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Predicting Underwater Noise Spectra Dominated by
Wind Turbine Contributions

Andrea Trucco , Senior Member, IEEE

Abstract—The study of the impact on the marine ecosystem of
an offshore wind farm benefits from the knowledge of the un-
derwater noise observed at a single turbine, as the wind speed
varies. The calculation of the noise spectral average at a given
wind speed requires many recordings, each acquired in a limited
time interval: an extremely time-consuming process. This study
investigated how to approach the spectral average using only very
few noise recordings for each wind speed, leveraging supervised
and unsupervised machine learning techniques. Three different
prediction methods, based on mean and interpolation, principal
component analysis (PCA), and nonnegative matrix factorization,
in combination with four techniques for coefficient estimation as the
wind varies, are tested. Prediction based on principal component
analysis, combined with Gaussian process regression, outperforms
other methods in all three case studies considered. The latter, in
addition to the problem described above, include the prediction
of the noise spectrum: at wind speeds where no noise recordings
are available, and using a few recordings acquired at another
(nominally identical) wind turbine.

Index Terms—Offshore wind turbine, principal component
analysis (PCA), spectral prediction, supervised and unsupervised
learning, underwater noise.

I. INTRODUCTION

A S OFFSHORE wind farms (OWFs) become more
widespread, the impact on the ecosystem of underwater

noise they generate is a cause for concern [1], [2], [3]. In addition
to the installation and decommissioning of a plant, which can
produce high noise levels for limited periods of time [1], [4],
the noise generated during the normal operation of the OWF
(i.e., the operational noise) can affect the marine ecosystem for
a very long time and is, therefore, particularly worrying [1].
In recent years, the operational noise of an OWF has been the
subject of several investigations [2], [5], [6], [7], showing that,
within a given area, the turbines’ contribution to the underwater
noise spectrum can be dominant, especially as the wind speed
increases. To assess the impact of an OWF during its operation,
it is necessary to know the power spectral density (PSD) of noise
at different points in a given marine area [1], [4], [5], [7] as a
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function of wind speed. To achieve such knowledge, it is useful
to characterize each turbine in the plant acoustically [2], [5],
[8], [9]. The noise model near a wind turbine can also serve as a
basis for estimating the overall noise of a hypothetical OWF at
an early design stage [2], [4], [7].

This article focuses on the measurement and prediction of
underwater noise spectra observed near a wind turbine, including
ambient noise and turbine contributions. Previous measurements
at sea have shown that the turbine’s role [1], [8], [9] is mainly
to insert some spectral lines, often below 1 kHz, into the typical
broadband spectrum of ambient noise. Frequencies and ampli-
tudes of such tonal components exhibit a complex relationship
with wind speed, especially for turbines operating at variable
rates of revolution [8], [9].

Let us assume for a while that a large number of noise spectra
measured near the turbine, for each wind speed (having suit-
ably discretized this variable), is available. Given the stochastic
nature of noise, the average of all the spectra (i.e., the spectral
average) measured at a given wind speed represents the reference
option to express the underwater noise generated by the turbine
and natural sources at the speed considered. The question this
article contributes to answering is: How to predict such a spectral
average if only very few noise spectra are available at the con-
sidered speed or if no spectra are available at that speed and only
very few spectra are available at different speeds? The rationale
behind the question concerns the time necessary to acquire many
noise spectra for each wind speed (some speeds being rather
infrequent [10]) and the costs associated with this operation.
An additional question addressed is: can the few noise spectra
acquired near a given turbine effectively predict the spectral
average of the noise near another OWF turbine, provided that
the turbines are two specimens of the same model?

Although the literature concerning the measurement and char-
acterization of underwater noise generated by a wind turbine or
an entire OWF is growing rapidly,1 to the best of the author’s
knowledge, no one has yet investigated how best to make use
of few noise spectra acquired near a turbine, what is reasonable
to expect from them, and how well they can predict the noise
near another turbine. This topic is important because the spectral
prediction techniques studied in this work allow for approximate
(but reasonably accurate) knowledge of spectral averages, using
much less time and cost than would be required to acquire a data
set containing many noise spectra for each wind speed.

1The authors of [2], [3], and [5] present recent reviews on this topic. Works
[6] and [7] are examples of recent contributions.
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To compare different spectral prediction strategies, this article
uses the data set found in the supplementary material of [8].
It contains many spectra acquired near a given turbine, each
spectrum obtained by processing the underwater noise recorded
over a 10-min period. With few exceptions, for every wind
speed, discretized at a step of 1 m/s, the data set contains more
than 100 spectra. They are used here as follows: a few spectra
for each wind speed are randomly selected and set aside; the
average among the (many) remaining spectra for each speed
represents the spectral average, i.e., the target that the prediction
strategies considered try to approximate using the few spectra
set aside, using all or part of them. Moreover, the data set
contains the recordings described previously for two nominally
identical OWF turbines [8], also allowing comparison of the
noise acquired near each.

The simplest prediction strategy is to average the few available
spectra for each wind speed. If no spectra are available at
certain speeds, a linear interpolation of the results obtained at
the remaining speeds can be performed. However, there is no
guarantee that this is the best strategy. A possible alternative
is a two-stage procedure: 1) to analyze the few noise spectra
available to extract the salient patterns (or basis spectra) they
have in common; and 2) to synthesize a prediction (trying to
approximate the spectral average at a given speed) by combining
such basis spectra appropriately. For the analysis stage, two
unsupervised learning techniques were considered, which are
widely used in exploratory data analysis to achieve dimen-
sionality reduction [11]: principal component analysis (PCA)
and nonnegative matrix factorization (NMF). In both, a noise
spectrum is modeled as a linear combination of the basis spectra,
the number of which should be suitably set. Obviously, the
coefficients weighting the basis spectra must depend on the
wind speed: the value of a given coefficient as a function of
speed can be determined by a fitting or regression technique,
fed by the values the coefficient assumed in the analysis stage.
This task will be referred to as coefficient estimation [11], [12].
To test various possibilities, curve fitting using second-order
polynomials [12] and smoothing splines [13] was considered,
as well as supervised learning regression [11], [14] based on
random forests and Gaussian processes.

This study shows that an accurate design of the prediction
pipeline produces results significantly closer to the target, on av-
erage, and with less variance, than those produced by averaging
and interpolation (AAI). With reference to the mentioned data
set, it is anticipated that by using five spectral noise samples for
each wind speed, the average of the mean absolute log-spectral
distance can be reduced to below 1.4 dB2 and its standard
deviation (std. dev.) to below 0.4 dB.

The rest of this article is organized as follows. Section II
introduces the problem addressed, prediction methods, estima-
tion techniques, and performance metrics. Section III presents
the adopted data set and proposes a preparatory analysis.
Section IV describes and discusses the results, including turbine

2This value increases to about 2.4 dB when the spectral averages of one turbine
are predicted using five noise spectra, for each wind speed, recorded close to the
other turbine.

data discrepancies, comparison of prediction strategies and es-
timation techniques, and assessment of some examples. Finally,
Section V concludes this article.

II. METHODS

A. Problem Statement

The general problem addressed in this article is how to predict
the noise spectral average at a given wind speed, using very few
spectral noise samples acquired at the same speed or, failing that,
at speeds close to that of interest. Specifically, five spectral sam-
ples will be considered in the following.3 Taking into account the
characteristics of the available data set [8], the general problem
is declined in three specific case studies, illustrated graphically
in Fig. 1.

