with a lower
SNR than that of BOCDA but can continue measurements up
to a breakage point in the fiber under test (FUT) owing to its
one-end light injection configuration.

In a standard configuration of BOCDR [13], [14], a sinu-
soidal-modulated laser is used as the light source. Due to the
periodic nature of the sinusoidal wave, multiple correlation
peaks (measurement points) are formed periodically along the
FUT. Typically, the measurement range is limited to include just
one correlation peak within the FUT. By controlling the modu-
lation frequency, the correlation peak is swept along the FUT to
facilitate distributed measurements. However, a significant chal-
lenge is the trade-off between measurement range and spatial
resolution. Although special schemes such as temporal gating
[17], double modulation [18], and chirp modulation [19] have
been proposed to mitigate this issue, they have not completely
eliminated the fundamental trade-off.

To address the trade-off issue in standard BOCDR, low-
coherence BOCDR (LC-BOCDR) [20], [21], [22] was proposed,
utilizing a low-coherence light source. A randomly modulated
laser has been used in LC-BOCDR systems, but note that in
LC-BOCDA, in addition to randomly modulated lasers [23],
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Fig. 1. Voltage waveform used for periodic pseudo-random modulation.

sources including amplified spontaneous emission (ASE) [24],
[25] and chaotic lasers [26], [27] have also been employed.
These light sources enable high spatial resolution determined by
their coherence length, effectively addressing the direct trade-off
between spatial resolution and measurement range. However, a
correlation peak occurs only at the isochronous point, necessi-
tating a variable delay line for sweeping the correlation peak
along the FUT, which limits the measurement range. Pseudo-
random binary sequence (PRBS) modulation in LC-BOCDA
has been reported to overcome measurement range limitations
[28], [29], but it still requires two-end light injection into the
FUT.

In this work, we propose and demonstrate the basic operation
of an LC-BOCDR system with periodic pseudo-random mod-
ulation, which operates without a variable delay line and uses
single-end light injection. First, we investigate the dependence
of the light source’s output spectrum on modulation parameters
using a delayed self-homodyne method, showcasing its potential
to mitigate the trade-off between spatial resolution and measure-
ment range. Subsequently, we demonstrate the ability to measure
strain distribution along FUTs under various conditions without
the need for a variable delay line. Finally, simulations indicate
that this method can achieve more accurate strain distribution
measurements than the standard configuration.

II. PRINCIPLE

In our proposed LC-BOCDR configuration, periodic pseudo-
random modulation created by an arbitrary waveform generator
(AWG) is directly applied to the driving current of the light
source, leading to the modulation of its output frequency. Un-
like conventional LC-BOCDR based on non-periodic random
modulation, this method generates multiple correlation peaks
(measurement points) along the FUT, allowing sweeping of
correlation peaks other than the zeroth order along the FUT
without the need for a variable delay line.

The waveform used in the periodic pseudo-random modula-
tion is shown in Fig. 1. The operation starts by generating a
sequence of random voltages following a Gaussian distribution.
We set a voltage range and a sample count N [S], representing
the number of samples in the sequence; the unit “S” stands for
“samples”. This sequence is then repeatedly output at a specified
sampling rate FS [S/s] (see Fig. 1). The modulation frequency
fm, defined as the repetition rate of the single-period sequence,

is given by:

fm =
FS

N
. (1)

Similar to sinusoidal modulation, the beat signal of the light
modulated with periodic signals creates correlation peaks at
equal intervals centered around the isochronous point. The in-
terval between peaks, dm, is given by:

dm =
c

2 n fm
=

c N

2 n FS
, (2)

where c is the speed of light in vacuum, and n is the group index
of the FUT core. By controlling FS , the interval of correlation
peaks is sequentially varied, sweeping a specific single peak
along the FUT.

The spatial resolution of LC-BOCDR based on periodic
pseudo-random modulation is expected to follow the same
formulation as conventional non-periodically modulated LC-
BOCDR. Existing LC-BOCDR systems use a laser modulated
with a random sequence. As the modulation amplitude increases,
the spectrum broadens and approaches a Gaussian shape, reduc-
ing the coherence of the output light. The spectra of both the
reference light and Stokes light also approach Gaussian forms.
The Stokes light returning from the isochronous point in the
FUT interferes with the reference light, generating a zeroth-
order correlation peak. While ideally, the cross-correlation of
these two lights should be calculated, with sufficient modulation
amplitude, their coherence lengths converge. Hence, we use the
self-correlation-represented coherence function instead. When
the spectral density of the light source is given by:

S (ν) =
2
√

ln 2
π

Δν
exp

[
−4 ln 2

(
ν − ν0
Δν

)2
]
, (3)

the normalized coherence function r(τ) can be determined from
the Wiener-Khinchin theorem as:

r (τ) = exp

[
− π2

4 ln 2
· (Δντ)2

]
exp (−j2πν0τ) , (4)

where ν0 and Δνare the central frequency and occupied band-
width of the modulated light source. The coherence time τc,
defined as the time when r(τ) decays to 1/2, is given by [30],
[31]:

τc =
2 ln 2

π
· 1

Δν
. (5)

This means that only Stokes light within ±τc time difference
interferes with the reference light. Converting this to a distance
on the FUT gives the spatial resolution. The distanceΔz between
two points on the FUT and the time difference τ for Stokes light
to reach from these points are related by:

Δz =
c τ

2 n
. (6)

Thus, from (5) and (6), the spatial resolution is given by:

Δz =
c 2 ln 2

π n Δν
. (7)
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Fig. 2. Experimental setup of LC-BOCDR based on periodic pseudo-random
modulation. EDFA: erbium-doped fiber amplifier.

III. EXPERIMENTS

A. Experimental Setup

The experimental setup for the LC-BOCDR based on periodic
pseudo-random modulation is shown in Fig. 2. Its basic config-
uration mirrors that of a standard BOCDR setup. A distributed-
feedback laser at 1550 nm was directly modulated using an
AWG (SG-4222, IWATSU). The output light at 10 dBm was
split into signal and reference paths via a coupler. The signal
light was amplified to about 25 dBm using an erbium-doped
fiber amplifier (EDFA, LXI2000, Luxpert), then injected into
the FUT and the returning Stokes light was further amplified
to approximately 3 dBm with another EDFA (ErFA1215, FI-
TEL). The reference light, its polarization state averaged by a
polarization scrambler (PCD104, General Photonics), was then
combined with the Stokes light through a coupler. A fixed delay
line with a length of 500 m was inserted in the reference path to
utilize a non-zeroth-order correlation peak (the 1st-order peak
was used in the demonstrations below). The heterodyne signal
was converted into an electrical signal by a photodetector (PD,
PR-12-B-M, Optilab) and observed with an electrical spectrum
analyzer (R3273, Advantest) as the BGS. Averaging was per-
formed 30 times on the ESA, and the sampling rate of the BFS
of each sensing position was approximately 1.0 Hz, currently
restricted by the switching speed of the AWG controlled using
a general-purpose interface bus (GPIB).

B. Spectral Measurement

We investigated the dependence of the light source spec-
trum modulated by periodic pseudo-random modulation on the
sampling rate. Changes in the spectral shape when varying the
sampling rate were observed using a delayed self-homodyne
method [32]. The modulation conditions were set to an offset of
7.0 V, a peak-to-peak amplitude of 6.0 Vp-p, and a sample count
of 1000 S, with a sampling rate varied from 10 to 60 MS/s in 5
MS/s increments. The output light from the source was injected
into a Mach-Zehnder interferometer, with one path including
a 10 km delay fiber to provide significant time delay. The
frequency resolution was about 10 kHz. The combined signals
were detected with a PD and observed with an ESA (resolution
bandwidth = 1 MHz, video bandwidth = 3 kHz). Gaussian
fitting was performed on the obtained spectra to determine the
frequency bandwidth. A portion of the observed homodyne
spectrum is shown in Fig. 3(a). The spectrum overall increased

Fig. 3. Sampling rate dependencies on (a) power spectrum and (b) frequency
bandwidth.

up to 20 MS/s but beyond that, only the central components
were strengthened. This is probably due to the laser’s response
not keeping up with the abrupt voltage changes in parts of the
pseudo-random sequence, resulting in a reduced frequency dis-
persion. The bandwidth, shown in Fig. 3(b), remained relatively
constant despite changes in the spectrum with the sampling
rate, with a standard deviation of approximately 50 MHz. This
result indicates that the sampling rate, a variable that determines
the measurement range, does not affect the spatial resolution,
thus not leading to the trade-off issue typically encountered in
standard sinusoidal-modulation-based BOCDR.

