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ABSTRACT | Artificial intelligence (AI) and machine learning

(ML) have shown tremendous potential in reshaping the land-

scape of wireless communications and are, therefore, widely

expected to be an indispensable part of the next-generation

wireless network. This article presents an overview of how

AI/ML and wireless communications interact synergistically to

improve system performance and provides useful tips and

tricks on realizing such performance gains when training

AI/ML models. In particular, we discuss in detail the use of

AI/ML to revolutionize key physical layer and lower medium

access control (MAC) layer functionalities in traditional wireless
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communication systems. In addition, we provide a comprehen-

sive overview of the AI/ML-enabled semantic communication

systems, including key techniques from data generation to

transmission. We also investigate the role of AI/ML as an

optimization tool to facilitate the design of efficient resource

allocation algorithms in wireless communication networks at

both bit and semantic levels. Finally, we analyze major chal-

lenges and roadblocks in applying AI/ML in practical wireless

system design and share our thoughts and insights on poten-

tial solutions.

KEYWORDS | Artificial intelligence (AI); machine learning (ML);

semantic communications; wireless communications.

I. I N T R O D U C T I O N
A. Developments of Wireless Communications

The success of wireless communications is one of the
biggest achievements in the history of science and technol-
ogy, changing the way people and machines interact with
each other. In 1948, Shannon [1] developed a rigorous
mathematical framework, explaining how information is
transmitted through a transmission channel and what is
the limit of a communication system. Shannon’s infor-
mation theory has been regarded as the foundation of
modern communication technology. Since then, wireless
communications have experienced significant technical
revolutions and have evolved through five generations.
The first generation (1G) of cellular communications was
introduced in the 1980s, which marked the advent of
analog cellular networks and enabled basic voice com-
munication by utilizing frequency-division multiple access
(FDMA). The second generation (2G) of cellular com-
munications was developed in the 1990s, which marked
the advent of digital cellular networks and enabled both
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voice and text communications. In the 2000s, by utilizing
code division multiple access (CDMA) and wideband code
division multiple access (WCDMA), the third generation
(3G) of cellular communications brought enhanced data
transfer capabilities and provided higher data rates to
support various services, including accessing the Internet
and global positioning system (GPS). The development of
orthogonal frequency-division multiplexing (OFDM) and
multiple-input multiple-output (MIMO) realized the fourth
generation (4G) of cellular communications in the 2010s.
The 4G systems can support much faster data speeds and
low transmission delay, enabling high-quality video trans-
mission and mobile Internet access. The fifth generation
(5G) of cellular communications has been widely deployed
since 2020, which are designed to support ultrareli-
able and low-latency communications (URLLC), massive
machine-type communications (mMTC), and enhanced
mobile broadband (eMBB) communications. Due to the
advance of massive MIMO, millimeter-wave (mmWave)
communications, and terahertz (THz) communications,
5G can provide a high quality of experience (QoE) for
various applications, such as the Internet of Things (IoT),
autonomous driving, and extended reality (XR).

Wireless communication has been making a leap about
every ten years. Currently, the scale of wireless networks
and the number of wireless devices are enormous, and they
are expected to continuously grow in the following years.
The significant volume of data traffic poses a huge burden
on wireless networks. To address the challenge and fulfill
the evolving technological requirement, 5G beyond and
the sixth generation (6G) of cellular communications have
been studied [2], and many emerging techniques have also
been proposed and investigated, such as reconfigurable
intelligent surface (RIS) [3] and integrated sensing and
communications (ISAC) [4]. Moreover, 6G is expected
to go beyond the existing bit-level communication and
reach the semantic level. The principle of the traditional
Shannon paradigm is to guarantee the accurate reception
of every single bit of the transmitted packet regardless
of its meaning. Semantic communication in 6G is a new
paradigm that focuses on the problem of how transmitted
messages convey a desired meaning to the receiver, as
well as how effectively the received meaning affects
the action in a desired way [5]. By considering data
semantics, 6G communication has the potential to make
wireless networks significantly more efficient, robust, and
sustainable. So far, 6G is still in the conceptualization
stage and has not yet begun commercialization. It is
important to come up with more intelligent approaches to
enable the implementation of the next-generation wireless
communication systems.

B. Motivation of Using Artificial Intelligence in
Communications

Artificial intelligence (AI) and machine learning (ML)
refer to the development of computer systems or software

that can execute tasks that typically require human
intelligence. These tasks include learning and reason-
ing, understanding natural language, problem-solving, and
decision-making. AI/ML systems are designed to simulate
or replicate human cognitive functions, allowing machines
to perform complex tasks and adapt to varying environ-
ments. AI/ML describes a broad range of technologies and
enables numerous services and products in our daily lives.
For example, natural language processing (NLP) enables
machines to understand, interpret, and generate human
language, which plays a vital role in real-time language
translation. Computer vision (CV) is developed to teach
machines to interpret and make decisions based on visual
data, which has been widely used in facial recognition and
image analysis.

ML is capable of learning from a large amount of data,
enabling computers to program automatically to perform
a task and learn from examples to improve their perfor-
mance over time. ML models can be generally divided
into the following three types, supervised learning, unsu-
pervised learning, and reinforcement learning (RL). Algo-
rithms in supervised learning are trained based on labeled
example datasets to build a mapping between input and
output. For a given input, supervised learning can pre-
dict its corresponding output by using the mapping rule.
Algorithms in unsupervised learning are trained based on
unlabeled example datasets to discover inherent patterns
or structures. Algorithms in RL are trained based on their
own experience, allowing agents to learn to make decisions
by interacting with an environment and receiving feedback
which is noted as rewards or penalties. The neural network
is a novel structure that involves layers of interconnected
neurons (nodes) to model complex relationships and learn
from diverse types of data. The neural network with multi-
ple layers is called the deep neural network (DNN) which
is enabled by deep learning (DL). The DNN-based archi-
tecture includes a variety of well-known models, such as
the recurrent neural network (RNN), convolutional neural
network (CNN), graph neural network (GNN), and long
short-term memory (LSTM) network. DNN is versatile and
can be deployed in various ML paradigms based on the
specific task and the nature of the data.

Since the data traffic load for wireless communication
will increase dramatically in the future, it is difficult
for existing wireless communication systems to meet the
ever-growing requirements of various intelligent wireless
applications. AI/ML technology has been regarded as a
powerful approach and brought many benefits in the
design of the next-generation wireless communication sys-
tems. The first advantage falls in the signal processing
at the physical layer. Traditional networks rely on accu-
rate mathematical models for channel parameter estima-
tion, which often fails to find an accurate model when
the wireless propagation environment is time-varying and
complex. ML is an alternative method to facilitate adap-
tive channel modeling and estimation by learning from
the massive recorded data, relaxing the constraint for
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accurate mathematical models. The second benefit is the
superior data processing and interpretation capability. The
explosion in the number of wireless devices challenges
the traditional way of data storage and processing. ML
algorithms can be used to identify patterns in raw data
and remove redundant information to optimize the stor-
age and processing spaces of data. With the help of
NLP and DL, AI technology also allows us to rethink
the traditional information theory and investigate post-
Shannon wireless communications at the semantic level.
Third, integrating AI/ML into wireless communications
also benefits resource allocation and network optimization,
ensuring the efficiency and scalability of wireless networks.
Resource allocation problems can be generalized as opti-
mization problems under some constraints, with the aim
of striking a tradeoff between various factors (e.g., energy
efficiency, transmission delay, and throughput). Traditional
optimization tools can solve the problem efficiently when
the objective function satisfies some assumptions, such
as convex property, continuous property, and differential
property. However, the complexity of the traditional opti-
mization algorithms grows exponentially with the network
scale, which is not scalable and acceptable for large-scale
real-time applications. In addition, for 6G communication
systems, the objective function can be more complex and
the number of constraints can be larger; thus, traditional
optimization tools may not work smoothly for the next-
generation wireless communications. In this regard, AI/ML
is seen as an effective tool for solving the challenging opti-
mization and resource management problems in wireless
communication systems.

The integration of AI in wireless communications
offers numerous benefits across various practical appli-
cations [6]. With the help of AI, localization and posi-
tioning accuracy in wireless networks could be further
improved [7], enabling applications such as indoor naviga-
tion and asset tracking. AI algorithms can optimize beam-
forming in wireless communication systems to dynamically
adjust the antennas based on changeable environmental
conditions and reduce interference. AI can also facilitate
the allocation of various wireless resource [8] such as
bandwidth, power, and frequency spectrum in wireless net-
works, ensuring efficient utilization of available resource
and enhancing the network performance. Overall, AI in
wireless communications promises improved performance
and innovative applications.

Although the integration of AI/ML in wireless net-
works has witnessed considerable progress, the practical
deployment of AI-empowered wireless communications
encounters obstacles such as the difficulty in reasoning the
meaning of signals, the limitation of computing resources,
and the lack of guidance for the selection of proper ML
algorithms based on specific tasks. For instance, AI models
need substantial data for effective training to achieve
near-optimal performance; thus, the scarcity of computing
resources emerges as a prominent hurdle and hinders the
network robustness. Efficient management of computing

resources is as important as the wireless resource manage-
ment. Moreover, selecting the most suitable ML algorithms
based on specific tasks remains an implicit challenge for
wireless communications. Compared with data-driven ML
methods, classic model-driven methods are still effective
in some cases. Therefore, the lack of explicit treatment for
algorithmic selection and misuse of ML algorithms pose a
challenge to achieving optimal performance tailored to the
underlying transmission task.

C. Contributions and Organization

In Sections I-A and I-B, we introduced the development
of existing wireless communications and the new vision
of semantic communications. We also explained the moti-
vation for integrating AI/ML into wireless communication
networks. In light of the above advantages and limita-
tions, there arises a need for a comprehensive survey of
AI-empowered wireless communications.

Prior to this work, there were a few survey articles on
AI and wireless communications shedding light on the
past advancements and future challenges. Chen et al. [6]
offered a detailed tutorial on utilizing a broad range of
neural networks in DL, including RNN, DNN, and spiking
neural network (SNN), to address various wireless net-
working problems related to unmanned autonomous vehi-
cle (UAV) communications, edge computing and caching,
IoT, multiple access, and the XR. Sun et al. [7] reviewed
cutting-edge applications of ML across different lay-
ers of wireless networks, focusing on resource alloca-
tion, mobility management, and localization from the
medium access control (MAC) layer to the application
layer. Wang et al. [9] gave a comprehensive survey on
the development of ML in the past 30 years, all the
way from the physical layer to the application layer.
Shi et al. [8] provided a systematic review of “learning
to optimize” techniques in various areas of large-scale
6G networks, connecting ML algorithms with optimization
theory to enhance the interpretability and transparency
in the design of AI frameworks from an optimization
perspective. These existing works have thoroughly investi-
gated the field of AI-empowered wireless communications,
offering perspectives on the design of AI-driven wireless
networks and detailing potential use cases and scenarios.
However, they mainly focus on how AI can make a sig-
nificant impact on traditional wireless communications,
ignoring the impact of AI on semantic communications.
There are also a few survey articles on semantic com-
munications. Gündüz et al. [10] gave a detailed survey
to introduce semantic and task-oriented communications
from the information-theoretic perspective. Both semantic
information theory and ML techniques have been explored
in this work. Qin et al. [11] provided an overview of
the principles and challenges of semantic communications,
explaining the performance gain by considering semantics.
In that work, the term semantic communications is equiv-
alent to task-oriented or goal-oriented communications.
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Yang et al. [12] further divided semantic communications
into three types, i.e., semantic-oriented communications,
goal-oriented communications, and semantic awareness
communications, and reviewed the related techniques and
challenges. In this work, we focus on the transformation of
wireless communications from bits to semantics and aim
to provide an overview of the impact of AI on the shift
of communication paradigms. Besides a fully encapsulated
overview, we also summarize the lessons learned from the
existing works and provide useful tips to guide the design
of AI-empowered next-generation communication systems.

In this article, we give a comprehensive overview and
tutorial on AI-empowered wireless communications from
the classical bit level to the novel semantic level. Particu-
larly, we provide a detailed overview of a series of well-
known ML methods and applications from the physical
layer up to the application layer which covers the fields of
signal processing, resource allocation, and the state-of-art
semantic communication paradigm. We explain the princi-
ples of various intelligent algorithms and models, discuss
the challenges and open areas, and give useful guidance
for researchers in the design of wireless communication
systems with the aid of AI/ML. The key contributions of
this article are listed as follows.

1) This article gives a detailed overview of the liter-
ature applying AI/ML to signal processing on the
physical layer, covering the learning-based channel
modeling and estimation, channel state information
(CSI) feedback, precoding, and signal detection and
decoding. The novel data-driven end-to-end commu-
nication framework is also discussed. Key insights
are derived from comparative analysis, including
learning-based CSI feedback versus codebook-based
feedback and data-driven framework versus model-
driven framework, offering valuable perspectives on
the effectiveness of AI-based methods in contrast to
classic approaches.

2) AI-empowered semantic communication is compre-
hensively investigated, encompassing semantic-aware
sampling, coding, modulation, and other emerging
techniques (e.g., big AI model). Moreover, some criti-
cal questions, e.g., whether semantic communication
can break the Shannon limit, are explicitly treated
and some insights regarding challenges and open
areas are provided.

3) Popular ML techniques utilized in resource allocation
and network optimization are thoroughly summa-
rized including their basic principles and application
scenarios, which are categorized by supervised learn-
ing, unsupervised learning, RL, and GNNs. Useful tips
and tricks are provided to help researchers choose
the most suitable ML algorithm given a specific task,
facilitating the decision-making in wireless network
optimization.

This article navigates the realm of AI-enabled techniques
in both traditional and semantic wireless communications.