1) Case study C1: For each wind speed, the noise spectra
acquired near a given turbine are allocated as follows. Five
spectra chosen at random contribute to compose the so-
called available set and will be used for prediction, while
all the rest are used to calculate the spectral average [see
Fig. 1(a)]. At each speed, the prediction will be compared
with the spectral average to assess the quality of the result.

2) Case study C2: Same as case C1, except that for a subset
of wind speeds, no noise spectra are used to compose the
available set and compute the predictions. For each speed
belonging to that subset, all spectra are used to compute
the noise spectral average [see Fig. 1(b)].

3) Case study C3: For each wind speed, five spectra randomly
chosen from those acquired near turbine Φ contribute to
compose the available set and will be used for prediction.
All noise spectra acquired near turbine Γ at the same
wind speed are used to calculate the spectral average [see
Fig. 1(c)]. The prediction computed with samples from
turbine Φ will be compared with the spectral average from
turbine Γ.

The quality of the result will be evaluated with the error
metrics introduced in Section II-F. To understand which spectral
prediction method provides the best results in the three men-
tioned case studies, the experiments must be repeated a great
number of times, allowing the average and std. dev. of each
error to be calculated.

B. Spectral Prediction by AAI

Letxj,i be a noise spectrum among those composing the avail-
able set (i.e., those available to compute spectral predictions),
where the index j, j ∈ [1,m] refers to the wind speed wj at
which the spectrum was acquired, and the index i, i ∈ [1, n]
scans the n spectra available4 for each speed wj . Thus, the
total number of noise spectra that compose the available set
is N = mn. Each spectrum xj,i is a row vector with p entries,
which express the noise PSD, in linear scale, at p frequency
values.

3The impact on the results of having a different number of spectral samples
is addressed in Section IV-D, where said number is a random variable for each
wind speed.

4As anticipated, it is intended that n be a few units.
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Fig. 1. Prediction of noise spectral averages using a few spectral samples. (a) Case study C1. (b) Case study C2. (c) Case study C3.
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As shown in Fig. 1, the number of wind speeds considered in
the available set, m, includes: all the speeds at which the noise
spectra were acquired in the C1 and C3 cases; and a subset of
them in the C2 case. Consequently, N will be greater in C1
and C3 than in C2. The simplest way to provide the spectral
prediction at wind speed w, ŝ(w), is to compute the average, x̄j ,
of the available spectra

x̄j =
1

n

n∑
i=1

xj,i (1)

for all the wind speeds wj , j ∈ [1,m], and use them as follows:

ŝ(w) =

{
x̄j , if w = wj

ℒ {x̄j−1, x̄j} , otherwise
(2)

ℒ{x̄j−1, x̄j} is an operator that, considering the distances sepa-
ratingw fromwj−1 andwj , performs the linear interpolation be-
tween x̄j−1 and x̄j , having chosen j such that wj−1 < w < wj .

C. Spectral Prediction by PCA

Let X be the N × p matrix that contains all the N spectra of
the available set, built by stacking a vector xj,i for each row.
Correspondingly, let w be the column vector the N entries of
which are the wind speeds wj related to the spectra xj,i stacked
in X. Since PCA analysis [11] requires that the p variables
represented in the data matrix X have zero mean, let us define
the location vector µ as a row vector obtained by calculating the
sample mean along each column of X. Then, by subtracting µ
from each row of X, one obtains the matrix X0, the p variables
of which have zero mean.

PCA uses the singular value decomposition to write X0 as

X0 = UDVT (3)

where the superscript T indicates the transpose of a matrix, U
is an N × p orthogonal matrix, V is a p× p orthogonal matrix,
the columns of which are called the right singular vectors, and
D is a p× p diagonal matrix, with diagonal elements

d1 ≥ d2 ≥ . . . ≥ dp ≥ 0

known as the singular values. The columns of the N × p matrix
UD are called principal components of X0. The sorting of the
singular values ensures that the columns of V are not only
orthogonal unit vectors representing the principal component
directions but are also sorted in order of descending importance
in explaining the data in X0.

On the basis of the above, it is possible to choose suitably
a value q, q < p, which allows one to approximate the data
matrix by keeping only the first q principal components and
their associated directions

X0
∼= ΛV T

q (4)

whereΛ is anN × q matrix that contains only the first q columns
of the product UD and Vq is a p× q matrix that contains
only the first q columns of V. The columns of Vq represent
a set of q basis spectra that, linearly combined through the
weight coefficients contained in each row of Λ, approximate

the spectra with zero-mean variables stacked in X0.5 A given
original spectrum can be approximated as

xj,i
∼= µ + ληV

T
q (5)

where λη is the ηth row of the matrix Λ, provided that xj,i is
the ηth row of X.

The basic idea in bounding the number of basis spectra to
q is to keep the salient patterns that PCA identifies in the
available set spectra, while eliminating patterns that represent
specific features of such spectra, lacking generality. The noise
spectral prediction at wind speed w, ŝ(w), can be computed by
combining the q basis spectra through coefficients that must be
properly estimated

ŝ(w) =
∣∣∣µ + λ̂wV

T
q

∣∣∣ (6)

where λ̂w is a row vector of size q that contains such coefficients
and | · | indicates the entrywise absolute value.6 Each entry of
λ̂w can be estimated on the basis of the values contained in
the matrix Λ. Specifically, the θth column of the matrix Λ
contains the N values assumed by the θth coefficient, θ ∈ [1, q],
in relation with the N samples of the available set. Since n
samples are included for each wj , j ∈ [1,m], the θth column of
Λ contains the n values the coefficient assumed for each wind
speed. Recalling that the column vectorw of sizeN contains the
wind speeds at which the available set samples were acquired,
the θth coefficient, λ̂w[θ], can be estimated as follows:

λ̂w [θ] = ℛ { w; w,Λ [:, θ] } (7)

whereΛ[:, θ] is the θth column ofΛ andℛ{·} is an operator that,
knowing the valuesΛ[:, θ] the dependent variable assumes when
the independent variable is w, estimates the dependent variable
when the independent variable is w. Such an operator may be a
curve-fitting or a regression technique, as will be discussed in
Section II-E.

D. Spectral Prediction by NMF

NMF is a technique to approximately factorize a data matrix
X, the entries of which are all nonnegative, into two matricesW
andH, also devoid of negative entries, achieving dimensionality
reduction [11]. Since the PSDs contained in X ensure that this
matrix is nonnegative, the NMF is suited to find a set of basis
spectra that reveal the latent structure in the data, allowing noise
spectra to be represented as the sum of nonnegative patterns. The
conceptual differences between NMF and PCA were discussed
in [15].

The NMF is commonly written as

XT ∼= WH (8)

where W is a p× r matrix, H is an r ×N matrix, and
r < min(p,N). In analogy with (4), the factorization can be

5The values in the basis spectra and the coefficients that weight them can be
greater than, equal to, or less than zero. On the other hand, the product between
the two matrices must generate zero-mean variables.

6Since it is not guaranteed that the predicted PSD is nonnegative at all
frequencies, as suggested in [19], the absolute value of the results is considered.
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rewritten as X ∼= HTWT : the columns of W represent a set of
r basis (nonnegative) spectra that, summed through the weight
coefficients contained in each column of H, approximate the
original spectra stacked in X. Once r is set,7 the factorization
is performed by minimizing the quadratic distance between
XT and WH, starting with random initial values for W and
H and proceeding iteratively with the alternating least squares
algorithm.