C. Distributed Stain Measurements

To demonstrate the proof-of-concept operation of our system,
we performed distributed strain measurements on FUTs under
different conditions. TheΔν value was set to 1.65 GHz, resulting
in the theoretical spatial resolution of 5.5 cm according to (7).
Initially, we performed a relatively short-range measurement us-
ing a dispersion-shifted fiber (DSF) with a BFS of approximately
10.5 GHz. The structure of the FUT is shown in Fig. 4, consisting
of a 140 cm DSF sandwiched between 16 m and 2 m standard
silica single-mode fibers (SMFs) through fusion splicing. The 16
m silica SMF segment was a combination of 15 m and 1 m SMFs,
connected using an angled-physical-contact (APC) connector,
with slightly different BFS values. In addition, the 2 m SMF
section was constructed from two 1 m SMFs, also connected
using an APC connector, with slightly varied BFS values. Near
the distal open end, a bending loss was strategically applied.
The different BFS of each fiber section allowed us to treat the
DSF segment as a pseudo-strain region. We varied the sampling
rate from 57.20 to 58.62 MS/s with a sample count of 290 S,
sweeping the 1st-order correlation peaks over 12 m around the
strain region to acquire the BFS distribution. The theoretical
measurement range was approximately 493 m. The results are
shown in Fig. 5(a) and (b). Fig. 5(a) shows the BFS distribution
along the entire measurement length, while Fig. 5(b) focuses on
the 2.8 m surrounding the strain region. A steep BFS decrease
of about 360 MHz was observed over approximately 140 cm,
corresponding to the DSF length, which indicates successful
detection of the pseudo-strain. Note that, in Fig. 5(a), abrupt
BFS changes of about 40 MHz were observed around 15.0 and
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Fig. 4. Structure of the FUT used in the measurement with a shorter range.
DSF: dispersion-shifted fiber, SMF: single-mode fiber.

Fig. 5. Measured BFS distributions (a) along a ∼12 m fiber section and (b)
around a 140 cm DSF section.

18.4 m, which are attributed to the use of different types of
SMFs.

Subsequently, we extended the measurement range and con-
ducted distributed strain measurement on an FUT exceeding
100 m in length. The structure of the FUT is illustrated in
Fig. 6, where approximately 0.5% strain was applied to a 120
cm section near the SMF tip. With a sample count of 320 S
and a sampling rate varying from 57.0 to 60.0 MS/s, a cor-
relation peak was swept over 72 m around the strain region
to acquire the BFS distribution. The theoretical measurement
range was approximately 544 m. The results are displayed in
Fig. 7(a) and (b). Fig. 7(a) shows the BFS distribution for the
entire measurement length, and Fig. 7(b) focuses on the 160
cm surrounding the strain region. The measured BFS change at
the strained section, calculated from the averaged BFS values in
the strained and non-strained sections, was approximately 220
MHz, corresponding to the BFS dependence on strain of 440
MHz/%, which closely aligns with a typical value. The high
symmetry in the BFS distribution around the strained section
suggests minimal systematic measurement error caused by the
phase delay between amplitude modulation (AM) and frequency
modulation (FM) in the laser [33], [34], [35].

As a final demonstration, we conducted a 100-m-range dis-
tributed strain measurement with a much shorter strained sec-
tion. In this experiment, the delay line length was set to 10 km,
utilizing the 4th-order correlation peak. The structure of the FUT
is shown in Fig. 8, where approximately 0.4% strain was applied
to a 10 cm section near the SMF tip. The FUT included two seg-
ments of 47 m SMFs tightly wound on mandrels, which exhibited
higher BFSs compared to the loose sections. The Δν value was
set to 1.85 GHz, resulting in a theoretical spatial resolution of 4.8
cm. With a sample count of 290 S and a sampling rate varying
from 89.3 to 91.1 MS/s, a correlation peak was swept over 100 m
range, including the strained section, to acquire the BFS distribu-
tion. The theoretical measurement range was approximately 325

Fig. 6. Structure of the FUT used in the measurement with a longer range.

Fig. 7. Measured BFS distributions (a) along a ∼72 m fiber section and (b)
around a 120 cm strained section.

m. Fig. 9(a) shows the measured BFS distribution over the 100 m
range. The SMF sections tightly wound on mandrels were clearly
detected, exhibiting a BFS of approximately 10.96 GHz. The
fluctuation in BFS is relatively large, which is expected due to
the nonuniform strain applied to the SMFs wound on mandrels.
At a relative position of approximately 98.5 m, the BFS change
at the 10 cm strained section was also distinctly observed. The
magnified view around the 10 cm strain is shown in Fig. 9(b).
The BFS change amounted to approximately 180 MHz, which
moderately agrees with the applied strain of 0.4%. The ratio of
the measured range (∼100 m) to the detected strain length (10
cm) is approximately 1000, surpassing the theoretically maximal
value for the standard configuration (∼540), which is the ratio of
the theoretical measurement range to the theoretical spatial res-
olution. This clearly demonstrates the advantage of the periodic
pseudo-random modulation configuration. It is noteworthy that
the ratio of the theoretical measurement range (∼325 m) to the
theoretical spatial resolution (∼4.8 cm) in this demonstration
exceeds 6700.