The structure of this article is shown in Fig. 1. The
rest of this article is organized as follows. Section II
introduces the learning-based signal processing techniques
on the physical layer, together with the comparative
analysis of learning-based methods and their traditional
counterparts. Section III introduces the semantic-aware
intelligent data processing techniques, discussing key
issues and open areas in the context of semantic com-
munications. Section IV discusses the advancements in
ML-aided resource allocation problems, providing use-
ful tips and tricks on the proper selection and uti-
lization of ML algorithms. Section V concludes this
article.

II. L E A R N I N G - B A S E D P H Y S I C A L
L A Y E R P R O C E S S I N G
The use of AI to revolutionize physical layer processing
has received increasing attention over the past few years,
and significant performance gain has been observed in
learning-enabled design for different communication mod-
ules as well as the new paradigm based on end-to-end
learning. In this section, we provide an overview of these
techniques, including learning-based channel modeling
and estimation, CSI feedback, signal detection, and decod-
ing. Finally, we investigate the novel end-to-end learning-
based communication architecture.

A. Channel Modeling and Estimation

Conventional methods for channel modeling can be cat-
egorized into deterministic approaches, e.g., ray tracing,
and stochastic approaches, which usually require exten-
sive calculations and exact descriptions of the environ-
ment [13]. In contrast to these conventional approaches,
generative models can adopted to capture the wire-
less channel effects and produce channel parameters
due to their capacity to extract underlying properties
from observed data. Furthermore, generative model-based
channel modeling methods can deal with more complex
communication environments and offer higher modeling
accuracy [14].

The generative adversarial network (GAN), a typical
generative model, has been utilized in [14] and [15]
for channel modeling, and the framework is shown in
Fig. 2. There are three parts: real channel samples xs,
a channel data generator G, and a channel data dis-
criminator D. Real channel samples comprise the dataset
obtained from measurement, which are considered as the
training data. The generator, G, tries to generate fake
samples using the noise vectors z, and the discriminator,
D, attempts to distinguish between real and fake sam-
ples. They are trained simultaneously using the following
objective:

min
G

max
D

Exs∼pdata [log D (xs)]− Ez∼p(z) [log (D (G (z)))] .

(1)
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Fig. 1. Organization of this article.

The training stops when the discriminator cannot dis-
tinguish the real and fake samples. At this point, the
generator has learned the distribution of the real channel
samples and it can be directly extracted as the target
channel model. For instance, the GAN-based framework
is trained with the real samples generated from a Gaus-
sian distribution [14] and a Rayleigh distribution. At the
beginning of the training, probability density functions
(pdfs) of the generated and real data are quite different.
After training, the pdfs of the generated and real samples
are shown in Fig. 3, which demonstrates that the GAN-
based method provides a commendable approximation of
the actual additive white Gaussian noise (AWGN) channel
for Rayleigh fading channel without requiring accurate
environment information.

Fig. 2. Framework of GAN-based wireless channel modeling.

This framework can be extended to tackle more com-
plicated propagation channels. In a single-input single-
output (SISO) scenario, the channel’s 2-D time–frequency
response is considered in [16]. The real channel samples
are regarded as images, and the deep convolutional GAN
is employed for the generator and discriminator. Further-
more, for a typical MIMO system with Nt transmit anten-
nas and Nr receive antennas, the real channel samples
in the time domain are represented as H̃ ∈ CNt×Nr×Nd ,
where Nd denotes the number of delay paths. The MIMO
channels contain more complex features than SISO chan-
nels, so the generator and discriminator should have wider
and denser layers. The Wasserstein GAN with gradient
penalty is used in [17] to improve training stability in
modeling MIMO channels. In practice, the channel impulse
response cannot be obtained easily for the MIMO channels.
To deal with this issue, a conditional GAN is used in [18]
to enable the model to learn the channels from the trans-
mitted and received signal pairs. Utilizing the transmitted
signal x̃ as the conditioning information, the generator
can be trained to produce the possible received signal ỹ.
In addition to GANs, another efficient generative model
called variational autoencoder (VAE) has also been utilized
for channel modeling. For instance, it is used to model the
channels in UAV communication [19].

Channel estimation is another critical aspect of wire-
less communication. Pilot-based channel estimation is
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Fig. 3. After training with a sufficient number of real channel

samples, the channel generator can produce samples with a similar

pdf as the real samples. (a) Gaussian distribution. (b) Rayleigh

distribution.

widely used to estimate the unknown channel coefficients
in an OFDM system by periodically transmitting known
pilots [20], [21]. Least-squares (LS) and minimum mean-
squared error (MMSE) methods are two traditional meth-
ods to recover the channel vector, h̃, from the transmitted
pilot, x̃P , and received signal, ỹP . Learning-based channel
estimation has recently attracted increasing attention for
its capacity to achieve higher estimation accuracy and
lower computation complexity than traditional methods.
These methods can be categorized into data-driven and
model-driven approaches.

The core of data-driven estimation methods is to convert
channel estimation to a supervised learning problem by
treating (x̃P , ỹP ) as the input feature and the channel vec-
tor h̃ as the training label. A DNN-based channel estimator
learns a mapping from the input to the channel vector
and is optimized by adjusting the parameters of the neural
network to fit the dataset. The training stage is conducted
offline, while in the online deployment stage, the current
channel vector can be estimated immediately once the
current transmitted and received pilot signals are obtained.
In the simulation of a SISO system, the DNN-based method
can achieve similar performance as the MMSE estimator
while slightly outperforming the MMSE estimator in a
low signal-to-noise ratio (SNR) regime. In MIMO systems,
three types of channel correlations are introduced, namely,

spatial, frequency, and temporal correlation, which are
favorable for channel estimation. These correlations are
captured and exploited efficiently in [22] by filtering
pilot matrices of adjacent subcarriers and coherence inter-
vals simultaneously using CNN-based channel estimators,
improving the estimation accuracy and reducing the spatial
pilot overhead caused by massive antennas. The learning-
based estimation methods can achieve performance that
is close to the ideal MMSE estimator with perfect (yet
practically unavailable) correlation information.

Large-scale MIMO channels are known to exhibit
sparsity due to limited scattering. Therefore, compressed
sensing (CS) is exploited to enhance the learning-based
channel estimation as it is an effective model-based
approach to deal with sparsity. Typical CS methods, such
as the iterative shrinkage thresholding algorithm (ISTA)
and approximate message passing (AMP), hinge upon
the fine-tuning of numerous hyperparameters. Instead of
using a conventional componentwise shrinkage operator
in AMP, a learned denoising approximate message passing
(LDAMP) method is proposed in [23], which utilizes a
denoising CNN (DnCNN) to harness channel correlations
and reconstruct the channel more accurately. Furthermore,
a learnable iterative shrinkage thresholding algorithm-
based channel estimator (LISTA-CE) is designed in [24],
which uses DL to obtain sparse transformation matri-
ces and exploits the sparsity of wideband beamspace
MIMO-OFDM channels, significantly outperforming con-
ventional CS-based algorithms. The success of LDAMP and
LISTA-CE demonstrates the feasibility of combining AI/ML
and model-based channel estimation methods to further
improve the estimation performance.

Insights and Challenges: Different from conventional
methods that require sophisticated theory and high compu-
tation complexity, the channel modeling methods based on
generative models do not need specific domain knowledge
or technical expertise. Utilizing these generative models to
approximate more complex and practical channels is an
open area for further research. ML-based channel estima-
tion methods can reduce the computation complexity and
capture the channel correlations to improve the estimation
accuracy. Moreover, exploiting the prior knowledge of the
channels, such as sparsity, and designing more efficient
and low-complexity estimation approaches deserve further
exploration.

B. CSI Feedback

CSI at the transmitter is important for adaptive trans-
mission in time-varying channels and precoding design
in MIMO communication systems. When operating in
the frequency-division duplex (FDD) mode, reciprocity of
uplink and downlink channels faces challenges and the
user equipment (UE) needs to report downlink CSI to the
base station (BS) for downlink precoding, causing substan-
tial feedback overhead due to the extensive CSI dimensions
in massive MIMO systems. Traditional feedback methods,
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Fig. 4. Illustration of the CsiNet architecture, where the

autoencoder compresses and reconstructs CSI at the transmitter

and receiver, respectively.

including codebook and CS-based approaches, struggle to
balance between feedback overhead and accuracy.

To address this issue, CsiNet [25] first introduces AI in
CSI feedback and constructs an autoencoder for compress-
ing and decompressing CSI, taking advantage of the CSI
sparsity in the angular-delay domain. As shown in Fig. 4,
the UE-side encoder extracts CSI features with a convolu-
tional layer. On the BS side, the decoder reconstructs the
CSI from codewords through RefineNet, featuring three
convolutional layers with residual learning. CsiNet drasti-
cally enhances feedback accuracy compared to traditional
methods. Subsequent research has extensively explored
learning-based CSI feedback, which can be categorized
into three main research directions: novel neural network
architecture design, multidomain correlation utilization,
and practical deployment.

1) Novel Neural Network Architecture Design: Although
learning-based algorithms can automatically capture CSI
features from extensive training samples, the performance
heavily relies on the neural network architecture and
warrants thoughtful design. Preliminary methods directly
concatenate real and imaginary CSI components with a
convolutional layer (e.g., 3 × 3 kernel), causing perfor-
mance degradation. In contrast, CLNet [26] maintains the
inherent complexity of CSI by replacing it with a 1 × 1
kernel, thus preserving phase information. Simulation
results show significant reconstruction gains over prelim-
inary methods. Another approach, TransNet [27], focuses
on prioritizing feature maps that contain richer informa-
tion. It achieves this by utilizing the attention mecha-
nism in CSI feedback. By replacing feature extraction and
reconstruction in the autoencoder with the Transformer,
TransNet significantly improves feedback performance. To
further streamline the process of designing neural net-
works, Auto-CsiNet [28] employs the neural architecture
search for automating this process for CSI feedback in
specific scenarios. By fully exploiting the potential of AI,
simulation results showcase Auto-CsiNet’s superiority over
manually designed models, excelling in both accuracy and
complexity.

2) Multidomain Correlation Utilization: Considering the
rich wireless propagation information contained within
CSI, exploiting multidomain correlation can notably
enhance the performance of learning-based CSI feedback,

including time correlation, bidirectional channel correla-
tion, and channel correlation among UEs. As an example,
CsiNet-LSTM [29] capitalizes on high time correlation
across adjacent slots by adopting LSTM modules. It
compresses the initial and subsequent CSI images with
different compression ratios (CRs). Then, the concate-
nated codewords are refined by LSTM modules at the
decoder. Simulation results demonstrate the superior per-
formance of the proposed method, particularly at lower
CRs. Moreover, bidirectional channel magnitude correla-
tion is leveraged by DualNet-MAG [30] due to the shared
propagation environment between downlink and uplink.
After the encoder compresses the downlink CSI magnitude,
the decoder reconstructs it with both the codeword and
the uplink CSI magnitude. Simulation results showcase
significant accuracy improvement with integrated uplink
CSI. Additionally, to cope with the rise in UE density,
distributed DeepCMC has been developed in [31] to lever-
age the CSI correlation among nearby UEs for improving
CSI feedback. The BS merges codewords from multiple
UEs and reconstructs them through a collective feature
decoder. Information shared among nearby UEs no longer
requires feedback, thereby reducing overhead.

3) Practical Deployment: To boost the practical deploy-
ment of learning-based CSI feedback, many problems have
been further considered in the literature. First, CAnet-J
[32] integrates pilot design, channel estimation, and CSI
feedback. After using uplink CSI for pilot generation and
compressing received signals directly, the decoder recon-
structs downlink CSI utilizing uplink CSI. This approach
reduces pilot overhead and estimation errors by omitting
shared bidirectional information in pilot signals. In addi-
tion, to mitigate quantization errors, a µ-law nonuniform
quantizer is utilized in [33], which adjusts the quanti-
zation step sizes according to codeword amplitudes. The
encoder’s output undergoes µ-law quantization, and then,
the BS refines it with an offset neural network before
the decoder. Simulation results demonstrate the superior
performance of the proposed method compared to the
uniform quantization method. Furthermore, in order to
automate the choice of CRs in practical systems, AdaL-
iCsiNet [34] incorporates a classification module before
CSI feedback. Based on a predefined accuracy threshold,
this classification model selects an appropriate CR by
a neural network, utilizing CSI as the input to predict
the desired CR as the output. Additionally, in alignment
with existing cellular systems based on implicit feedback,
ImCsiNet [35] refines the feedback process by transmitting
the precoding matrix rather than the entire CSI matrix.
Simulation results indicate that this method mitigates
feedback overhead compared to conventional codebook-
based methods. Moreover, to address the challenge of
resource-intensive high-complexity neural networks, tech-
niques like neural network weight pruning, quantization,
and efficient architecture design have been introduced in
[36] for learning-based CSI feedback. Simulation results
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demonstrate minimal accuracy loss despite the reduced
neural network complexity. More details and other related
works can be found in [37].

Insights and Challenges: Despite the considerable
attention AI-based CSI feedback has received from both
academia and industry, it still faces several challenges. A
significant challenge arises from the two-sided architec-
ture adopted in AI-based CSI feedback. The intervendor
training collaboration of the encoder at the UE side and
the decoder at the BS side should be carefully designed.
Moreover, the tradeoff between feedback performance and
model complexity needs to be investigated to achieve an
optimal balance for practical deployment.

C. Precoding

Precoding, colloquially referred to as beamforming,
denotes a deliberate and strategic technique employed to
purposefully shape transmitted signals. The principal goal
of precoding is to optimize the efficiency and reliability
of data transmission across communication channels. This
shaping process is intricately designed to exploit the inher-
ent spatial characteristics of the communication channel,
thereby leading to an enhanced overall performance.