The noise spectral prediction at wind speed w, ŝ(w), can be
obtained by combining the r basis spectra through coefficients
that must be properly estimated

ŝ(w) =
∣∣ĥwW

T
∣∣ (9)

where ĥw is a row vector of size r that contains such coefficients.
Each of them can be estimated on the basis of the values
contained in the matrix HT . Specifically, the ρth column of
the matrix HT contains the N values assumed by the ρth coef-
ficient, ρ ∈ [1, r], in relation to the N samples of the available
set. Therefore, the ρth coefficient, ĥw[ρ], can be estimated as
follows:

ĥw[ρ] = ℛ
{
w; w,HT [:, ρ]

}
(10)

where HT [:, ρ] is the ρth column of HT and ℛ{·} is an oper-
ator that, knowing the values HT [:, ρ] the dependent variable
assumes when the independent variable is w, estimates the
dependent variable when the independent variable is w. Such
an operator may be a curve-fitting or a regression technique, as
will be discussed in Section II-E.

E. Coefficient Estimation: Fitting and Regression Techniques

The analysis of the available set, either by PCA or NMF,
yields a set of basis spectra that, combined linearly by weighting
coefficients, approximate the original spectra. For each wind
speed considered in the available set, the analysis generates n
values of each coefficient. To achieve a noise spectral predic-
tion depending on wind speed, for each coefficient, a function
must be found that associates any speed value with only one
coefficient value.

The problem, of which Fig. 2 shows an example, is the
one formulated in (7) and (10) and can be approached from
a mathematical or machine learning perspective. In the former
case, curve-fitting techniques can be adopted; in the latter case,
regression techniques derived from supervised learning can be
used. Noting that the aim here is not to find the best technique
for the problem at hand, but to test the sensitivity of the results
against different techniques, both options are experimented,
considering two techniques for each option. These techniques
were chosen by simply trying to differentiate the categories to
which they belong.

Among curve-fitting techniques, a polynomial with degree 2
(PD2) and a cubic smoothing spline (CSS) are considered. PD2

7Unlike PCA, the patterns that added together approximate the spectra of the
available set are not ordered by importance. Therefore, the choice of r must
ensure a sufficient number of patterns to approximate the noise spectra with due
accuracy and, at the same time, maintain generality. The choice of r will be
discussed later.

Fig. 2. Values assumed by the coefficient (orange dots) that weights a given
PCA basis spectrum, as a function of the wind speed. The available set consisted
of five noise spectra for each wind speed, from 3 to 16 m/s, in 1-m/s steps,
excluding 5, 7, and 15 m/s, at which no spectra were included (i.e., an example
of case study C2). The solid lines show the results obtained with the fitting and
regression techniques described in the text.

is a parametric model, the three parameters of which are set
through a linear least-squares procedure [12]. Instead, CSS is a
nonparametric model aimed at minimizing the sum of an error
term and a roughness term [13]. The relative importance of the
two terms is governed by a smooth factor that is tuned according
the “de Boor Method” described in [16].

To avoid defining a priori a parametric form for the relation-
ship between the independent and dependent variables, nonpara-
metric supervised learning techniques are considered, among
which random forest regression (RFR) and Gaussian process
regression (GPR) are selected. RFR combines ensemble learning
methods with decision trees to create multiple uncorrelated
base estimators, the results of which will then be averaged to
compute the final prediction [11]. In the problem at hand, the
main hyperparameters are the number of trees in the ensemble,
ℰ, and the minimum number of samples required to be at a
leaf node, �. GPR belongs to a class of probabilistic statistical
models in which Gaussian processes are used to describe the un-
certainty about a latent function [14], both as prior for Bayesian
inference and as posterior distribution, obtained exploiting the
data of the available set to update the prior. The choice of the
prior’s covariance function enables to encode assumptions on
the smoothness and expected patterns of the latent function.
Unlike previous techniques, where the minimization of a mean
square error is performed, GPR maximizes a likelihood function
to fit the model on the available data. Appendix A provides a
more detailed description of these learning techniques as well as
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additional information on the hyperparameters setting for RFR
and the choice of the covariance function for GPR.

Fig. 2 shows an example of the estimates obtained with the
four techniques described: while the curves generated by CSS,
RFR, and GPR follow a common profile, the fitting with PD2
cannot go beyond the profile of a quadratic function. The RFR
estimate has a stepwise profile because the values produced by
the ℰ trees (i.e., the values that are averaged to obtain the final
estimate) vary discretely as wind speed changes.

F. Performance Assessment

Let s(w) be the noise spectral average at wind speed w,
computed by using all the noise spectra not included in the
available set (see the purple boxes and red lines in Fig. 1) and
assuming thatw is one of the speeds at which the noise spectra in
the data set were acquired. Let ŝ(w) be the corresponding noise
spectral prediction, obtained by one of the methods described
in Sections II-B–II-D. Both the average and prediction are row
vectors with p entries, which express the PSD (in linear scale)
at p frequency values. Finally, let sdB(w) and ŝdB(w) be the
versions of s(w) and ŝ(w), respectively, in which the PSD is
expressed in logarithmic scale, namely, in decibels.

To assess how close the prediction ŝ(w) is to the spectral
average s(w), three error metrics will be considered [17], [18]:
1) the mean absolute log-spectral distance (LDma); 2) the root-
mean-square log-spectral distance (LDrms); and 3) the Itakura–
Saito divergence (ISD). They can be computed as follows:

LDma (w) =
1

p

p∑
b=1

|̂sdB(w)b − sdB(w)b| (11)

LDrms (w) =

√
1

p

∑p

b=1
(̂sdB(w)b − sdB(w)b)

2 (12)

ISD (w) =
1

p

p∑
b=1

(
s(w)b
ŝ(w)b

− ln
s(w)q
ŝ(w)b

− 1

)
(13)

where the subscript b, b ∈ [1, p], indicates the bth entry of the
vector .

BothLDma andLDrms express average prediction errors in the
same units as the spectra they process, i.e., decibels. However,
while LDma is just the sample mean of the distance between
sdB(w) and ŝdB(w) along frequency, LDrms assigns a relatively
high weight to large errors and is more useful when large errors
(e.g., mismatches in spectral lines) are particularly undesirable.
ISD is a measure of the difference between the two spectra,
equal to zero if the two spectra coincide, intended to reflect
perceptual dissimilarity. In particular, ISD is known to provide
more emphasis on spectral peaks than spectral valleys.

Another possibility for assessing spectra similarity is Pear-
son’s correlation coefficient. Although it is scarcely considered
in the acoustic field [17], it has wide application in other fields,
such as biological spectrometry, chemical spectroscopy, and
hyperspectral remote sensing. Appendix B elaborates on this,
showing that the results obtained are aligned with those of the
three metrics introduced earlier.

III. DATA SET

The methods described in the previous section are tested using
the data set provided as supplementary material in [8], where
underwater noise near two identical turbines within the same
OWF (Sheringham Shoal, about 20 km off the Norfolk coast in
the U.K.) was collected for a period of 21 days, starting on April
18, 2013. The wind farm includes 88 Siemens SWT-3.6-107
turbines, supported by steel monopiles in a water depth of about
20 m, equipped with a three-bladed rotor that is controlled at
variable rotational rate. The cut-in wind speed is about 3 m/s,
the nominal power generation of 3.6 MW is reached at speed
of 13 m/s, and the cutoff speed is 25 m/s. According to [8],
the collection period allowed embracing of a full range of
operational conditions.