IV. SIMULATION

Conventional randomly modulated LC-BOCDR is known not
to produce measurement errors due to AM-FM phase delay
[20]. However, whether periodic pseudo-random modulation is
affected by AM-FM phase delay was a question we aimed to
investigate. Following the method described in Ref. [35], we
simulated the strain distribution measurements of our system.
We distinguish between “intrinsic BGS,” representing the BGS
at each position along the FUT, and “measured BGS,” the BGS as
observed by BOCDR. These two BGS distributions fundamen-
tally differ, with the measured BGS distribution derived from the
square of the two-dimensional convolution of the beat spectrum
and intrinsic BGS distribution. The beat spectrum is defined as
the power spectrum obtained from the Fourier transform of the
cross-correlation between reference and signal lights.
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Fig. 8. Structure of the FUT used in the measurement with a longer range and
a shorter strain.

Fig. 9. Measured BFS distributions (a) along a ∼100 m fiber section and
(b) around a 10 cm strained section.

For standard sinusoidal-modulation-based BOCDR, the typ-
ical beat spectrum is shown in Fig. 10(a). The modulation
conditions were: frequency modulation amplitude = 4 GHz,
modulation frequency = ∼1 MHz, intensity modulation power
ratio = 3 dB, AM-FM phase delay = π/4, spatial resolution
= ∼0.24 m. The measurement conditions were: measurement
range =∼100 m, FUT length = 5 m. The beat spectrum showed
a sharp peak at relative position = 0 m, with an inverse sine
distribution at other positions. The presence of AM-FM phase
delay causes asymmetry in the beat spectrum. In contrast, for
periodic pseudo-random-modulation-based LC-BOCDR, a typ-
ical beat spectrum is illustrated in Fig. 10(b). The measurement
conditions were: sample count = 300 S, sampling rate = 60
MS/s, measurement range = ∼500 m, assuming a Gaussian
random sequence with a bandwidth of 1.65 GHz. The beat

Fig. 10. Comparative beat spectra for (a) standard BOCDR with sinusoidal
modulation and (b) LC-BOCDR with periodic pseudo-random modulation. The
color bars show the normalized powers.

Fig. 11. Comparative “measured BGS” distributions for (a) standard BOCDR
with sinusoidal modulation and (b) LC- BOCDR with periodic pseudo-random
modulation. The color bars show the normalized powers.

spectrum showed a sharp peak at relative position = 0 m, with a
Gaussian-like distribution at other positions. Even with AM-FM
phase delay, the beat spectrum remained symmetric.

Finally, by calculating the two-dimensional convolutions
of the beat spectra and intrinsic BGS distributions for
both methods, we obtained the measured BGS and BFS
distributions. The conditions for the intrinsic BGS distributions
were: strain region = 1 m, strain magnitude = 0.4%. The
comparisons of measured BGS distributions and BFS
distributions for both methods are shown in Figs. 11(a),
(b) and 12, respectively. The BFS distribution measured by
LC-BOCDR closely resembled the actual strain distribution,
indicating accurate results. These findings suggest that periodic
pseudo-random-modulation-based LC-BOCDR can also reduce
systematic measurement errors caused by AM-FM phase delay.

V. CONCLUSION

This study introduced a new approach in LC-BOCDR by
employing periodic pseudo-random modulation, overcoming
the conventional trade-off between spatial resolution and mea-
surement range. Through experiments, we showed the feasibility
of this method for distributed strain measurements along FUTs,
with the advantage of not requiring a variable delay line. The
delayed self-homodyne method revealed the modulation param-
eters’ impact on the output spectrum of the light source, validat-
ing the potential to maintain the spatial resolution while extend-
ing the measurement range. The simulation results confirmed
that this approach yields more accurate strain measurements
compared to standard BOCDR, free from systematic errors
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Fig. 12. BFS distributions for standard BOCDR (represented in blue) and
periodic pseudo-random-modulation-based LC-BOCDR (represented in red).
The black dotted lines indicate the intrinsic strain distribution, which closely
aligns with the red plots.

associated with the AM-FM phase delay. This proof-of-concept
sets the stage for future explorations into system optimization
and in-depth performance analysis, such as enhanced spatial
resolution, extended measurement range, increased measure-
ment speed, and improved accuracy, vital areas for subsequent
investigation.
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