Consider a downlink transmission within a multiuser
MIMO system, where a transmitter simultaneously serves
K receivers. The transmitter, equipped with Nt antennas,
sends Ns data streams to the kth receiver. This transmis-
sion is accomplished by using a precoding matrix denoted
as Fk ∈ CNt×Ns . Subsequently, the kth receiver, possess-
ing Nr antennas, employs a combining matrix denoted
as Wk ∈ CNr×Ns to process the received signal. The
achievable rate at the kth receiver is expressed as

Rk = log det
(

I + FH
k HH

k WkR−1WH
k HkFk

)
(2)

where Hk ∈ CNr×Nt signifies the channel matrix between
the transmitter and the kth receiver. Additionally, R =∑K

m̸=k,m=1 WH
k HkFmFH

mHH
k Wk + σ2

kWH
k Wk represents the

covariance matrix encompassing the contributions of noise
and interference. In the context of precoding design, vari-
ous objectives may be of interest, such as maximizing the
weighted sum rate (WSR), i.e.,

∑K
k=1 αkRk, maximizing

the minimum achievable rate, i.e., min{R1,R2, . . . ,RK},
and others.

Preliminary investigations have leveraged data-driven
DL methods for the design of precoding and combining
matrices [38], [39], [40], [41]. In the context of a single-
user multiple-input single-output system, Lin and Zhu
[38] introduced a phase-shifter-based analog precoding
architecture at the transmitter. Then, a multilayer neural
network was constructed to acquire the mapping from
the estimated channel to the analog precoding vector. To
ensure the output conforms to the unit modulus constraint,
the neural network initially generated the phase of the
analog precoding vector, which was subsequently utilized
to construct the analog precoding vector. However, this

design overlooks the potential structural characteristics
of the precoding matrix, introducing challenges in net-
work training. In the context of a multiuser multiple-input
single-output system, Xia et al. [39] investigated the struc-
tural characteristics of optimal precoding vectors and pro-
posed a DL framework. This framework addressed three
classical optimization problems in precoding design, i.e.,
the signal-to-interference-plus-noise ratio (SINR) balanc-
ing, the power minimization, and the WSR maximization
problem. Each problem was tackled with a meticulously
designed neural network. Notwithstanding the efficacy of
these approaches, it is important to note that these works
predominantly rely on data-driven methods, which are sus-
ceptible to issues related to resilience and interpretability.

Inspired by traditional precoding algorithms [42], [43],
the utilization of deep unfolding emerges as a promising
avenue for enhancing the robustness and interpretability
of DL-based methods. By integrating expert knowledge
into the design process, such methods demonstrate notable
performance and efficiency [44], [45], [46], [47]. In the
context of the widely employed hybrid architecture in
mmWave systems, the study presented in [44] introduces
a hybrid precoding approach based on model-driven DL
principles. The optimization objective of WSR maximiza-
tion is initially reformulated into a weighted minimum
mean-squared error (WMMSE) optimization, enabling the
direct derivation of digital precoding and combining matri-
ces. For analog precoding and combining matrices, subject
to unit modulus constraints, manifold optimization (MO)
techniques are employed. To further bolster performance
and mitigate complexity, the step sizes of MO are treated
as trainable variables. In recognition of the varying channel
sparsity and its impact on robustness, an adaptive neural
network is introduced to dynamically generate the step
sizes of MO. The proposed method exhibits commend-
able performance and robustness against dynamic system
parameter variations. The advent of RIS has introduced
a novel dimension to wireless communication design.
The phase shifts of RIS elements are considered as pas-
sive beamforming, which are jointly designed with active
beamforming at the transmitter. In [45], a combination of
WMMSE optimization and the power iteration algorithm
is proposed. The inclusion of trainable variables expedites
the convergence of the proposed algorithm, and a data-
driven GNN is incorporated to enhance initialization per-
formance and reduce the required number of iterations.
By amalgamating model-driven and data-driven learning
methods, the proposed approach attains the advantages of
low complexity and strong robustness.

In addition to data-driven and model-driven
approaches, recent studies have explored the application
of deep RL for precoding design [48], [49], [50]. Treating
the communication system as an agent, an RL-based
algorithm is developed for hybrid precoding design
in [48]. Departing from the conventional strategy of
directly learning analog and digital precoding matrices
simultaneously, the proposed method employs an
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MO-based approach to initially compute a feasible analog
precoding matrix. Subsequently, deep RL is employed
to determine the digital precoding matrix and analog
combining matrix. Finally, the digital combining matrix is
computed using the MMSE criterion. Jensen’s inequality
provides an upper bound of the average WSR with
imperfect CSI, serving as the reward for training the
agent. It is worth noting that RL-based algorithms often
face challenges related to convergence, particularly
in scenarios characterized by large state and action
dimensions. In the context of an RIS-assisted system,
the dimension of the passive beamforming is typically
substantial due to the numerous reflective elements.
To mitigate convergence difficulties, Wang and Zhang
[49] strategically utilize discrete Fourier transform
(DFT) vectors as the action set. The selected action
involves switching the adopted vector to an adjacent one,
effectively reducing the dimensionality of the action space.

In MIMO systems employing a hybrid architecture
or RIS-assisted configurations, channel estimation often
presents a formidable challenge. Traditional methods,
involving both channel estimation and precoding design,
encounter substantial difficulties. Several approaches have
sought to circumvent the complexities of channel estima-
tion by directly designing beamforming based on received
pilot signals [40], [51]. Notably, due to the permutation
equivariant and invariant properties, GNNs are employed
to model the RIS-assisted wireless communications in [51].
In these methodologies, the received pilot signal of the
BS is directly input into the GNN. The GNN then maps
this input into the active and passive beamforming vectors,
effectively bypassing the conventional channel estimation
process.

Insights and Challenges: With the advancement of com-
munication systems, there has been a notable increase
in the number of antennas, leading to an expansion in
the dimensionality of the precoding matrix. Consequently,
data-driven approaches require larger network dimen-
sions, complicating the training process. On the other
hand, model-driven methodologies necessitate iterative
processes, leading to high complexity. Hence, achieving
an optimal tradeoff between precoding performance and
computational complexity is of paramount importance.
Moreover, as channel dimensions escalate, the channels
frequently manifest sparsity and other distinctive charac-
teristics. Investigating strategies to harness these charac-
teristics for design optimization remains an area meriting
scholarly attention.

D. Signal Detection and Decoding

Signal detection and channel decoding have long been
acknowledged as fundamental tasks in communication
receiver design. In this section, we feature several notable
instances where AI/ML exhibits significant potential in
designing signal detection and channel decoding schemes.

For signal detection, the pioneering work of Ye et al. [52]
considers using data-driven learning to improve signal

detection in OFDM systems. Specifically, a fully connected
deep neural network (FC-DNN) is designed to perform
signal detection without the need for explicit channel esti-
mation. This data-driven method replaces the module-by-
module design in conventional OFDM receivers by learning
a mapping from the received signal to the transmitted data.
This approach leads to notable enhancements in handling
channel distortions, particularly in complex scenarios, by
eliminating the need for analytical modeling. A similar idea
is also utilized in molecular communications [53], where
a bidirectional RNN is developed for sequence detection.
This proposed method does not rely on knowledge of a
mathematically complex transmission model and outper-
forms traditional Viterbi detection in specific scenarios.

Extending beyond the signal detection problem in SISO
systems [52], [53], current wireless communication sys-
tems generally deploy multiple antennas at both the trans-
mitter and receiver ends, leading to the more challenging
MIMO detection problem. Consider a MIMO system that
consists of Nt antennas for transmitting data streams
independently and Nr antennas for receiving the signal.
Let x ∈ ANt×1 denote the transmitted data vector, whose
elements are drawn from the discrete alphabet A, e.g.,
quadrature amplitude modulation (QAM) constellation.
The relationship between the input and output of this
system can be represented by

y = Hx + n (3)

where y ∈ CNr×1 denotes the received signal vector,
H ∈ CNr×Nt denotes the channel matrix, and n ∈ CNr×1

denotes the Gaussian noise vector. The goal of MIMO
detection is to estimate the symbol vector x based on
the observation y and the knowledge of H. Assuming no
a priori information is available, the optimal maximum
likelihood detection criterion is given by

x̂ = arg min
x∈ANt×1

∥y−H x∥2. (4)

Due to the discrete nature of x, optimal MIMO detection
belongs to integer LS problems, known to be NP-hard.

To address the challenge, a DL-based MIMO detector,
named DetNet, has been developed in [54] by unfolding
the projected gradient descent method and incorporat-
ing learnable weights. Under well-conditioned channels,
DetNet achieves comparable performance as the AMP
[55] and semidefinite relaxation [56] while providing
lower complexity. Notably, this study reveals the idea of
leveraging model-driven learning [57], which integrates
communication domain knowledge (e.g., iterative algo-
rithms) into data-driven pipelines, for the design of MIMO
detectors.

To further reduce the training cost and enhance robust-
ness, the orthogonal AMP algorithm is unfolded [58],
with only four trainable parameters integrated into each
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layer of the unfolded network. The developed model-
driven learning-based detector, named OAMPNet, exhibits
significant performance gain over DetNet under realistic
small-sized MIMO channels or high-order modulation. An
extension has been developed in [59] that addresses sig-
nal detection in cyclic prefix-free MIMO-OFDM systems,
and the model-driven learning-based detector outperforms
benchmark algorithms in both numerical simulations and
over-the-air experiments. In addition, GNNs have been
leveraged to enhance message-passing-based detectors in
[60]. Specifically, a GNN-aided expectation propagation
(EP) algorithm, referred to as GEPNet, is developed and
shows significant gains over the EP detector [61]. More-
over, applying online learning to enhance the environmen-
tal adaptability of learning-based MIMO detectors has been
studied in [62]. The proposed approach, named MMNet,
exploits temporal and spectral correlation of realistic chan-
nels to accelerate online learning and demonstrates better
performance in handling harsh channel conditions than
baselines.

The incorporation of hypernetworks [63] offers an alter-
native avenue for enhancing the generalization capabili-
ties of model-driven learning-based detectors. Essentially,
this approach entails the utilization of an auxiliary net-
work to generate parameters for the primary network,
mirroring the relationship akin to that between a geno-
type (the hypernetwork) and a phenotype (the pri-
mary network) [64]. Unlike conventional online training
paradigms, hypernetworks facilitate adaptive parameter
adjustments in response to evolving scenarios, thereby
circumventing retraining. The studies in [65] introduced a
hypernetwork-aided MMNet to tailor the MIMO detector to
diverse channel realizations and noise levels. Specifically,
the hypernetwork can learn the fluctuating trends of the
adjustable weights across various scenarios and furnish
suitable parameters for the signal detection network. This
idea has been further explored in [64] that meticulously
designs the inputs of the hypernetwork to remove redun-
dant features and achieves reduced complexity while pre-
serving excellent adaptability.

In another aspect, stochastic sampling-based methods,
particularly Markov chain Monte Carlo (MCMC), have
shown the potential to approach near-optimal MIMO
detection performance with high efficiency. Recently,
MCMC has been combined with gradient descent, showing
impressive promises in nonconvex optimization problems
[66]. The combination of these two powerful ML tech-
niques for MIMO detection has been first investigated in
[67], which accelerates MCMC’s exploration of the search
space utilizing Newton’s method [68]. Further enhance-
ments are explored in [69] as they accelerate MCMC sam-
pling by first-order optimal Nesterov’s accelerated gradient
(NAG) method [70], which avoids the high-complexity
matrix inversion required by Newton’s method and results
in a highly scalable detector. As shown in Fig. 5, the
detector proposed in [69], namely, NAG-MCMC, achieves
substantial gains over various NN-based detectors and

Fig. 5. BER performance comparison of NAG-MCMC and other

baselines in an 8 × 8 MIMO system with 16-QAM and Rayleigh fading

channels. The BER curve of DetNet is not presented due to its

subpar performance under this high-order modulation.

approaches the performance of the optimal maximum
likelihood detector.

Regarding the channel decoding problem, neural net-
works have long been utilized as alternative approaches
to conventional iterative methods, as channel decoding
can be framed as a classification problem. In recent years,
the remarkable achievements of DL in various domains
have sparked a new trend of developing DL-based chan-
nel decoders. A data-driven decoding method utilizing an
optimized DNN has been proposed in [71] for random
and polar codes. It is observed that the DNN decoder
can achieve optimal decoding performance for both code
families when the code length is short. In particular, the
experimental results show great promise in learning robust
decoding schemes for polar codes, which are structured as
compared to random codes. Notwithstanding, the scalabil-
ity of neural network-based decoding to long codewords is
a fundamental issue to be resolved. To address the curse of
dimensionality, the structure of the encoding process and
the iterative belief propagation (BP) decoding algorithm
are employed as the prior knowledge for constructing neu-
ral decoders in [72]. The proposed method assigns weights
to the edges of the Tanner graph in standard BP and opti-
mizes these weights via DL techniques, offering improved
performance and reduced complexity. Furthermore, RNN-
based channel decoding has been investigated in [73]
and [74]. Specifically, data-driven RNNs are learned in
[73] for decoding convolutional and turbo codes, show-
casing enhanced performance and excellent robustness as
compared to conventional Viterbi [75] and BCJR [76]
algorithms. In [74], the DNN-based BP decoder [72] is
improved by using the RNN architecture, which reduces
the number of trainable parameters by unifying weights
across different iterations/layers without significantly sac-
rificing decoding performance.

In addition to learning the channel decoder, optimizing
the channel encoder has also been investigated in NN-
based channel encoding and decoding research. Distinct
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Fig. 6. Communications system over an AWGN channel

represented as an autoencoder, adapted from [81].

from end-to-end learning approaches that jointly optimize
the encoder and decoder and can be obstructed by a
missing channel model [77], it was proposed in [78] to
apply a neural estimator [79] to approximate the mutual
information between the channel input and output and
learn the channel encoder by maximizing the mutual
information. This approach decouples the training of the
channel encoder with the decoder, thereby circumventing
the issue of an unknown channel model.