The acoustic measurements were performed using two DSG-
Ocean Acoustic Dataloggers, duly calibrated, deployed 50 m
away from turbines A1 and A5 of the mentioned OWF8 (see [8]
for details). The underwater sound pressure acquired by each
recorder was broken in 10-min periods, and Pangerc et al. [8]
computed the related PSDs by Welch’s method [19], adopting
1-s nonoverlapping segments and the Hanning window. For each
10-min period, a wind speed measurement, discretized in 1-m/s
steps, was acquired 80 m above the sea surface, separately for
the two turbines. The supplementary material of [8] contains all
computed PSDs, from 0 to 3508 Hz at 1-Hz step, expressed in dB
re 1µPa2/Hz, sorted by simultaneous wind speed, separately for
A1 and A5 turbines.

Pangerc et al. [8] noted that while most of the underwater
noise thought to be associated with turbine operation is below
500 Hz, the band below 40 Hz is dominated by tidal flow-induced
vibrations. Thus, in analogy to [8], this study is limited to
analyzing and predicting PSDs in the frequency band between
40 and 520 Hz, considering only noise acquired when the turbine
is rotating, i.e., for wind speeds between 3 and 24 m/s.

A. Introductory Analysis

The number of noise spectra in the data set as a function
of wind speed, for the two turbines, is reported in Table I.
The variability between spectra measured at a given wind
speed is one of the analyses performed in [8]. As an example,
Fig. 3(a)–(c) shows the noise PSDs recorded at turbine A5 for
wind speeds: equal to 5 m/s; equal to 13 m/s; and ranging from
16 to 24 m/s. The related spectral averages are also shown.

The comparison of Fig. 3(a) and (b) confirms what was
observed in [8]: the variability in PSDs measured at low speeds
is considerable, and the tonal components are weak or dispersed
over a band around 150 Hz; above 12 m/s, the variability
decreases and the tonal components increase and are quite
stable. In addition, it is shown in [8] that broadband acoustic
intensity increases with increasing wind speed, from 3 to 10 m/s,
while it remains almost stable at higher speeds. Based on these
and other observations, Pangerc et al. [8] concluded that wind
speed does not induce any important change in observed ambient

8The turbines are arranged on a grid whose nodes are roughly 1 km apart.
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TABLE I
NUMBER OF PSDS COLLECTED IN [8] FOR TURBINES A1 AND A5, AS A FUNCTION OF THE WIND SPEED, FROM 3 TO 24 m/s

Fig. 3. PSDs collected at turbine A5 (blue lines) at a given wind speed with the related spectral averages (red lines): (a) 5 m/s; (b) 13 m/s; and (c) from 16 to
24 m/s, included. (d) PSDs collected at turbine A1 (blue lines) for a wind speed of 13 m/s with the related spectral average (green line).

noise,9 and that the wind turbine does not contribute significantly
to broadband noise, generating mostly tonal components.

Based on all the above, to counter the decreasing number of
PSDs recorded for speeds greater than 15 m/s, in the rest of this
article, noise spectra recorded at wind speeds from 16 to 24 m/s

9It is worth mentioning in this regard that acoustic measurements are made
in very shallow water.

will be considered without distinction and will all be attributed
(conventionally) to the speed of 16 m/s. Fig. 3(c) confirms the
limited variability of the 242 PSDs recorded from 16 to 24 m/s,
similar to that observed in Fig. 3(b) for the 109 PSDs recorded
at 13 m/s.

A further observation concerns the similarity between the
PSDs recorded at turbine A1 and those recorded at turbine
A5. The comparison of Fig. 3(b) and (d) shows significant
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differences in the spectral lines, especially at 50, 100, and
350 Hz, confirming what was noticed in [8]: “differences are
evident in the tonal characteristics of each of the turbines.”
Although the overall noise levels are similar, the above differ-
ences prevent the assumption that nominally identical turbines
generate identical noise [8].

IV. RESULTS AND DISCUSSION

A. Spectral Similarity Between Turbines A1 and A5

To set reference values for the three performance metrics de-
fined in Section II-F, the first test is intended to measure the simi-
larity between the spectral averages of all noise spectra collected
at turbine A1, denoted sA1(w), and those of all spectra collected
at turbine A5, denoted sA5(w), w = 3, 4, . . . , 16 m/s.10 As an
example, the green line in Fig. 3(d) shows sA1(13), and the red
line in Fig. 3(b) shows sA5(13). The histograms in Fig. 4 show
the results obtained from (11)–(13), by using sA1(w) in place of
ŝ(w) and sA5(w) in place of s(w). For the example in Fig. 3(b)
and (d), the result isLDma(13)= 1.53 dB,LDrms(13)= 2.10 dB,
and ISD(13) = 0.19. Averaging the three performance measures
over the 14 wind speeds considered yields the following values:
LDma= 1.95 dB,LDrms= 2.51 dB, and ISD= 0.23. By reversing
prediction and spectral average (i.e., sA5(w) in place of ŝ(w) and
sA1(w) in place of s(w)), LDma and LDrms remain unchanged,
while the average of ISD becomes 0.17.11

B. Performance as a Function of the Number of Basis Spectra

To compare the performance of prediction methods, it is
necessary to set the numbers of basis spectra, q and r, used
in the PCA and NMF analyses, respectively. For this purpose,
the performance obtained as q and r varied was examined using
the A5 turbine data in case study C1. For each value assigned to
q and r, the prediction by PCA and NMF was repeated 100 times
(randomly extracting the spectra that compose the available
set), using CSS as the coefficient estimation technique. At each
repetition, the three performance metrics were computed, for w
from 3 to 16 m/s. At the end, the three metrics are averaged over
wind speeds and repetitions, resulting in one value for each.

The values of the three metrics as q and r vary are shown in
Fig. 5. While for PCA, LDma and LDrms depend weakly on q,
reaching the minimum for q between 3 and 5, for NMF, the two
metrics show a significant minimum for r = 20. The ISD metric
shows a less regular profile, but also in this case, small values
are preferable for q (in particular, 2 and 4) and values around 25
are preferable for r. In light of these observations, in the rest of
this article, the number of basis spectra in PCA will be q = 4
and that in NMF will be r = 20.

To have confirmation regarding this choice, the study was
repeated in case study C3, using data from turbine A1 to compose
the available set and those from turbine A5 to calculate the
spectral averages [see Fig. 1(c)]. The coefficient estimation was
performed by RFR. For PCA, the profiles of the three metrics

10As discussed earlier, w = 16 m/s is used for all noise spectra recorded at
speeds between 16 and 24 m/s, indistinctly.

11ISD, not being a distance but a divergence, is asymmetrical.

Fig. 4. Performance of predicting the spectral averages of noise measured at
turbine A5 by using the spectral averages at turbine A1. (a) Mean absolute log-
spectral distance; (b) root mean square log-spectral distance; (c) Itakura–Saito
divergence.
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Fig. 5. Average performance after 100 repetitions of case C1 with turbine A5
data, obtained by the PCA (blue dots) and NMF (golden dots), as a function
of q and r. (a) Mean absolute log-spectral distance. (b) Root-mean-square log-
spectral distance. (c) Itakura–Saito divergence.

TABLE II
PERFORMANCE OF PREDICTION METHODS AVERAGED OVER WIND SPEED;
CASE STUDY C1, TURBINE A1, AND COEFFICIENT ESTIMATION BY GPR

are very similar to those in Fig. 5, although the metric values are
higher. To set q = 4 is again a reasonable choice. For NMF, the
minima ofLDma andLDrms are for r= 12, while the minimum of
ISD is for r between 16 and 25. Since for r= 20, the increases of
LDma and LDrms from their minima do not exceed 10%, overall
r = 20 also proves to be a good choice for case study C3.

C. Comparison of Prediction Methods

The performance of the prediction methods described in
Section II-B–II-D were compared with reference to case studies
C1–C3. The combinations between the wind turbine (A1 or A5)
and the coefficient estimation technique (see Section II-E) were
changed from case to case, to avoid bias in the results and to
extend the validity of the observations drawn. In all combina-
tions, the prediction by AAI, PCA, and NMF was repeated 250
times (randomly extracting the spectra composing the available
set), and in each repetition, wind speedsw from 3 to 16 m/s were
considered. Some examples of the spectral predictions produced
by the three methods, compared with spectral averages, are
provided in Section IV-G.

For case study C1, wind turbine A1 and GPR estimation tech-
nique (setting the Matérn function with ν = 5/2 as covariance
kernel [14]) were selected. At each repetition, the available set
consisted of 70 noise spectra, i.e., five spectra for each wind
speed. Under these working conditions, AAI performed only
averaging and no interpolation. Fig. 6 shows the average and
std. dev. of the three metrics computed for each wind speed.
Table II summarizes the values obtained when the three metrics
are also averaged over wind speed.

For case study C2, wind turbine A5 and CSS estimation
technique were selected. At each repetition, the available set
consisted of 55 noise spectra, i.e., five spectra for each wind
speed except 5, 9, and 10 m/s (spectra collected at these speeds
are not present in the available set). Under these working con-
ditions, AAI performed both averaging and interpolation. Fig. 7
shows the average and std. dev. of the three metrics computed
for each wind speed. Table III summarizes the values obtained
when the three metrics are also averaged over wind speed.

For case study C3, wind turbine A1 was used to compute the
spectral predictions [i.e., turbineΦ in Fig. 1(c)], whereas turbine
A5 was used to compute the spectral averages [i.e., turbine Γ
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Fig. 6. Performance metrics as a function of wind speed and prediction method. Case study C1, turbine A1, and coefficient estimation by GPR were considered.
The panels show the average and std. dev. of LDma in (a) and (d), LDrms in (b) and (e), and ISD in (c) and (f). The legend is the same for all panels, even where
absent.

TABLE III
PERFORMANCE OF PREDICTION METHODS AVERAGED OVER WIND SPEED;
CASE STUDY C2 (AVAILABLE SET DEVOID OF SPECTRA AT THREE SPEEDS),

TURBINE A5, AND COEFFICIENT ESTIMATION BY CSS

in Fig. 1(c)]. The RFR technique was selected for coefficient
estimation, setting the main hyperparameters as follows: ℰ= 30
and � = 8. Fig. 8 shows the average and std. dev. of the three
metrics computed for each wind speed. Table IV summarizes the
values obtained when the three metrics are also averaged over
wind speed.

From the analysis of the results reported in this section, some
observations can be made.

TABLE IV
PERFORMANCE OF PREDICTION METHODS AVERAGED OVER WIND SPEED;

CASE STUDY C3 (AVAILABLE SET FROM TURBINE A1 AND SPECTRAL

AVERAGES FROM TURBINE A5) AND COEFFICIENT ESTIMATION BY RFR

1) For each prediction method, the oscillations of LDma and
LDrms as a function of wind are moderate, except for few
special cases (e.g., NMF at w = 16 m/s in case C1, and
NMF at w = 3 m/s in case C2). In contrast, the average of
ISD shows noticeable oscillations, especially for AAI in
case C1, PCA and NMF in case C2, and AAI and PCA in
case C3.

2) At certain wind speeds, the ISD average and std. dev., for
a given prediction method, are particularly high. This is
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Fig. 7. Performance metrics as a function of wind speed and prediction method. Case study C2 (no spectra at 5, 9, and 10 m/s in the available set), turbine A5,
and coefficient estimation by CSS were considered. The panels show the average and std. dev. of LDma in (a) and (d), LDrms in (b) and (e), and ISD in (c) and (f).

especially observable in cases C2 and C3, for PCA and
NMF, and means that within the 250 repetitions, there
were several predictions for which ISD was very high.

3) In case C2, LDma and LDrms metrics measured at the
three speeds missing from the available set (i.e., 5, 9, and
10 m/s) are in line with those measured at the other speeds.
This holds for both the average and the std. dev. In contrast,
ISD values are particularly high for NMF at w = 5 m/s
and for PCA at w = 10 m/s.

4) Moving from case C1 to case C2, Tables II and III show
that for PCA and NMF, the three metrics worsen (in both
average and std. dev.), while they improve for AAI. This
discordant behavior may be related to the fact that both
the turbine and coefficient estimation technique changed
in moving from C1 to C2.

5) Moving from case C1 to case C3, Tables II and IV show
that the averages of the three metrics worsen for all pre-
diction methods, while the std. dev. values are quite stable
(except ISD std. dev. for PCA).

6) The green boxes in Tables II–IV indicate, for each metric,
the prediction method that performs best in terms of both
average and std. dev. For LDma and LDrms, the best pre-
diction method is always PCA, with significantly better
values than those reported by AAI and NMF. Figs. 6–8
show that PCA average and std. dev. are the lowest at all
wind speeds, except for very few cases, where they are
still close to the best. The ISD metric, on the other hand,

is never favorable to PCA; it rewards NMF prediction in
cases C1 and C3, and AAI prediction in case C2. Finally, it
is observed that the NMF prediction performs better than
AAI in case C1, worse in case C2, and almost equivalent
in case C3.

D. Varying Number of Available Spectral Samples

In this study, the number of available spectra is generally
set equal to 5 for each wind speed. This section evaluates the
impact on the results of a random number of available spectra
by fixing a discrete random variable for each speed, ranging
from 1 to 9, with uniform density. Although the mean number
is always 5, in this way, the actual number of available spectra
fluctuates considerably depending on the speed and repetition
of the experiment.

Table V shows the results obtained in case study C1 with the
same turbine and estimation technique adopted in the previous
section (i.e., A1 and GPR), but with an available set consisting
of a number of spectral samples that varies from one repetition
of the experiment to the next (70 being the mean number).
Comparing Table V with Table II shows an increase in all metric
values, both averages and std. dev. However, for the averages
of LDma and LDrms, the increase is about 10% for AAI, 2%
for PCA, and 5% for NMF. Even for the std. dev., the smallest
increase is for PCA, which is less than 20%. Finally, the increase
in the average of ISD is about 78% for AAI, 17% for PCA, and
6% for NMF.
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Fig. 8. Performance metrics as a function of wind speed and prediction method. Case study C3 (available set from turbine A1 and spectral averages from turbine
A5) and coefficient estimation by RFR were considered. The panels show the average and std. dev. of LDma in (a) and (d), LDrms in (b) and (e), and ISD in (c) and
(f). The legend is the same for all panels, even where absent.

TABLE V
PERFORMANCE OF PREDICTION METHODS AVERAGED OVER WIND SPEED;
CASE STUDY C1 WITH RANDOM NUMBER OF SPECTRA COMPOSING THE

AVAILABLE SET AT EACH SPEED (RANGING FROM 1 TO 9), TURBINE A1 DATA,
AND COEFFICIENT ESTIMATION BY GPR

The imbalance in the available set, due to the variable number
of spectra among wind speeds, impacts the variances of the met-
rics more than their averages. On the other hand, the worsening
observed for the PCA-based method are very limited, especially
those affecting the average values of LDma and LDrms.