Insights and Challenges: ML-based signal detection and
decoding, despite their potential to surpass traditional
methods, still face several challenges that need to be
resolved. One notable issue is how to systematically tackle
the curse of dimensionality. Developing low-dimensional
AI/ML models for processing high-dimensional data is an
important topic [80] and has become highly valuable as
the problem dimension reaches an unprecedented scale
with the evolution of communication systems. Addition-
ally, enhancing the generalization capability of the models
remains an open problem that is crucial for practical
implementation.

E. End-to-End Communications

In recent years, end-to-end communication systems
have attracted considerable attention, which transforms
the traditional communication system into a data-driven
framework [77], [81]. In this novel end-to-end paradigm,
transmitters and receivers are jointly trained based on
an end-to-end loss function rather than separate chan-
nel coding/decoding and modulation/demodulation. The
end-to-end communication architecture can be viewed as
an autoencoder, where the transmitter functions as the
encoder network, and the receiver serves as the decoder
network.

As a pioneering work, a learning-based system over
an AWGN channel with a short block size is investigated
in [81], as illustrated in Fig. 6. The transmitter uses an
encoder network to map the transmitted symbols into x,
which is subsequently sent through the AWGN channel.
The transfer function of the AWGN channel can be rep-
resented as y = x + n, where n ∼ CN (0, σ2I) repre-
sents the noise. At the receiver side, a decoder network
is exploited to recover the transmitted symbols from the

received signal y. In this way, the traditional modules at
the transmitter and the receiver are replaced with neural
networks. Note that since the transfer function of the
AWGN channel is differentiable, direct backpropagation
can be employed for updating the whole network.

Assuming that the wireless channel model is dif-
ferentiable, the end-to-end communication system was
extended to more general channels, including the Rayleigh
fading channel, the multipath fading channel, and the
MIMO channel. In [82], an end-to-end communication
system for Rayleigh fading channels was constructed based
on the autoencoder. Mathematically, the channel coeffi-
cient of Rayleigh fading can be represented as a random
variable following complex Gaussian distribution, i.e., h ∼
CN (0, 1), and the received signal y is given by y = hx + n.
Hierarchical 1-D convolutional layers were then used in
[82] at the transmitter and receiver to overcome the
distortion caused by Rayleigh fading and noise.

Moreover, the end-to-end communication system was
also extended to transmission over more challenging mul-
tipath channels [83], [84], [85], [86]. To deal with
frequency-selective fading in multipath channels, the end-
to-end communication system was combined with the
OFDM technique [83], which divides the wideband chan-
nel into orthogonal narrowband subcarriers, each exposed
to flat fading rather than frequency-selective fading. More-
over, the end-to-end communication system over MIMO
channels in [87] demonstrated enhanced performance
compared to previous methods. Subsequently, the research
in [88] incorporated finite quantization of the CSI, show-
casing additional performance improvements. Although
O’Shea et al. [87], [88] demonstrated the potential of
autoencoder-based MIMO communication systems, the
training of these systems was based on the assumption
that the CSI is available at the receiver, which can be
viewed as the coherent transceiver design. In addition
to these studies, [89], [90], and [91] delved into MIMO
end-to-end communication in the context of noncoherent
transceiver design, where neither the transmitter nor the
receiver has access to the CSI. Specifically, in [91], a pilot-
free end-to-end paradigm for flat-fading MIMO channels
was developed, where the wireless channels are modeled
as a stochastic convolutional layer. The end-to-end com-
munication system over the MIMO channel also follows
the architecture of the autoencoder, where the transmitter
DNN and the receiver DNN correspond to the encoder and
the decoder, respectively. Rather than relying on pilots for
channel estimation, the receiver utilizes two DNN modules
to extract channel information and recover data. A bilinear
production operation [92] is used to combine the features
extracted from the channel and the received signals, which
are further utilized to recover the transmitted data. This
approach benefits from the efficient utilization of chan-
nel information, thus enhancing the overall process of
data reconstruction. Meanwhile, the multiuser interference
channel was considered in [93], where the end-to-end
multiuser communication exhibits substantial performance
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Fig. 7. BER under a Rayleigh fading channel [94].

improvements when compared with the conventional time-
sharing baseline scheme.

While assuming known and differentiable channel
models has allowed end-to-end systems to demon-
strate competitive performance compared to traditional
communication systems, certain real-world intricacies can-
not be accurately represented in a differentiable manner.
The simplified channel models, when applied, may occa-
sionally mislead the trained system due to the mismatch
between these models and realistic physical channels.
Hence, there is an expectation to train end-to-end com-
munication systems without relying on a specific channel
model. However, if the channel transfer function, y =

fh(x), is unavailable, the backpropagation of gradients
through the receiver and transmitter DNNs is obstructed,
thus hindering the learning of the end-to-end system.

To tackle this challenge, there are primarily two
approaches. The first involves developing a channel-
agnostic end-to-end communication system, as explored in
[94]. In this approach, the distribution of channel outputs
is learned through a conditional GAN [95], eliminating
the need for explicit knowledge of the channel transfer
function. In this way, a conditional GAN is used to act as
a bridge for the gradients to pass through. Fig. 7 shows
the comparison of the end-to-end approach with a conven-
tional method that employs QAM and a rate-1/2 recursive
systematic convolutional code under a Rayleigh fading
channel. The performance of the end-to-end approach
utilizing a conditional GAN (“E2E-GAN”) is comparable
to that of the traditional method (“QAM + RSC”) and
the end-to-end approach that incorporates a differentiable
Rayleigh fading channel (“E2E-Rayleigh”) in terms of bit
error rate (BER). This consistency proves that the trained
conditional GAN can be used as a surrogate for the original
Rayleigh channel. The second approach employs an RL-
based framework, as investigated in [96], to optimize the
end-to-end communication system without relying on the
channel transfer function. In this framework, the trans-
mitter is treated as an agent, with both the channel and
the receiver regarded as parts of the environment. At each

time step, the source bits serve as the state observed by
the transmitter, and the transmitted signals represent the
actions taken by the transmitter. The end-to-end loss for
each sample is calculated by the receiver and subsequently
provided as feedback to the transmitter, acting as a reward
from the environment. This feedback guides the training
of the transmitter. During the training process, obtaining
gradients for the receiver is straightforward on the receiver
side, while the gradients for the transmitter are approxi-
mated using RL.

The autoencoder-based communication architecture
was also extended to relay systems, where [97], [98],
and [99] have delved into autoencoder-based amplify-
and-forward (AF) relay systems, while [100] and [101]
focused on autoencoder-based decode-and-forward (DF)
relays. In the AF approach, the relay node amplifies and
retransmits the received signals in the analog domain,
offering low computational complexity and notable per-
formance improvements [99], [102]. In contrast, the DF
approach requires more complex neural network-based
processing at the relay node to decode and re-encode
the signal before retransmission, as detailed in [100] and
[101]. Given the DF approach is more complex in various
contexts, researchers often prioritize AF relay networks.
An autoencoder-based AF relay communication system
was introduced in [97], with an emphasis on modula-
tion design. On the other hand, Gupta and Sellathurai
[98] advanced the field by developing an autoencoder-
based coded modulation design with CSI and a differential
coded modulation design without CSI for AF relay sys-
tems. Further, Gupta and Sellathurai [99] implemented an
autoencoder-based coded modulation design and demon-
strated that utilizing a traditional AF relay node within
autoencoder-based AF relay networks can reduce imple-
mentation complexity while also enhancing BER perfor-
mance when compared to conventional approaches.

Insights and Challenges: In the end-to-end communica-
tion paradigm, the transmitter and receivers are trained
in a novel end-to-end manner, which has the potential
to surpass the traditional methods with separate channel
coding and modulation. Despite that the end-to-end com-
munication shows superiority in simple wireless channels,
such as AWGN and Rayleigh fading channels, extension
to more complex real-world wireless channels still faces
challenges. First of all, enhancing the generalization and
scalability of the system in various wireless channels is
an open problem. Moreover, how to train the end-to-end
communication system with the gradient back-propagated
over the air, which is important for online training in
practice, is another critical challenge.

F. Tips and Tricks

1) How CSI Feedback Works Conventionally and How Does
It Compare to the Learning-Based Method?: In LTE and
5G cellular systems, the codebook-based feedback method
(e.g., random vector quantization, RVQ) is the de facto
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standard, which requires BS and UE to share and main-
tain the same codebook. The codebook index is selected
by minimizing the distance between the channel matrix
and codewords and fed back to the BS. However, high-
dimensional CSI significantly increases the difficulty and
cost of codebook design, and naive codebook schemes like
RVQ cannot guarantee accurate reconstruction. In con-
trast, learning-based CSI feedback schemes leverage DNNs
to conduct offline training using massive CSI data. These
DL models efficiently leverage the data fitting capabilities
of DNNs to learn and extract underlying features in the
channel. This enables fast and accurate reconstruction of
CSI during online deployment, thus holding significant
potential to surpass traditional methods in terms of recon-
struction performance and computational speed [25].

2) Data-Driven Versus Model-Driven Learning Methods for
MIMO Detection, Which One Is Better in Practice?: There is
no definite answer to this question. However, in practice,
we have found that model-driven learning methods are
generally more effective than purely data-driven methods
in the design of MIMO detectors. This superiority can be
attributed to the combinatorial nature of the problem,
which plays a crucial role in designing accurate and effi-
cient detection algorithms. Therefore, domain knowledge
from established model-based detection methods should
be fully absorbed and inherited into the development
of learning-based MIMO detectors. Furthermore, studies
such as the seminal work [54] have shown that relying
solely on a purely data-driven, model-agnostic “black box”
approach falls short of achieving the desired performance
in MIMO detection. Hence, it is evident that the integra-
tion of domain knowledge and data-driven techniques is
crucial for MIMO detection. Notably, this perspective on
leveraging model-driven learning approaches also applies
to various other signal processing tasks within the physical
layer [57].

3) Are Pilots Necessary for End-to-End Communication?:
Traditional wireless systems heavily depend on pilots for
precise channel information, but in end-to-end communi-
cation with neural representations at both ends, the need
for pilots diminishes. Research explores both pilot-based
[94] and pilot-free approaches [91]. Explicit pilots and
channel estimation ease the learning process by providing
additional channel information. Nevertheless, the design
of pilots, including their structure and quantity, demands
careful consideration and expert knowledge. The pilot-
free designs, on the other hand, enhance resource effi-
ciency by eliminating the need of using dedicated time
and frequency resources for pilots. However, the absence
of explicit pilot signals requires the end-to-end communi-
cation system to autonomously learn and adapt to evolv-
ing channel conditions. This introduces challenges, as the
encoded data must be reliably recovered with an unknown
channel.

4) What Are the Impacts of AI/ML-Based Design on
3GPP Standards?: Integration of AI/ML into existing air
interfaces has aroused heated discussions within the
3rd-generation partnership project (3GPP). A notable mile-
stone of this development is the agreement of starting a
new study item on AI-native air interface in 3GPP Release
18 [103]. The study item aims to develop a comprehen-
sive framework for using AI/ML to enhance air interface
and focuses on specific use cases including CSI feedback,
positioning, and beam management. A wide range of chal-
lenges and novel perspectives have been identified in this
study, such as the collection of datasets for model training,
the life cycle management of AI/ML models, and the
collaboration between users and BSs for AI/ML operations.
Addressing these challenges is an essential step in 3GPP’s
standards development as it moves toward integrating AI
and communications.

III. S E M A N T I C C O M M U N I C AT I O N S
Semantic communication is a novel wireless communica-
tion paradigm that focuses on transmitting task-related
data rather than the raw data. Semantic communica-
tion involves the exchange of information where the
meaning and context of data are necessary for accu-
rate and effective interpretation, enabling the network to
understand and process data in a more intelligent and
task-oriented manner. The rapid development of AI has
brought both opportunities and challenges to semantic
communications. In this section, we first briefly introduce
semantic communications as well as the differences with
traditional communications. Then, we go through the
AI-enabled techniques, including semantic-aware sensing,
coding, modulation, and other key techniques.

A. Overview of Semantic Communications

The notion of semantic communications is proposed
by Shannon and Weaver [104], in which they categorize
communications into three levels. The first level is the
technical level, focusing on the accurate transmission of
bits. The second level is the semantic level, focusing on the
precise transmission of the meaning of symbols. The third
level is the effectiveness level, focusing on the effectiveness
of the semantic meaning that affects conduct in the desired
way.

Traditional wireless communication falls into the first
level. Inspired by the classical Shannon information theory,
traditional communication systems are designed with bit-
based metrics to evaluate the network performance, such
as channel capacity, spectrum efficiency, and delay, and
aim to achieve bit-level reliable and accurate transmission.
Driven by the rapid advance in wireless communication
techniques, technical-level problems have been widely
explored and the system capacity is gradually approaching
the Shannon limit. However, the conventional design is
independent of the meaning conveyed by the symbol and
the underlying transmission task. This means that conven-
tional wireless communication systems are unable to meet
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Fig. 8. Traditional communication system model.

the semantic exchange demands for various transmission
tasks, especially in the era of data explosion. This moti-
vates people to think about a new paradigm by taking
semantics into consideration.

Semantic communication is predicted to be a revolu-
tionary post-Shannon paradigm and falls into the second
or even third level. The next-generation communication
systems always have a clear task or goal for data trans-
mission, such as emergency detection and image classifi-
cation. Semantic communication can extract and transmit
the most necessary information (i.e., semantic meaning)
which is tightly relevant to accomplish a task, instead
of fully transmitting bit sequences. Therefore, semantic
communication is regarded as a kind of task-oriented or
goal-oriented communication.

Figs. 8 and 9 show the system model for traditional com-
munication and semantic communication, respectively.
The biggest difference between the two paradigms is the
data processing phase. Traditional communication systems
are designed to convert the source data into bits and
symbols to process. Semantic communication systems are
designed at the semantic level instead of the bit level.
The semantic encoder is employed to extract semantic
features based on the goal of the underlying transmission
task. The semantic decoder is employed to reconstruct
the corresponding semantics. The knowledge base (KB)
is employed on both the transmitter and receiver. KB
represents the common knowledge shared by both sides
which stores facts, concepts, relationships, and rules in a
machine-readable format. KB serves as a foundation for
reasoning and plays a crucial role in semantic communi-
cations by enabling systems to extract meaning from data,
infer new knowledge, and make informed decisions based
on the available information. With the help of KB, only
the most relevant semantic information is transmitted, and
thus, the redundant data can be largely removed and the
network efficiency can be further improved. The semantic

Fig. 9. Semantic communication system model.

channel is a virtual channel that focuses on preserving
and conveying the meaning or semantics of the data
being transmitted. Any discrepancy or distortion in the
meaning or interpretation of information exchanged due
to differences in KB or reasoning will lead to semantic
noise. Semantic channels play a crucial role in facilitating
knowledge sharing between the transmitter and receiver.

The study of semantic communications has attracted
much attention in the past few years due to its novelty
and utility. Following Shannon’s information theory, some
research works have studied the semantic information the-
ory [105], [106], [107], [108], [109], [110]. By replacing
the statistical probability with logical probability, semantic
entropy was first proposed in [105] to measure the amount
of semantic information for sentences. The semantic chan-
nel coding theorem has been studied, and the correspond-
ing semantic channel capacity for a discrete memoryless
channel was defined in [106]. The rate distortion the-
orem has also been explored in the context of seman-
tic communications [107], [108]. The semantic channel
capacity was explored in [109] by taking the semantic KB
into consideration. A general mathematical framework of
semantic communications was proposed in [110] based
on a synonymous mapping between semantic information
and syntactic information. Besides these fundamental-level
works, there are a few tutorial and survey articles aiming to
give a general overview of semantic communications [10],
[11], [12], [111].

Inspired by the recent advancements in AI, the semantic
communication infrastructure has enabled many intelli-
gent applications, such as immersive reality, industrial
control, and live video communications. DL and neural
network-aided semantic feature extraction methods have
been successfully implemented for various information
sources. RL-assisted scheduling and transmission schemes
have also been widely investigated in various task-oriented
communication systems. In the following, we are going
to go through the AI-empowered techniques for semantic
communications in detail.

B. Semantic Sensing and Sampling

Most existing cutting-edge information processing tech-
niques share a common framework: the signal is first
sensed at a fixed sampling rate, and then, a large amount
of raw data is generated and transmitted through the net-
work to the receiver. The raw data contain a large volume
of redundant information, and thus, the communication
and computing resources are largely wasted for trans-
mitting the unnecessary data. Against this background,
the semantic sensing and sampling method is regarded
as a possible way to improve the network efficiency by
generating a small volume but necessary samples with
respect to the underlying task.

Semantic-aware CS technique enables the generation
and compression of meaningful content, facilitating the
optimization of wireless resources for enhanced efficiency
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in semantic processing. CS is a commonly used signal
process technique that jointly considers sampling and com-
pression and can use fewer samples than required by
the Nyquist–Shannon sampling theorem for signal acquisi-
tion and reconstruction [112]. Since camera-based sensing
devices have been widely deployed in various intelligent
communication systems, image and video streams take
up a large amount of IP traffic. CS has been extensively
applied to capture high-speed videos and hyperspectral
images at low frame rates. Despite their contributions,
measurements in existing CS systems are mainly obtained
by a fixed sampling matrix which is regardless of the
content of images. Therefore, this motivates people to
study image-CS in the context of semantic communica-
tions. A semantic-aware image CS architecture was stud-
ied in [113]. Instead of using the fixed matrix, adaptive
measurement matrices have been adopted for different
images based on DL to improve the sensing efficiency
and restore accuracy. Fig. 10 shows the peak signal-to-
noise ratio (PSNR) versus the average CR under two
image datasets. PSNR is a classic performance metric for
image transmission, which measures the ratio between the
maximum power of the desired signal and the power of the
noise that corrupts the desired signal. Fig. 10 verifies that
the semantic-aware image CS method achieves better per-
formance than the traditional compressed method. More-
over, by jointly considering the sampling rate allocation
and model scalability, a content-aware scalable image-CS
architecture was proposed in [114]. Specifically, a CNN-
aided method has been proposed to recognize the image
distribution and a lightweight strategy has been designed
to achieve adaptive sampling and ratio allocation. Simi-
larly, an RL-based video CS architecture was built in [115].
In addition, a joint semantic sensing and communication
framework has been developed in the scenario of XR
[116]. In that work, both spatial and temporal sampling
strategies were performed to extract semantic information
efficiently.

In the preceding paragraph, semantic-related sensing
problems are reviewed in the static scenario, where the
data are sampled from a certain signal based on a semantic
quality measure. This measure only relates to the trans-
mission task but ignores the changes in the information
value over time. For example, in a real-time tracking
and monitoring system, the recently received data sample
should contain more semantic information than the old
one received one hour ago. Therefore, the timeliness of
information plays a vital role in such real-time control
applications. In this context, timing adds a new domain
to the importance of semantic information. In this regard,
some researchers define semantics as the timeliness of
messages over time rather than the meaning and content
of the underlying signal and start to explore the joint
sensing-semantic problem in the time domain. The concept
of the age of information (AoI) was proposed in [117] as a
new performance metric that can be used to measure the
timeliness of the semantic information. Specifically, the AoI

Fig. 10. PSNR versus average CR for semantic-aware and

traditional CS methods under different datasets [113]. (a) PSNR

versus average CR for different methods in the MPI-INF-3DHP

dataset. (b) PSNR versus average CR for different methods in the

MS-COCO2014 dataset.

at the given time t is defined as

∆(t) = t− u (t) (5)

where u(t) is a function of time, representing the genera-
tion time of the most recently received data sample until
time t. It is easy to see that the AoI is not only affected
by the transmission process but also by the sampling
process. Therefore, AoI and its variants (e.g., peak AoI
and average AoI) oriented sampling policies have been
widely studied to improve the network performance [118].
The optimal sampling rate has been obtained in different
queue models with various additional properties, such as
the queues with the packet deadline [119], link capacity
constraint [120], and packet priority [121]. However, it
is recognized that AoI may not be a perfect semantic
metric. The AoI only relates to the duration of time while
it is independent of the statistical variations of the data
source. In reality, more samples should be generated to
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represent the quickly changeable or lessly correlated data
(e.g., location of moving target), while a small number of
samples can be generated to represent the slowly change-
able or highly correlated data (e.g., temperature). There-
fore, other approaches are further proposed to quantify
the usefulness of semantics, including the AoI penalty
metrics [122], [123], information-theoretic metrics [124],
[125], and estimation error-based metrics [126]. These
metrics can be generalized as a monotonic nonlinear AoI
function [127], [128]. The corresponding optimal sam-
pling problem under the maximum sampling rate con-
straints has been formulated as a Markov decision process
(MDP), and the optimal solution is obtained by binary
search in [126], [129], [130], and [131].

Although the AoI and nonlinear AoI have created a
mathematical framework for capturing the significance of
semantics, they are independent of the realization (real
value) of the information and may not be suitable for
real-time reconstruction in practical applications, such
as emergency detection. To address the limitation, more
appropriate semantic metrics have been investigated. The
semantic metric integrates the AoI and traditional error-
based metrics to capture the significance of the packet from
both time and content dimensions. The corresponding
semantic-aware sampling policies which allow the sampler
to generate data adaptive based on the transmission task
have also been studied. The age of incorrect information
(AoII) was proposed in [132] as an enabler of semantics-
empowered communication. AoII is defined as a combined
function of AoI and estimation error which can evaluate
the semantics through both time and transmission task
aspects. The function is chosen according to the goal
of the underlying task. The AoII-optimal sampling policy
is derived from the video stream transmission, machine
overheat monitoring, and fire monitoring systems. The
notion of the semantics of information (SoI) is defined
in [133] which is similar to AoII. The authors explained
that the SoI-based sampling policy can be obtained by
deep RL and showcased the potential of applying SoI in
timely tracking networks. Moreover, a new concept named
goal-oriented tensor (GoT) was proposed to measure the
impact of semantic mismatches on task-oriented decision-
making utility [134]. A joint sampling and decision-making
problem was studied, and an algorithm was designed
based on game theory to find the suboptimal solution.
Uysal et al. [135] and Kountouris and Pappas [136]
generalized the above adaptive semantic-aware sampling
policies and developed an end-to-end semantic commu-
nication architecture. The performance of semantic-aware
sampling was compared with its AoI counterpart, and it
was shown that semantic-aware sampling performs better
in reducing the reconstruction error.

Insights and Challenges: In this section, we introduce two
methods regarding semantic sensing and sampling prob-
lems from different perspectives. The semantic-aware CS is
more suitable to be applied in static scenarios with sparse
signals for efficient image or video reconstruction. The

AoI-based semantic sampling is more suitable to be applied
in real-time scenarios with correlated data sequences gen-
erated by sensing devices. Moreover, developing general
metrics is an open area that can help to evaluate the data
semantics and guide the process of adaptive sampling.

C. Joint Semantic-Channel Coding

Joint semantic-channel coding is the key component
of semantic communication systems, which greatly differs
from traditional communications. As shown in Fig. 8,
a typical traditional communication system comprises two
coding processes. One is the source coding process, in
which the source data are compressed into bit sequence
with the aim of removing the redundancy; the other is
the channel coding process, in which the bit stream adds
extra correction code with the aim of resisting errors
caused by the imperfect transmission channel and then is
modulated into symbols for transmission. This traditional
separate architecture can optimize the source and channel
coding independently by utilizing the separate modular
design method. However, both source and channel coding
schemes have approached their respective theoretical lim-
its so far.

In this regard, joint source and channel coding (JSCC)
has been widely explored in the context of information
theory and coding theory, in which the source and chan-
nel are treated simultaneously during the encoding pro-
cess to improve the system-level performance. Traditional
JSCC scheme [137] exploited the statistical probabilities
of the source data along with the characteristics of the
communication channel, illustrating that the joint design
outperforms the separate modular design. However, data
semantics have not been taken into consideration in these
works. The semantic communication system is designed to
transmit semantic information rather than raw data, and
the traditional source process is replaced by the semantic
coding process (see Fig. 9). Traditional JSCC requires the
explicit probability distribution of the source data and this
means that it is difficult to model the complex source
in the real world. Furthermore, the traditional JSCC is
independent of the semantic features with respect to the
underlying communication task.

Inspired by the traditional JSCC, semantic-aware JSCC
is regarded as a practical technique route to realize
semantic communications and improve end-to-end per-
formance in different channel conditions. The advance-
ment of DL and neural networks facilitates the imple-
mentation of joint semantic-channel coding techniques.
Fig. 11 gives a simple model of joint semantic-channel
coding which can be achieved through DNN architecture.
DNN acts as the autoencoder and autodecoder, represent-
ing various famous and efficient models, such as CNN,
GAN, and Transformer. It is pretrained in a joint and
end-to-end manner to extract and transmit goal-relevant
semantic features. Compared with traditional compres-
sion and channel coding methods, DL can utilize any
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Fig. 11. Joint semantic-channel coding model.

desired fidelity measures for training and is very efficient
in enhancing transmission reliability. Therefore, DL-based
joint semantic-channel coding has the potential to be
applied to various types of data sources.

The fast development of NLP forms the basic ground-
work for analyzing and understanding the SoI and facili-
tates the implementation of joint semantic-channel coding
for text [138], [139], [140], [141]. The metric named
word error rate (WER) was proposed to reflect the seman-
tic similarity and an LSTM-enabled JSCC scheme named
DeepNN was designed to minimize end-to-end distortion
induced by semantic noise for text transmission [138].
This early work focuses on the word level without taking
synonyms and antonyms into consideration. In [139], a
sentence-level metric was proposed to measure the sen-
tence similarity based on the Transformer model, and a DL-
based semantic communication (DeepSC) framework was
proposed with the aim of achieving robust transmission.
A lite variant of DeepSC named L-DeepSC was further
proposed in [140] for practical IoT networks. Compared
with DeepSC, L-DeepSC considered the capacity of IoT
devices and designed a finite-bits constellation with the
aim of achieving robust and affordable text transmission.
Inspired by these works, Zhou et al. [141] designed a
universal Transformer-enabled semantic communication
system. Different from the fixed attention structure of
classic Transformer-based semantic-channel coding, a flex-
ible circulation mechanism was introduced which enabled
adaptive transmission with different semantic informa-
tion under various channel conditions. In addition, other
advanced techniques have also been explored to enhance
performance and flexibility, such as the implementation of
deep RL [142], knowledge graph [143], [144], and hybrid
automatic repeat request (HARQ) scheme [145], [146].

The joint semantic-channel coding system has also been
explored for speech signal transmission [147], [148],
[149]. Compared with text signals, the speech signal
is more complex and difficult to process and under-
stand due to the volume, tone, background noise, and
other factors. The signal-to-distortion ratio (SDR) and
perceptual evaluation of speech quality (PESQ) are the
main metrics to quantify the quality of reconstructed
audio signals. Weng and Qin [147] extended the text-
based DeepSC framework to speech transmission and pro-
posed a joint semantic-channel coding framework named

DeepSC-S. Figs. 12 and 13 show the comparison of the
performance of the DeepSC-S with traditional separate
source-channel coding and semantic coding schemes under
different channel models. The DeepSC-S performs better
in SDR and PESQ since the joint semantic-channel coding
scheme could deal with both source distortion and channel
variation.