E. Comparison of Coefficient Estimation Techniques

In Section IV-C, the PCA-based prediction method is the
one that, with a few exceptions, performed better and with less

variance. This evaluation is further confirmed in the test
described in Section IV-D. This section compares the per-
formance that the fitting and regression techniques de-
scribed in Section II-E achieve in case studies C1–C3,
when used in combination with the PCA-based predic-
tion. For all the case studies, the assessment was repeated
250 times (randomly extracting the spectra that compose
the available set), and at each repetition, the performance
achieved by PD2, CSS, RFR, and GPR was registered. The
same parameters mentioned earlier were adopted: q = 4,
ℰ = 30, � = 8, and Matérn function with ν = 5/2. Different
settings of the RFR hyperparameters (i.e., ℰ and �) and the
GPR kernel are discussed in Sections C and D of Appendix A,
respectively.

For case study C1, data from wind turbine A1 and available
sets consisting of 70 noise spectra (i.e., five samples for each
wind speed) were used. For case C2, data from turbine A5
and available sets consisting of five spectra for each wind
speed except 4, 7, 12, and 15 m/s were used (50 samples in
total). For case C3, turbine A5 was used for computing the
spectral predictions, whereas turbine A1 was used to compute
the spectral averages.12

12To enrich the combinations tested, this choice is the opposite of what was
done for case C3 in Section IV-C.
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TABLE VI
PERFORMANCE OF ESTIMATION TECHNIQUES AVERAGED OVER WIND SPEED;

CASE STUDY C1, TURBINE A1, AND PCA-BASED PREDICTION

TABLE VII
PERFORMANCE OF ESTIMATION TECHNIQUES AVERAGED OVER WIND SPEED;

CASE STUDY C2 (AVAILABLE SET DEVOID OF SPECTRA AT FOUR SPEEDS),
TURBINE A5, AND PCA-BASED PREDICTION

TABLE VIII
PERFORMANCE OF ESTIMATION TECHNIQUES AVERAGED OVER WIND SPEED;

CASE STUDY C3 (AVAILABLE SET FROM TURBINE A5 AND SPECTRAL

AVERAGES FROM TURBINE A1) AND PCA-BASED PREDICTION

Tables VI–VIII report the average and std. dev. of the three
metrics for cases C1–C3, respectively, following additional av-
eraging over wind speed. The values of the three metrics for each
wind speed are particularly significant in case C2 (where four
speeds are not represented in the available set) and are shown
in Fig. 9.

From the analysis of the results reported in this section, some
observations can be made.

1) In case study C1, the four coefficient estimation techniques
provide nearly equivalent LDma and LDrms metrics, both
in terms of average and std. dev. In cases C2 and C3, this
holds for CSS, RFR, and GPR, while the performance of
PD2 is worse.

2) In the three case studies considered, the ISD metric always
identifies the best and worst technique, in terms of both
average and std. dev. The best is GPR; the worst is CSS.

3) In case study C2, LDma and LDrms metrics shown in Fig. 9
confirm the similarity between the performance of CSS,
RFR, and GPR. At some wind speeds, the average PD2
is significantly worse. At some speeds, the ISD metrics
are considerably worse than at other speeds. This is espe-
cially true for PD2 and CSS, to a lesser extent for RFR.
Performance at speeds that are not present in the available
set is in line with those next to them. The only exception
is 12 m/s, at which all coefficient estimation techniques
show an increase in both LDma and LDrms.

4) The PCA columns in Tables II–IV can be compared with
GPR, CSS, and RFR columns in Tables VI–VIII, respec-
tively. Although in case C2, the speeds that are not present
in the available set change, and for case C3, the turbines
used for predicting and spectral averaging are reversed;
the performance obtained is very close. An exception to
this is the ISD metric, which shows some fluctuations,
especially in the std. dev. values.

F. Cross-Prediction Performance

Section IV-A reported the performance obtained when, at
each wind speed, the average of all noise spectra collected at
a given turbine is used to predict the spectral average at the
other turbine. Table IX summarizes these results and compares
them with those obtained using only five noise spectra collected
at a given turbine to predict, through PCA and GPR, the spectral
average at the other turbine (i.e., case study C3). In the latter
case, 250 repetitions are used to compute average and std. dev.
of the metrics.

It can be observed that moving from prediction that exploits
all spectra to prediction that uses only five spectra for each wind
speed (and leverages PCA and GPR), performance deteriorates,
but this occurs to a limited extent. LDma worsens on average
by 0.40 dB, whereas LDrms worsens on average by 0.61 dB.
ISD values do not exceed 0.44 on average, but their variance is
considerable.

G. Examples of Noise Spectral Prediction

This section shows some examples of prediction obtained by
the methods considered. The purpose is to give a visual im-
pression of the difference between possible outcomes and their
respective performance metrics. Since these examples constitute
individual realizations of random processes, it is not possible to
ascribe general or statistical meaning to them.

The spectral average of turbine A5 at wind speed of 13 m/s,
already shown by the red line in Fig. 3(b), is chosen as the pre-
diction target. In Section IV-A, an attempt was made to predict
such a spectral average by averaging all noise spectra recorded at
turbine A1 at the same wind speed. The result was shown by the
green line in Fig. 3(d), and the performance metrics are copied in
Table X, for comparison. Figs. 10–12 show the prediction target
(brown lines) and a realization of the predictions (blue lines)
obtained by the methods considered: AAI, PCA, and NMF. In the
last two cases, coefficient estimation was performed by the GPR
technique. Fig. 10 is about case study C1. Fig. 11 is about case
study C2, in which the available set is lacking spectra collected at
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Fig. 9. Performance metrics as a function of wind speed and coefficient estimation technique. Case study C2 (no spectra at 4, 7, 12, and 15 m/s in the available
set), turbine A5, and PCA-based prediction are considered. The panels show the average and std. dev. of LDma in (a) and (d), LDrms in (b) and (e), and ISD in (c)
and (f). In (f), ISD std. dev. at 15 m/s for the CSS technique is equal to 10.67.

TABLE IX
PERFORMANCE IN PREDICTING THE SPECTRAL AVERAGES OF A GIVEN TURBINE BY AVERAGING ALL THE SPECTRA OF THE OTHER TURBINE OR USING ONLY FIVE

SPECTRA OF IT (PROCESSED BY PCA AND GPR)

TABLE X
PREDICTION OF THE SPECTRAL AVERAGE AT w = 13 m/s FOR TURBINE A5; PERFORMANCE OF A SINGLE EXAMPLE IN CASE STUDIES C1, C2 (SPEEDS NOT

INCLUDED IN THE AVAILABLE SET: 4, 8, 10, AND 13 m/s), AND C3
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Fig. 10. Prediction of the spectral average at 13 m/s for turbine A5 (brown
line) in case study C1. Example of result (blue line) obtained by (a) AAI, (b)
PCA and GPR, and (c) NMF and GPR.

Fig. 11. Prediction of the spectral average at 13 m/s for turbine A5 (brown
line) in case study C2, not including the speeds 4, 8, 10, and 13 m/s in the
available set. Example of result (blue line) obtained by (a) AAI, (b) PCA and
GPR, and (c) NMF and GPR.
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Fig. 12. Prediction of the spectral average at 13 m/s for turbine A5 (brown
line) in case study C3. Example of result (blue line) obtained by (a) AAI, (b)
PCA and GPR, and (c) NMF and GPR.

four speeds, including that of the prediction target (i.e., 13 m/s).
Finally, Fig. 12 is about case C3. For each prediction example,
performance metrics are calculated and collected in Table X.