With the success of semantic-aware text and audio trans-
mission, joint semantic-channel coding for image/video
transmission has also attracted much attention. A novel
DL-based JSCC (deep JSCC) scheme was proposed for
image transmission over the wireless channel in the pres-
ence of AWGN and Rayleigh fading [150]. Particularly,
a neural network is deployed to work as the encoder,
which maps the pixel values of the input figure to the
complex-valued channel input symbols and the corre-
sponding decoder works to recover the image based on a

Fig. 12. SDR versus SNR for speech transmission with the

traditional coding, semantic coding, and joint semantic-channel

coding schemes under different channel models [147]. (a) SDR

versus SNR in Rayleigh channels. (b) SDR versus SNR in Rician

channels.
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Fig. 13. PESQ versus SNR for speech transmission with the

traditional coding, semantic coding, and joint semantic-channel

coding schemes under different channel models [147]. (a) PESQ

versus SNR in Rayleigh channels. (b) PESQ versus SNR in Rician

channels.

classic metric PSNR for semantic similarity. While Bourt-
soulatze et al. [150] did not explicitly emphasize the
semantics of the image signal, it introduced the notion
of semantic extraction and transmission, serving as a sig-
nificant source of inspiration for subsequent researchers.
In [151], a new image reconstruction measurement named
rate-semantic-perceptual loss was introduced by jointly
considering the figure category and spatial correlation, and
a task-oriented semantic coding framework was proposed
by DL which can discard the irrelevant data adaptively.
Zhang et al. [152] considered a receiver-leading seman-
tic coding scheme to resist the distribution discrepancy
between the transmitter and the shared KB for image
transmission, in which the receiver works to coordinate
the DNN training for semantic coding while the transmit-
ter is not clear with the underlying task. Different from
other DL-enabled semantic-channel coding approaches,

a nonlinear transform source-channel coding (NTSCC) was
proposed [153] where the source data are first mapped to
the latent representation based on nonlinear transform and
then transmitted through DL-enable JSCC scheme.

In addition to the representative single-modal data, a
multimodal data transmission framework has also been
developed for semantic communications. For example, the
data of different types can still be correlated with each
other in the XR-related applications. Semantic-aware mul-
timodal data transmission can further improve the system
performance by considering the correlation between differ-
ent types of data. A DL-enabled multiuser semantic com-
munication system (MU-DeepSC) was proposed in [154]
for multimodal data transmission to execute the visual
question answering (VQA) task, in which the generated
multimodal data are correlated and relevant to the con-
text. In the VQA system, the query is presented in text
format while the answer is presented in image format. In
that work, LSTM and CNN-based semantic-channel cod-
ing schemes were used for text and image transmission,
respectively, and then, the receiver predicted the answers
by fusing different correlated semantics together [155].
Moreover, by adopting Transformer, MU-DeepSC has been
extended to other intelligent tasks, including image
retrieval and machine translation tasks [156].

Insights and Challenges: The DL-based JSCC has
achieved great success in enhancing the end-to-end per-
formance in semantic communication systems. However,
two critical challenges need to be further investigated. The
first one is the lack of a general semantic JSCC frame-
work and the high communication and computing costs.
If the transmission task changes or the channel condition
changes, the DNN needs to be redesigned. The retraining
process requires frequent data exchange; thus, the cost
of training may be unacceptable. The second challenge
is the practical implementation. The existing communica-
tion infrastructure is designed and guided by Shannon’s
theorem; thus, semantic-aware JSCC architecture may be
incompatible and the current hardware and software need
to be updated accordingly.

D. Semantic-Aware Modulation and Transmission

As aforementioned, DL-based coding schemes have been
widely utilized to replace conventional coding modules,
in which DNNs are jointly trained to optimize a loss
function that is tailored to the desired underlying task.
Thanks to the success of DL, existing works have shown
that learning-based semantic communications can achieve
efficient and reliable transmission for various data sources.
Most works focused on the semantic-aware joint coding
methods, while the modulation process has not been
explicitly treated.

In DeepSC systems, the output of the encoder is contin-
uous real signals. For simplicity, many works [149], [150],
[154] considered analog modulation in which the output
with continuous signals is transmitted directly without

18 PROCEEDINGS OF THE IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



Qin et al.: AI Empowered Wireless Communications: From Bits to Semantics

discretization into constellation symbols and can take any
value. This ideal assumption regarding modulation is hard
to deploy in practice due to the limitation of hardware
components. Therefore, it is important to explore digital
modulation in the context of semantic communications,
which is more compatible with existing practical systems.

The basic idea of digital modulation is to convert the real
value to discrete constellation symbols based on a function.
Since this function is nondifferentiable, it is impossible to
run the gradient descent algorithm to obtain the optimal
mapping. To solve this challenge, quantization-based
modulation methods have been explored. Xie and Qin
[140] used uniform quantization to equally map the output
of DNN into discrete bit sequences and then modulate
them into constellation symbols. Jiang et al. [146]
and Tung et al. [157] used nonuniform quantization.
Specifically, Jiang et al. [146] gave an example of the
binary phase-shift keying (BPSK) modulation, in which
an additional DNN with the differentiable Sigmoid
function (rather than the nondifferentiable step function
for classic BPSK modulation) was deployed to generate
the likelihood of constellation symbols instead of hard
mapping. Li et al. [158] proposed a similar asymmetric
quantization method, in which the rectified linear unit
(ReLu) function replaced the Sigmoid function to work as
the activation function for training in the nonorthogonal
multiple access (NOMA)-assisted semantic communication
systems with multiple users. Gao et al. [159] proposed
a new metric named robustness probability to quantify
the robustness degree of inference results, and obtained
the optimal modulation scheme and order for robust
transmission in semantic communication systems by the
bisection search method.

The above quantizer-based modulation methods mainly
consider the separate infrastructure in which the modu-
lation module is independent of the coding module. This
means that the system is unable to adapt to various wire-
less environments, and the transmission performance can
be largely corrupted by the channel noise. Motivated by
the idea of JSCC, the integrated coding and modulation
scheme has been explored for digital semantic communica-
tion systems. The semantic-aware joint coding-modulation
(JCM) scheme with the BPSK modulator was proposed
in [160] based on a VAE. This integrated design was
implemented by a stochastic coding process and a random
coding-based modulation process. An NN was utilized to
learn the transfer probability from the source data, and the
random encoder was utilized to generate the specific mod-
ulated symbols for channel transmission based on proba-
bility. The performance of the JCM framework was further
analyzed in [161]. Simulation results showed that the JCM
outperforms the other semantic-aware digital modulation
in both high and low SNR conditions, and outperforms
the other semantic-aware analog modulation in the low
SNR condition. In addition, channel-adaptive modulation
and demodulation techniques were investigated in [162]
for image transmission in digital semantic communication

systems. The proposed modulation process aims to reduce
the transmission delay by altering the order based on the
diverse channel conditions. In the demodulation process,
a new metric named log-likelihood ratio (LLR) was intro-
duced to measure the uncertainty of the demodulation
output and LLR can help to demodulate the data into
continuous values rather than binary variables. Therefore,
the system’s robustness against fading and noise can be
further improved.

Insights and Challenges: The semantic-aware
modulation-related research is still at an early stage.
The advancement of AI has revolutionized and changed
the way of coding in semantic communications, while
it leads to new challenges to the modulation process at
the same time. Existing works have deployed additional
NN and utilized various activation functions to map the
continuous signal into discrete symbols. However, there
are no general and systematic methods regarding how
to choose the optimal quantizer. Moreover, the joint
semantic-coding-modulation framework is also an open
area that can be further explored in the future.

E. Applications and Integration With Emerging
Techniques

In Sections III-A–III-D, we have reviewed the leading
techniques in the context of semantic communications.
In this section, we will further explore the integration
of semantic communications and other techniques. More
specifically, we first introduce some typical applications
and representative cases of task-oriented semantic commu-
nication systems. Afterward, we discuss the latest advances
toward semantic communications from different technical
aspects, including the big AI model-enabled and computing
network-enabled semantic communications.

The advance of end-to-end semantic communication
framework has enabled many intelligent transmission
tasks, such as data reconstruction [154] and image clas-
sification [163]. Semantic communication also facilitates
the development of many intelligent networks, such as
industrial IoT, smart home, and intelligent transport. In
autonomous driving systems, a novel cooperative per-
ception semantic communication scheme was proposed
in [164]. In addition to text, speech, images, and videos,
sensor data (LiDAR point clouds) in such systems also
contains essential semantic information [165], [166].
Since the perception field of the autonomous car itself is
usually limited by objects, such as buildings and trees,
a novel detection scheme with cooperative perception
is investigated for a broader perception field. Through
the utilization of vehicle-to-vehicle (V2V) communication
technology, different connected automated vehicles (CAVs)
can exchange and fuse their sensory information. How-
ever, previous works [167], [168], [169], [170] typically
assume perfect communications between CAVs and ignore
underlying channel effects. In response, a cooperative per-
ception semantic communication framework over the air
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is introduced [164], which employs an importance map to
extract significant semantic information at the transmitter
and fuses the intermediate feature through an attention-
based mechanism at the receiver. The proposed system is
designed based on a JSCC architecture and trained in an
end-to-end learning manner, which is optimized to achieve
better semantic performance (perception accuracy).

Besides the widely accepted DL-based semantic com-
munication systems, the big AI model or the large lan-
guage model (LLM) has also been regarded as an effective
approach to enable the implementation of semantic com-
munications [171]. The big AI model is a novel framework
that creates a unified and fundamental ML system based
on a generic class of AI models. The generative pre-
trained transformer (ChatGPT) and bidirectional encoder
representations from transformers (BERT) [172] are two
emerging LLMs that are built by OpenAI and Google,
respectively. These big models leverage the pretrained vast
datasets to process the natural language and have led
to remarkable advancements in various language-related
tasks. Many semantic metrics are proposed based on the
BERT model to measure the similarity on the seman-
tic level, and they have been widely utilized to extract
semantic information [139], [146], [173]. For example,
a semantic loss function was defined by the BERT model,
and a signal shaping method was proposed to minimize the
semantic loss in [173]. A semantic importance aware com-
munication (SIAC) scheme was designed in [174] by using
the pretrained LLM. Particularly, a metric is defined to
quantify the semantic importance of data frames by using
LLM, and a semantic importance-optimal power allocation
was obtained by minimizing the expected important word
errors. The experimental results showed that the proposed
SIAC scheme outperforms the DL-based JSCC scheme and
is compatible with existing communication infrastructure.

Although DL and LLM demonstrate outstanding perfor-
mance, they impose a substantial computational burden
on communication devices and the computing capacity
has been a bottleneck in AI-empowered semantic com-
munication systems. Most AI-driven designs allow offline
training and online inference. Although inference demands
less computing power than training, the computing power
requirements of inference are still substantial comparing
with the traditional signal processing methods. This is chal-
lenging for battery-powered end devices, such as mobile
phones. Moreover, if each part of the communication
systems (from coding to transmission) is all implemented
with AI designs, the computing power consumption could
be extremely high. Therefore, the lack of computing
resources is a crucial challenge that needs attention to
support the practical applications of semantic communi-
cations. Cloud computing and edge computing are the two
main approaches to address the challenge. Cloud comput-
ing is a paradigm that changes the way computational
resources are accessed and managed, providing extra com-
puting resources through the network. However, access-
ing the cloud network requires additional communication

resources and may lead to large transmission delay. Thus,
cloud computing may not be appropriate for time-sensitive
semantic communication systems. Edge computing is a
distributed paradigm that brings computation and data
storage closer to the data source, reducing latency and
enabling timely communication. Since most edge devices
have limited data computing or processing capability, edge
computing may be more suitable for transmission tasks
with light traffic loads. Against this background, the notion
of the computing network has been proposed to solve the
problem. A computing network refers to an interconnected
infrastructure of the network and various devices that com-
municate and share resources, facilitating data exchange
and processing in a collaborative manner [175]. With the
aid of the computing network, semantic communication
systems can leverage more computing resources to support
data processing and coding processes adaptively with low
transmission delay.

Insights and Challenges: The combination with other
emerging techniques introduces a new perspective in
the design of semantic communication systems. This
integrated paradigm still leaves much room for further
research. The research of the computing network is in its
infancy; thus, the tradeoff between the transmission delay
and limited wireless resources still challenges the network
performance of semantic communication systems. It is
important to develop a formal mathematical framework
to evaluate its performance, which can be further used to
guide and optimize the design of semantic-aware resource
allocation.

F. Tips and Tricks

In previous subsections, we give an overview of semantic
communications, including key techniques as well as their
advantages and challenges. In this section, we discuss
several tricky problems and future directions in the imple-
mentation of semantic communications.

1) Will Semantic Communication Break Shannon Channel
Capacity?: This is probably the most frequently asked
question for semantic communications. The answer is not
as they are considering the problem at two different levels.
As shown in Fig. 9, there exist two channels in seman-
tic communications. One is the physical wireless channel
which is bounded by Shannon channel capacity. The other
is the virtual semantic channel. From the technical level,
the maximum capacity of the physical channel is the Shan-
non limit which could not be broken. From the semantic
level, the semantic capacity of the virtual channel could be
further explored and improved.

2) Can We Develop a General Semantic Information Theory
Framework Similar to Shannon’s Information Theory?: Shan-
non’s classic information theory gives a comprehensive
and general mathematical framework to formally explain
what is information and what are the theoretical limits,
which has achieved great success in the design of com-
munication systems. Motivated by Shannon’s information
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theory, many researchers have attempted to develop the
semantic information theory. Particularly, semantic entropy
is proposed by replacing statistical probability with logical
probability. The semantic rate distortion theorem has also
been explored by adding the distortion between seman-
tic features. Although great efforts have been made for
semantic information theory, a widely accepted definition
of semantic entropy or semantic channel capacity is still
missing. Different from traditional bit-level communica-
tion systems, semantic communication is task- and goal-
oriented. Therefore, there may not be a general framework
to model various semantic communication systems with
multimodal data. We believe semantic entropy or channel
capacity should relate to the underlying transmission task
and the background KB, and they need to be redesigned
according to different contexts.