For case C1, Table X shows that PCA prediction has better
metrics than AAI and NMF predictions. Comparison of the
spectra in Fig. 10 shows that, on the one hand, PCA prediction
reproduces broadband noise more accurately than AAI and
NMF; on the other hand, it reproduces the target spectral lines
more precisely, introducing fewer spurious lines than the other
prediction methods. However, in a small band around 150 Hz,
PCA prediction shows significant oscillations, with narrow and
deep local minima. Moving from case C1 to case C2, all metrics
worsen, but the advantages of PCA prediction described for
case C1 are found, amplified, for case C2 as well (see Fig. 11).
However, the ISD value for PCA prediction is now the worst
of the three. This is probably due to the two local very deep
minima at about 50 and 150 Hz [see Fig. 11(b)]. Finally, the use
of five noise spectra collected at turbine A1, for case C3, leads
to a deterioration in the reproduction of the target spectral lines
(see Fig. 12, especially the lines at about 50 and 350 Hz), which
in turn worsens the metrics. Nevertheless, the advantage of PCA
prediction is clearly visible and confirmed by the metric values.
Table X shows that the result obtained by PCA for case C3, using
only five spectra collected at turbine A1, is only slightly worse
than that obtained by averaging all spectra recorded at 13 m/s
(i.e., 108 spectra, according to Table I).

V. CONCLUSION

Underwater acoustic noise recorded near a wind turbine in
very shallow water depends on wind speed: as the speed varies,
the spectral lines generated by the turbine vary in frequency and
amplitude. The first question that this study sought to answer is
how to approximate the spectral average of the underwater noise,
at a given wind speed, having only a few noise samples (each
sample consisting of the PSD obtained over a 10-min recording
interval) collected at that speed. A problem variation is to have
no samples collected at that speed, having only a few samples
collected at higher and lower speeds.

This study demonstrated that, in both the cases, it is possible
to obtain better performance than that provided by AAI opera-
tions, particularly by performing PCA of the available samples,
followed by a coefficient estimation step performed by a fitting
or regression technique. In contrast, the analysis by NMF did not
produce performance improvements that were general enough.
The fitting and regression techniques tested did not show sig-
nificant differences in performance, although regression based
on supervised learning was slightly advantageous compared to
curve fitting. In particular, GPR was found to be the most suitable
estimation technique to be combined with PCA.

It should be noted that these conclusions are based on the
analysis of the two data sets provided in [8], each related to a
given turbine and composed of 76–270 underwater noise PSDs
for each wind speed between 3 and 16 m/s, in steps of 1 m/s.
Focusing on a specific turbine, by adopting PCA with GPR
and having five PSDs available for each wind speed, the noise
spectral average is predicted with an LDma of about 1.4 ±
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0.4 dB, whereas if there are no PSDs available at four wind
speeds, LDma rises to about 1.7 ± 0.5 dB. The aim of this study
was to find a prediction pipeline robust enough to produce good
results in all the case studies tested, not to optimally set the
parameters involved. It cannot be excluded that a more accurate
algorithm selection and parameter setting could further improve
performance.

In [8], it was observed that the spectral averages of the noise
recorded at two nominally identical turbines of the same OWF
show considerable differences. This is confirmed by LDma mea-
sured in this study, equal to 1.95 dB. Consequently, the second
question this study sought to answer is how to approximate
the spectral average of the noise recorded at a given turbine,
having only a few noise samples recorded at another (nominally
identical) turbine, at the same wind speed. Again, prediction
based on PCA performed better than prediction based on mean
and interpolation or NMF. The use of PCA with GPR and only
five spectra for each wind speed allows one to approach the
results obtained by averaging hundreds of spectra: LDma is about
2.35 ± 0.35 dB.

The considerable difference between the noises observed at
the two turbines leads to a further conclusion: it is advantageous
to predict the noise spectral average at a given turbine by using
a few spectra (namely, five PSDs for each wind speed) recorded
at the turbine itself (LDma = 1.4 ± 0.4 dB) rather than hundreds
of spectra recorded at another turbine (LDma = 1.95 dB). This
conclusion is strictly related to the data sets considered: future
investigations using other data sets are necessary to establish its
generality.

APPENDIX A

In the problem at hand, a regression model should be trained
for each coefficient to be estimated, generally indicated by y.
The model is a function f , ŷ = f(w), that assigns the coefficient
value ŷ at the wind speed w. The independent variable is just
one: w. The training set is composed of the n values of the
coefficient y, for each wind speed wj , j ∈ [1,m], obtained from
the analysis of the available set (an example is shown in Fig. 2).
The training set is composed of N = mn samples, each of them
is a couple (wj , y). A test sample used in the prediction phase is
simply an arbitrary value of w at which the coefficient value ŷ
should be estimated. Therefore, the number of features is limited
to one: the wind speed w.

A. Random Forest Regression

Random forest [11], [20] is a tree-based ensemble method,
which combines bagging and random attribute subset selec-
tion, adopting classification and regression trees (CARTs) as
weak learners. According to the bagging philosophy, each weak
learner is trained using a randomly sampled subset of the whole
training set. In general, partitioning at each node is performed by
considering only a random subset of the features: however, this
has no impact in this specific case, since the number of features
is limited to one.

Concerning the weak learner, each CART is an acyclic con-
nected graph, where each node represents a decision rule (called

split) that is related to a single feature and that leads to parti-
tioning the data in two groups. During the training phase, each
tree is automatically grown by iteratively identifying the feature
that yields the best split in terms of a preselected metric (e.g.,
the Gini index for classification and the mean squared error
for regression) [11], [20]. At the root node, the samples of the
training subset are split for the first time. Then, the resulting
two groups are forwarded down the tree. Each subsequent node
performs further splitting of those training samples that come
from the father node. Such a process is ended when the group
of samples assigned to a node satisfies a termination condition
(in the problem at hand, a split node is considered if it leaves
at least � training samples in each of the child nodes). During
the prediction based on a new sample (i.e., the test phase), the
sample traverses the tree by following the rules learned during
the training phase. Once it reaches the terminal node (called
leaf), the output is computed based on the statistics of the set
of training samples assigned to that leaf. In case of regression,
the output ŷ corresponds to the average of the y values of such
samples.

Let ℰ denote the number of trees in the ensemble, and let 𝒯ε,
ε � [1, ℰ], identify the εth tree. The RFR training procedure for
the problem at hand can be summarized according to the scheme
in Table XI.

Concerning the prediction phase, each new sample w is pro-
cessed by each one of the ℰ trees composing the forest. For
each one of such trees, a prediction ŷε is obtained, as detailed
earlier. The final prediction is then obtained by averaging the ℰ
predictions in the forest.

The results reported in this article were obtained with
ℰ = 30 and � = 8. Section C of this appendix discusses the issues
involved in optimizing these hyperparameters.

B. Gaussian Process Regression

GPR [14], [21] assumes that a stochastic function f maps the
input ψ to the output y according to the relation y = f(ψ) + δ,
where δ is a noise term, with a normal distribution 𝒩(0, σ2

δ ),
which models the intrinsic randomness in the observations.
In GPR, the function f(ψ) is assumed to be distributed as a
Gaussian process 𝒢𝒫(m(ψ), k(ψ,ψ′)). While a multivariate
Gaussian distribution is specified by its mean and covariance,
which are a vector and a matrix, respectively, a Gaussian process
is specified by its mean function,m(ψ), and covariance function,
k(ψ,ψ′). Therefore, the functionf is a Gaussian process, which,
in turn, is a distribution over functions [14]. The covariance
function measures the joint variability of the function values at
different inputs, ψ and ψ′, and is commonly called the kernel
of the Gaussian process. The choice of kernel allows reasonable
assumptions to be made about the smoothness and recurrent
patterns expected in the data.