3) Are Existing Evaluation Metrics Applicable to Semantic
Communications?: Suitable performance metrics are the
foundation of the implementation of wireless systems.
For example, they play a vital role in the design of loss
functions and the selection of parameters in training DNN
models. Although some works have started to look at
semantic metrics for various data sources (e.g., text, image,
and speech) as well as various perspectives (e.g., accuracy
and timeliness), more appropriate and systematic perfor-
mance standards are still needed before practical applica-
tions of semantic communication systems. Different from
traditional communications, both objective and subjective
metrics are desired to evaluate the QoE as well as human
perception in semantic communication systems. Moreover,
existing semantic metrics are developed for specific types
of data sources; thus, it is also important to develop
general metrics (like BER in traditional wireless communi-
cations) which can be applied to evaluate the system-level
performance of networks with multimodal data or various
tasks.

4) How to Make a Tradeoff Between System Performance
and Computing Overhead?: IMT-2030 [176] has proposed
that AI and communications to support AI-powered appli-
cations is one of the expected usage scenarios for 6G;
thus, there is a rising trend in integrating AI into wireless
communication systems. Existing semantic communication
systems are mostly enabled by DNNs which consume extra
computing resources and can lead to demanding com-
puting overhead. Therefore, there exists a tricky tradeoff
between network performance and computing capacity
in the practical application of semantic communications.
Since the computing capacity of end devices is growing,
edge intelligence enables semantic communications by
leveraging the distribution of computing resources toward
the network edge to achieve fast data processing and
exchange. Cloud intelligence can also be utilized to provide
extra computing resources through the network. In addi-
tion, a new framework for computing network-enabled
semantic communications [175] has also been proposed,
which can integrate various computing resources and

share resources among users in a collaborative manner.
Moreover, lightweight AI techniques, such as model prun-
ing and quantization, could be utilized to save computing
power.

5) How to Ensure Privacy and Security in Semantic Com-
munication Systems?: Information privacy and security is
one of the most important issues in various wireless
communication systems. Given that semantic communi-
cation systems only transmit partial important data (i.e.,
semantic features) and the decoding process relies on the
receiver’s KB, semantic communications can be regarded as
a prospective approach for ensuring privacy and security
to some extent. On the other hand, since only important
data are transmitted, it may lead to malicious effects once
the semantic information has been eavesdropped. Seman-
tic communication systems include the physical channel
and virtual semantic channel; thus, encrypting semantic
features during transmission and maintaining the match
between KBs are two directions to achieve secure commu-
nications. Although privacy can be protected by encrypting
the semantic features, the communication overhead may
also be increased by introducing extra bits for secure
coding. Therefore, the tradeoff between data security and
transmission efficiency should be explicitly treated based
on the underlying transmission tasks.

6) What Are the Potential Applications of Semantic Com-
munications in 6G? What Is the Expectation for the Stan-
dardization?: Semantic communication can be regarded
as a powerful enabler for augmented reality (AR)/virtual
reality (VR), XR, and immersive communications in 6G,
linking the cyber world to the physical world. Immer-
sive communication in 6G has very strict requirements in
terms of timeliness and capacity. The semantic communi-
cation paradigm can extract the semantics from various
signals, such as movements, gestures, and speech. By
removing unnecessary information, the volume of trans-
mitted data can be decreased and seamless data exchange
can be guaranteed. Semantic communications alleviate
downlink pressure and emerge as a facilitator for XR-
based immersive communications, providing enhanced
and new capabilities. The development of semantic com-
munications is still in the initial phase; thus, there is
a long way to go toward standardization. In 2021, an
international standard technical report titled “Architec-
tural Framework for Semantic Communication in IoT
and Smart City & Community Services” [177] has been
formally approved for project initiation by International
Telecommunication Union Study Group 20 (ITU SG20).
Moreover, IMT-2030 has expanded the capabilities and
usage scenarios of IMT-2020. The applicable AI-related
capabilities are expected to grow to support immersive
communications. In this context, semantic communica-
tion is anticipated to work as the key technique to
facilitate enhanced and enriched immersive experiences,
broaden ubiquitous coverage, and empower new aspects of
collaboration.
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IV. L E A R N I N G - B A S E D W I R E L E S S
R E S O U R C E A L L O C AT I O N
In this section, we examine ML-based techniques for
resource allocation in wireless networks. We introduce
supervised and unsupervised learning for solving resource
optimization problems as formulated in traditional meth-
ods and then investigate the new paradigm of using RL
to directly optimize toward the system design objective,
without explicitly formulating an optimization problem.
We further single out the GNN-based techniques since the
GNN stands out as an effective tool to capture complicated
wireless interference. Finally, we touch upon resource allo-
cation issues in semantic communications.

A. DL for Resource Allocation

Resource allocation involves dynamically assigning
communication resources, such as frequency spectrum,
transmitted power, and time slots, to multiple users
in the wireless network. The goal is to optimize net-
work performance and enhance resource utilization effi-
ciency. Conventionally, addressing resource allocation
involves formulating an optimization problem explicitly
and employing mathematical programming techniques to
solve the problem. Despite its popularity, a great many
formulated optimization problems are difficult to resolve.
In response, DL has been investigated in recent years in an
attempt to find (near-) optimal solutions for optimization
problems due to its remarkable potential in addressing
complicated decision problems. In particular, DL learns
a mapping from the channel or network state to the
resource allocation decision, such as power/spectrum/time
slot selection. The computation-intensive training can be
performed offline, while during online deployment, a sim-
ple forward pass through the DNN is sufficient to produce
the decision output. There are usually two common ways
to leverage DL in solving resource allocation problems, i.e.,
the supervised and unsupervised learning paradigms.

1) Supervised Learning Approach for Optimization: The
supervised learning approach trains a DNN to minimize
the discrepancy between the output and the ground truth
that is usually generated by traditional optimization algo-
rithms. The following WSR maximization problem for an
interference channel with K transmitter–receiver pairs was
considered in [178]:

max
{p1,...,pK}

K∑
k=1

αk log

(
1 +

|hkk|2pk∑
j ̸=k |hkj |2pj + σ2

k

)
s.t. 0 ≤ pk ≤ Pmax ∀k = 1, 2, . . . , K (6)

where Pk is the transmit power of the kth transmitter,
Pmax is the power constraint, σk is the noise power of
the kth receiver, and αk is the weight for kth user. hkk

and hk,j represent the signal and interference channel,
respectively. Specifically, the ground truth was obtained
by running the WMMSE algorithm [42], and the loss

Fig. 14. Illustration of the supervised learning paradigm of DL for

resource optimization.

function is set as the mean-squared error between the
ground truth and the output of the network. Simulation
results show that the trained DNN can achieve perfor-
mance close to the WMMSE algorithm over a wide range
of settings while reducing the computation time by an
order of magnitude. The basic procedure of supervised
learning for wireless resource allocation is sketched in
Fig. 14. Several enhancements have been developed in the
literature to improve upon the architecture proposed in
[178]. An approach using the CNN to solve the wireless
link scheduling problem was proposed in [179] due to
its capability to better capture and exploit spatial correla-
tion information. Specifically, they consider the geographic
location information of transmitter–receiver pairs as the
density grid matrices, which are constructed by directly
counting the total number of transmitters and receivers in
each cell. Then, they put the density grid matrices into a
CNN to get the interference patterns that each link causes
to its neighbors and each link receives from its neighbors.
A GNN-based supervised learning framework was pro-
posed in [180] to address the link scheduling problem
in similar interference channels. They model the wireless
network as a directed graph in which the communication
links are modeled as nodes and the interference links
are modeled as edges. Significant performance gains have
been observed, and the robustness of GNNs to varying
system configurations is also demonstrated. Deeper inves-
tigation of GNN-based resource allocation design will be
relegated to Section IV-C.

2) Unsupervised Learning Approach for Optimization:
The performance of supervised learning approaches is
bounded by conventional algorithms that are used to
produce the training labels. To address the issue and
enhance the performance of deep-learning-based optimiza-
tion, unsupervised learning methods have been proposed.
These approaches involve training the neural network
directly based on the optimization objective, in contrast to
supervised learning approaches that rely on conventional
algorithms to provide high-quality labels. For example,
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in [181], the training loss function is designed based on
the sum rate in order to address the K-user sum rate
maximization problem with quality-of-service (QoS) con-
straints, i.e.,

Loss=Eh

[
−

K∑
i=1

Ri (h,θ)+λ

K∑
i=1

ReLU (rmin −Ri (h,θ))

]

where Ri(h,θ) is the rate of ith receiver, rmin is the per-
user minimum rate requirement, and λ is a parameter to
balance the two terms. The approach introduces penalty
terms to incentivize the network output to meet QoS
constraints. If the output does not satisfy the quality of
service constraint, i.e., Ri(h,θ) < rmin for some i, then
we will have ReLU(rmin − Ri(h,θ)) > 0 and minimizing
the loss function will incentivize the network parameters to
decrease this term by improving performance of the weak
user. In [182], the penalty function was combined with
the primal-dual learning approach, introducing a regu-
larized unsupervised learning framework. This framework
was devised to improve the resilience of the primal-dual
learning-based unsupervised learning framework.

Insights and Challenges: While the DL-based methods
have achieved satisfactory results in many resource allo-
cation problems, it is important to note more careful
design specialized to wireless resource allocation prob-
lems is needed. Special neural network architectures that
capture the intricacies of wireless interference shall be
developed, and the generalization of such networks to
more complicated and time-varying environments needs
deep investigation. In supervised learning approaches,
determining a minimum-sized neural network architecture
with enough capacity to fit the supervised data provided
by conventional algorithms is of interest from both the-
ory and practice perspectives. For unsupervised learning,
it is critically important to devise an appropriate loss
function-based system design objective, which is often
highly nonconvex and difficult to train using gradient
descent. In addition, a theoretical understanding and
comparison of the supervised and unsupervised learning
approaches, in terms of performance limit and conver-
gence speed, is also an interesting area worthy of further
exploration.

B. RL for Resource Allocation

RL is a promising solution for wireless resource allo-
cation problems, which can be attributed to its capacity
to address sequential decision-making under uncertainty.
Besides, the hard-to-optimize objective issue can be effi-
ciently tackled by RL because of its flexibility in designing
the reward function. In addition, RL provides a feasi-
ble distributed learning structure, which is appealing in
resource allocation [183]. Mathematically, the RL problem
is modeled as an MDP. Fig. 15 demonstrates a general
agent-environment interaction of the RL-based resource
allocation methods. At each discrete time step t, the agent

Fig. 15. Agent–environment interaction of the resource allocation

in wireless networks.

observes its state St. Then, the agent takes an action At

according to its policy network π(At|St). Thereafter, the
agents receive a reward Rt and the environment transi-
tions to the next state St+1, dictated by the probability
p(St+1, Rt|St, At). The goal of RL is to find an optimal pol-
icy π∗ that maximizes the expected cumulative discounted
rewards Gt, which is denoted as

Gt =

∞∑
k=0

γkRt+k, 0 ≤ γ ≤ 1 (7)

where γ is the discount factor. A wide variety of deep
RL algorithms, including value-based methods, such as
deep Q-network (DQN), policy-based methods, such as
REINFORCE, and actor-critic algorithms that blend these
two categories, such as proximal policy optimization (PPO)
and soft actor-critic (SAC), have been utilized in resource
allocation problems in wireless networks.

A dynamic spectrum access problem is considered in
[184] where the user chooses a good channel among
N channels to transmit data. Here, the user is regarded
as an agent, and it selects actions using DQN with the
history of previous choices and transmission results up
to M time slots. Simulation results demonstrate that the
RL-based method can closely approach the optimal genie-
aided myopic policy. In [185], a joint user association and
spectrum access problem is considered, where each user
in the heterogeneous cellular network needs to associate
with a BS and select the spectrum. RL is leveraged to
maximize the users’ transmission capacity while satisfying
QoS requirements in a distributed way. For power allo-
cation in wireless networks, a problem where multiple
communication links share the same spectrum and aim to
maximize the WSR is considered in [186]. Each transmitter
acts as an agent and explores the environment following
the ϵ-greedy policy. A centralized controller is adopted to
train the DQN with the experience collected from all agents
and broadcast the parameters of the DQN to each agent
for distributed execution. This RL-based method can track
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channel evolution and outperforms WMMSE and fractional
programming algorithms.

Joint spectrum and power allocation is an essential
issue in wireless networks, and we discuss its application
in vehicular networks as an example. The system model
consists of multiple vehicle-to-infrastructure (V2I) and V2V
links to provide high data rate service and reliable safety-
critical message exchange service. A distributed DQN-
based approach for the unicast and broadcast scenarios
in vehicle-to-everything (V2X) communications is devel-
oped in [187]. Each V2V link is regarded as an agent
that selects the spectrum and adjusts its transmit power
according to the local observation. The DQN is shared by
all agents and is trained using the experience collected
by all V2V agents. Besides, their actions are updated
asynchronously to stabilize the environment transition.
In addition, a multiagent RL (MARL)-based method is
utilized in [188], building upon the work in [187]. To
overcome the environment nonstationarity problem, the
local observation of each agent is augmented by additional
information that indicates other agents’ behaviors, with
which the training process can be stabilized. Numerical
results show that the MARL method enables cooperative
learning among multiple V2V agents to enhance overall
system performance. Further in [189], the architecture is
restructured to a centralized decision-making mechanism
with very low signaling overhead. Each V2V transmitter
learns to compress its local observation using a DNN and
feed the compressed information back to the central agent
to produce the actions of all V2V links.

Despite the strong capability of RL to solve sequential
decision-making problems, it also faces challenges related
to scalability. There are already some works trying to
improve the scalability of RL and make it more practical. A
joint user scheduling and downlink power control problem
was investigated in [190], where multiple access points
need to select the UE to serve according to the received
SINR. Access points act as agents, and their states contain
the weights and the SINRs of their associated UEs. As
the user number of each access point is different, it may
cause the dimension of the network input to vary and
disable the trained policy network. To deal with this prob-
lem, a fixed number of users are sorted according to the
proportional fairness principle to improve the scalability,
whose information will be the input of the neural network.
Numerical results show that though the RL-based approach
schedules the UEs in a decentralized manner, it achieves a
similar sum rate with the centralized information-theoretic
method.

Another challenge of using RL to address resource
allocation is often termed the reality gap, which refers
to the difference between the simulation and the real
environmental dynamics. RL generally requires retraining
to adapt to the new environment, which is quite inefficient.
To decrease the number of interactions and enable fast
learning in the new environments, meta RL was leveraged
in [191]. By pretraining the model across a variety of

Fig. 16. Performance comparison of the meta-RL-based resource

allocation approach and other baselines with varying sizes of V2V

payload size B. (a) Sum rate of V2I links. (b) Success transmission

probability of V2V links.

environments, the model learns the prior knowledge of
these environmental dynamics, which can be combined
with a limited amount of data from the new environment
to achieve fast adaptation. Fig. 16 shows that when the
agent is initialized with the parameters learned from meta-
training and rolls out 20 episodes in the new environment,
it can achieve a similar performance with the matched
policy, which needs to learn from 3000 episodes when
trained from scratch. Besides, the randomly initialized
agent cannot adapt to this new environment even with
1000 episodes, which demonstrates the efficacy of meta-
RL-based approaches.

Insights and Challenges: RL-based resource allocation
methods have shown their effectiveness in solving sequen-
tial decision-making problems in wireless networks. How-
ever, there are still many challenges that call for further
research. First, more efforts are needed to better under-
stand the performance limit and stability of MARL prob-
lems. Currently, researchers tend to use heuristic methods
to tackle nonstationarity issues, which lack theoretical
guarantees. Besides, how to make agents communicate
with each other to enable better cooperation needs fur-
ther exploration. Second, RL requires extensive interac-
tions with the environment, which is usually impractical
in real scenarios. Therefore, leveraging meta RL, offline
RL, or other approaches to reduce the number of online
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Fig. 17. Process of message passing.

interactions and improve the scalability is also an area that
warrants further investigation.

C. GNN-Based Resource Allocation

The graph is an efficient tool to capture wireless inter-
ference, where communication links are represented as
nodes or vertices in a graph while the edge can be used to
describe their mutual interference. As a result, modeling
a wireless network as a graph network helps to provide
insights into the structure of communication networks and
the relationships between communication links. GNNs,
neural network structures specialized in processing graph
data, thus, serve as an ideal method to improve learning-
based wireless resource allocation.

Essentially, GNNs use a framework of message passing
where messages are exchanged along edges and updated
by neural networks [192]. Fig. 17 illustrates a two-layer
message-passing model. The superscripts and the sub-
scripts denote the number of iterations and nodes, respec-
tively. During the lth message-passing iteration, each node
i ∈ V will update its hidden embedding h

(l)
i based on

the messages from i’s neighborhood N(i). The message-
passing model in Fig. 17 aggregates messages from node
4’s local graph neighbors (i.e., 2, 3, and 5), and in turn, the
messages from node 4’s local graph neighbors are based
on information from their corresponding neighborhoods,
and so on. The message passing stage consists of two main
functions, UPD(·) and AGG(·) [192], and the update of the
hidden embedding can be expressed as

h
(l+1)
i = UPD(l)

(
h

(l)
i , AGG(l)

({
h

(l)
j ∀j ∈ N (i)

}))
= UPD(l)

(
h

(l)
i , m

(l)

N(i)

)
(8)

where at the lth iteration, the AGG(·) takes as input the
embeddings of i’s neighborhood N(i) and computes a mes-
sage m

(l)

N(i). Then, the UPD(·) function combines i’s previ-
ous embedding h

(l)
i with the message m

(l)

N(i) and generates
the updated hidden embedding h

(l+1)
i . Apparently, each

iteration aggregates one-hop neighborhood information,
and more comprehensive information about the graph

structure can be obtained by iterating the message-passing
process several times. Furthermore, by designing different
UPD(·) and AGG(·) functions, different kinds of GNNs,
such as graph convolutional networks (GCNs) [193], graph
attention networks (GATs) [194], and graph isomorphism
networks (GINs) [195], can be realized.

To utilize GNNs for radio resource management, the
graph model for wireless networks is necessary. Commonly,
the communication links are viewed as nodes and the
interference relationships between communication links
are depicted in edges. In [196], radio resource manage-
ment problems are formulated as an optimization over
graphs that enjoy a universal permutation equivariance
property, and a resource management scheme based on
message-passing graph neural networks (MPNNs) is pro-
posed. The MPNN-based method is amenable to transfer-
ence to large-scale radio resource management problems
subject to peak-power constraints.

Additionally, a random edge graph neural network
(REGNN) parameterizing the resource allocation policy
is considered in [197]. The REGNN-based method per-
forms convolutions over random graphs in the wireless
network and can be applied to different network set-
tings. To address the network utility maximization problem
with constraints on the long-term average performance
of users, an unsupervised primal-dual approach is pro-
posed in [198]. The state-augmented algorithm takes as
input of the instantaneous network state with the dual
variables corresponding to the constraints, and simulation
results demonstrate that this scheme can achieve near-
optimal performance for radio resource management. Fur-
ther, a resilient radio resource management optimization
scheme with per-user minimum-capacity constraints is
developed [199]. By introducing learnable slack variables,
this method can adaptively set the per-user minimum
capacity and automatically match the underlying network
conditions.

Fig. 18 shows the performance comparison between
several GNN-based methods, including the GCN, the GAT,
and the GIN, against the baseline WMMSE method, to
address the power control problem in interference chan-
nels described in (6). It can be observed that the per-
formances of the three GNN-based methods are stable
as the problem size increases and competitive with the
WMMSE baseline. This verifies the excellent generalization
of GNN-based methods to larger wireless network scales, a
desirable characteristic for practical implementation.

Insights and Challenges: Although GNN-based methods
have proved efficient for exploiting the spatial structures
of wireless networks, the irregularity of large-scale graph
structures, the complexity of node features, and the depen-
dence on training samples exert tremendous pressure on
computational efficiency, memory management, and com-
munication overheads of GNN models. Further research is
needed to accelerate and optimize the GNN programming
framework to enable efficient training on large-scale data.
Additionally, most of the existing GNN-based resource
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Fig. 18. Performance comparison between GNN-based methods

and the WMMSE scheme with changing network scales and a fixed

density.

allocation algorithms require accurate CSI, which will
cause a huge transmission overhead in a dense wireless
network. Some other methods schedule resources solely
based on the geographic locations of the transmitters and
the receivers while failing in fast-fading communication
scenarios. How to reduce CSI requirements while obtain-
ing a satisfactory performance in a fast-fading communica-
tion scenario requires further investigation.

D. Semantic-Aware Resource Allocation

Conventional performance metrics that measure bit-
based characteristics are no longer applicable to semantic
communications. For example, to assess the performance
of semantic-aware networks, the achievable data rate of
all users is not appropriate for network optimization, and
new metrics are desired to facilitate network optimization
at the semantic level. Particularly, the achievable data rate
should be replaced by the semantic rate, which measures
the transmission rate of semantic symbols.

Some recent works have investigated the resource allo-
cation in semantic-aware networks for certain specific
tasks. In [200], the semantic information is extracted by
the knowledge graph, and the resource blocks in semantic
communications are optimized to maximize the seman-
tic similarity between the transmitter and the receiver.
Similarly, Liu et al. [201] proposed a resource allocation
optimization method based on the importance of extracted
semantic features. To further investigate the resource allo-
cation for semantic communications from the transmission
perspective, Yan et al. [202], [203] designed two new
metrics named semantic spectrum efficiency and semantic
QoE, and explored the semantic spectrum efficiency and
the semantic QoE maximization problems in text-based
semantic communication systems and multimodal seman-
tic communication systems, respectively.

Another challenge for the implementation of seman-
tic communications is the limited computing capacity of
end devices. To fully utilize network resources, Ji and

Qin [204] proposed a semantic-aware task offloading
system by jointly optimizing the allocation of both com-
putation and communication resources. Qin et al. [175]
proposed a computing network-enabled semantic commu-
nications framework, in which computing resources are
integrated and shared collaboratively among multiple end
devices.

Generally, the above resource allocation problems can
be modeled as mixed integer nonlinear programming
(MINLP) optimization problems, which consist of both dis-
crete and continuous variables. Due to the NP-hard nature,
traditional mathematical optimization tools require high
computational complexity and cannot guarantee perfor-
mance under fast-varying channels. The learning-based
methods, such as RL, can address the unstable issue by
making decisions under uncertainty. In [204], a distributed
multiagent PPO (MAPPO) algorithm was proposed to
jointly optimize the transmit power and offloading policy.
As shown in Fig. 19, the proposed MAPPO framework
outperforms the benchmarks of conventional RL schemes
and achieves near-optimal solutions under various noise
power.

E. Tips and Tricks

1) Will Supervised Learning Outperform Unsupervised
Learning in Resource Allocation?: From the discussions in
Section IV-A, we have seen both supervised and unsu-
pervised learning-based approaches show potential in
addressing wireless resource allocation problems. One may
be tempted to ask: which method is better in practice?
Unfortunately, it is difficult to give a definitive answer to
this question in general. Some clues can be found in [205],
which focuses on the particular problem of interference
management in wireless networks. It is found in the two-
user power control problem that unsupervised learning
performs much worse than the supervised counterparts

Fig. 19. Performance of the MAPPO framework to optimize the

transmit power and the offloading policy for the semantic-aware

task offloading systems.
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since it is more likely to get stuck at some low-quality
local optima. For the more general case, it is established
that sufficient conditions can be identified when supervised
learning can achieve good performance while none can be
ascertained for unsupervised learning. This is particularly
true when high-quality labels are provided for supervised
learning, in which case it will outperform unsupervised
learning-based approaches. In addition, the supervised
learning approach converges faster when the labels have
better quality.

2) How to Choose the Proper RL Algorithm for a Specific
Resource Allocation Problem?: An appropriate RL algorithm
can improve the performance of our resource allocation
scheme and stabilize the training process. Several factors
need to be considered to choose an efficient RL algorithm
for a specific resource allocation problem. First, whether
the action space of the problem is discrete, continuous,
or fixed should be decided. Value-based RL algorithms,
e.g., DQN, can only tackle the problems with discrete
actions because the policy network outputs the Q value
of each action in action space, which is problematic if the
action is continuous, such as the continuous transmission
power control in the wireless network. Besides, sample
efficiency is a crucial factor in RL. On-policy algorithms,
e.g., REINFORCE, are inefficient as they discard collected
experience data once the policy is updated. Off-policy
algorithms reuse the experience data collected before, so
they achieve higher sample efficiency and may lead to
faster convergence.

Lastly, we find that though several RL algorithms achieve
desirable performance in wireless resource allocation, such
as deep deterministic policy gradient (DDPG) and twin
delayed DDPG (TD3), they depend on sophisticated hyper-
parameter tunning, which makes it hard to apply to gen-
eral network settings. Fortunately, some RL algorithms
such as PPO and SAC, where the hyperparameters do not
affect the ultimate performance significantly or the algo-
rithm can adjust parameters by themselves, maybe better
choices when utilizing RL in wireless resource allocation
problems.

3) How to Utilize the GNN for the Resource Allocation Prob-
lem in Wireless Networks?: In GNNs, the node embedding
maps each node to a low-dimensional vector that captures
the graph structure and feature information of the node.
Most of the resource allocation problems in communica-
tion scenarios are node-level tasks, and by learning node
embeddings, the GNN can capture the graph structure and
obtain the node features, allowing for more accurate node-
level prediction and analysis. In each iteration, the GNN

model passes and aggregates the information of nodes
and edges according to the topology of the graph and
gradually updates the node representations to obtain node
embeddings. Essentially, the graph topology significantly
influences the prediction and analysis of graph data, and
how to construct a suitable graph model for the wireless
network needs to be carefully considered. Commonly, each
communication link can be treated as a node while its
interference channels are recognized as links connected
to that node. Correspondingly, CSI can be used as node
features and edge attributes can incorporate properties
of the interference channels. However, depending on the
availability of CSI in practice, the node and edge features
may change accordingly.

V. C O N C L U S I O N
With innovations in AI, wireless communications have sig-
nificantly revolutionized the way we interact and commu-
nicate. In this article, we explicitly investigated AI-enabled
wireless communications, including both traditional bit-
related techniques as well as semantic-related techniques.
We also studied the challenges and open areas in employ-
ing AI/ML in the field of wireless systems. Moreover, we
provided useful and insightful tips and tricks to give guid-
ance in the design of intelligent wireless communication
systems that can meet the demands for high data rates,
low latency, massive connectivity, energy efficiency, and
seamless data exchange.

As we move toward the future, there is a growing
need to think about standardization which is important
for the industry to achieve widespread implementation of
AI/ML in wireless communications. When it turns to the
semantic level, AI is largely used for coding and decoding
at the transceiver sides to serve upper layer applications.
However, due to the large volume of data and frequent
handover, channel modeling at the semantic level will be
more complicated than its traditional counterpart at the
bit level. Therefore, in addition to just applying AI to the
end-to-end semantic communication model training, AI
could also be applied in the physical layer to facilitate
channel estimation for semantic communications in the
future. AI-empowered traditional wireless communications
have achieved great success in various aspects. We believe
that AI could also bring new degrees of freedom for future
semantic communications.
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