In general, let Ψ be a matrix in which each row is an inputψ,
let y be the column vector of the corresponding outputs, and let
f∗ be a vector of samples values of the function f at inputs
Ψ∗. When a set 𝒮t = {Ψt,yt} of observations is available,
the prior knowledge about the stochastic function f can be
updated in light of the training data. As shown in [21], setting
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TABLE XI
RFR TRAINING PROCEDURE FOR THE PROBLEM AT HAND

TABLE XII
RFR PERFORMANCE VARIATION WITH ℰ AND �; CASE STUDY C1, TURBINE

A1, AND PCA-BASED PREDICTION, AS IN TABLE VI

TABLE XIII
RFR PERFORMANCE VARIATION WITH ℰ AND �; CASE STUDY C2, TURBINE

A5, AND PCA-BASED PREDICTION, AS IN TABLE VII

the prior mean function m(ψ) equal to zero, the conditional
distribution of f∗ given the training set𝒮t is a multivariate normal
distribution to which corresponds the posterior Gaussian process
𝒢𝒫(mt(ψ), kt(ψ,ψ

′)), in which

mt (ψ) = K (ψ,Ψt)
[
K (Ψt,Ψt) + σ2

δI
]−1

yt (14)

kt (ψ,ψ′) = k (ψ,ψ′)−K (ψ,Ψt)

× [K (Ψt,Ψt) + σ2
δI
]−1

K(ψ,Ψt)
T (15)

where K(ψ,Ψt) is the row vector of the covariances between
every training input andψ, K(Ψt,Ψt) is the covariance matrix
between all the training inputs, and I is the identity matrix. Both

TABLE XIV
GPR PERFORMANCE VARIATION WITH THE KERNEL FUNCTION; CASE STUDY

C1, TURBINE A1, AND PCA-BASED PREDICTION, AS IN TABLE VI

K(ψ,Ψt) and K(Ψt,Ψt) are built using the kernel function
k(ψ,ψ′) [21]. Finally, to predict the output corresponding to a
new input sampleψ, the mean function of the posterior Gaussian
process, mt(ψ), can be used. In the problem at hand, the input
ψ is simply the wind speed w, and the output ŷ is the value of
the coefficient to be estimated.

Any positive-definite function can be used as kernel function:
this flexibility is one of the benefits of GPR, allowing to reflect
prior assumptions about the latent function [14]. The radial basis
function (called also squared exponential), defined as

k (ψ,ψ′) = σ2
f exp

(
−‖ψ −ψ′‖2

2λ2

)
= σ2

f exp

(
− τ2

2λ2

)
(16)

is a very popular choice to model very smooth and stationary
functions. The signal variance σ2

f and the length scale λ can
be tuned to govern the a priori correlation between points at an
Euclidean distance τ = ‖ψ −ψ′‖. On the opposite side, the
absolute exponential kernel

k (ψ,ψ′) = σ2
f exp

(
−τ

λ

)
(17)

is adopted to model extremely unsmooth functions. A clear
example of the difference between posterior Gaussian processes
adopting these two kernels is given in [21]. The Matérn class of
covariance functions (see [14] for the general definition) has an
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TABLE XV
PERFORMANCE OF PREDICTION METHODS REPORTED IN TABLES II AND III FOR CASE STUDIES C1 AND C2, WITH THE ADDITION OF

THE PCC VALUE (AVERAGE ± STD. DEV.)

additional parameter ν, which governs the smoothness of the
resulting function. For ν = 1/2, the Matérn covariance becomes
identical to the absolute exponential kernel, whereas as ν → ∞,
it converges to the radial basis kernel. The functions obtained
with ν = 3/2 and ν = 5/2 are commonly adopted as useful
compromises between the two extremes.

The values for the hyperparameters used in the GPR model
(e.g., λ, σ2

f , σ2
δ ) can be inferred from the training set data,

maximizing the probability of the observed outputs, given the
related inputs and the hyperparameters. This means to maxi-
mize the marginal log-likelihood function [14], [21], a problem
commonly solved through a gradient-ascent based optimization
scheme.

In this article, the Matérn kernel with ν = 5/2 [14]

k (ψ,ψ′) = σ2
f

(
1 +

√
5τ

λ
+

5τ2

3λ2

)
exp

(
−
√
5τ

λ

)
(18)

was used, because it provided results that were slightly better
than those obtained with the other kernels mentioned. This point
is discussed in Section D of this appendix.

C. RFR Hyperparameters

The RFR results reported in this article were obtained with
ℰ = 30 and � = 8, values that yielded good performance (rel-
ative to the results of the other techniques tested) in all three
case studies. This does not mean that they are the best values
for each case. For example, if the test for case study C1, the
results of which are shown in Table VI, is repeated by using the
15 combinations obtained when ℰ takes value in {10, 30, 50}
and � in {4, 8, 12, 16, 20}, the best performance is obtained
with ℰ = 30 and � = 16. Table XII shows the improvement in
performance, which is now almost identical to that obtained with
GPR (see Table VI). However, if the values ℰ = 30 and � = 16
are used instead of ℰ = 30 and � = 8 in the test for case study
C2, the results of which are shown in Table VII, the results,
instead of improving, slightly worsen (except ISD), as shown
in Table XIII. This demonstrates that the values of the RFR
hyperparameters that provide the best performance are different
for different applications.

While GPR inherently optimizes hyperparameters during the
training phase, by maximizing a likelihood function (see Section
B of this appendix), a refined use of RFR would require adding

specific hyperparameter optimization strategies, using the data
available in the training phase.

D. GPR Kernels

The GPR results reported in this article were obtained using
the class of Matérn kernels, with ν = 5/2. Adopting the other
kernels mentioned in Section A of this appendix, more or less
smooth than the one used here, does not significantly change the
results. For example, if the test for case study C1, the results of
which are shown in Table VI, is repeated by adopting the squared
exponential and absolute exponential kernels, the results worsen
to a negligible extent. Table XIV reports the related values. This
stability of the result with respect to the change of the kernel
function is another strength of the GPR technique.

APPENDIX B

The Pearson correlation coefficient (PCC) is defined as the
ratio between the covariance of two random variables and the
product of their std. dev. It represents a normalized covariance
measurement that, by construction, ranges in [–1, 1]. In statistics,
it is used to measure the linear correlation between two sets of
data: assuming a given spectrum at p frequency values to be a
set of observations of a random variable, the similarity between
the spectra s(w) and ŝ(w) can be assessed by their coefficient
of correlation

PCC (w)

=
p
∑p

b=1 sbŝb −
∑p

b=1 sb
∑p

b=1 ŝb√[
p
∑p

b=1 s
2
b − (

∑p
b=1 sb)

2
] [

p
∑p

b=1 ŝ
2
b − (

∑p
b=1 ŝb)

2
]

(19)

where the subscript b, b ∈ [1, p], indicates the bth entry of the two
vectors and the spectra wind dependence has been neglected for
brevity. This similarity measurement (the closer PCC is to 1, the
greater the similarity between the two spectra) is widely adopted
in spectrometry, Raman spectroscopy, and multispectral remote
sensing [22], [23], [24], [25].

In this appendix, PCC is compared to the three matching met-
rics introduced in Section II-F by repeating the tests described
in Section IV-C, the results of which were reported in Tables II
and III. Table XV adds the PCC values to the values of the three
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metrics used in this article. It is easily seen that PCC is always
aligned with LDma and LDrms, leading to the same ranking of
the compared prediction methods. PCC is only partially aligned
with ISD, as are, on the other hand, LDma and LDrms. Finally,
according to PCC, performance worsens for PCA and NMF
going from C1 to C2, while it improves for AAI. The same
judgment is provided by each of the three metrics used in this
article.

Since PCC does not seem to add significant information, only
the three metrics that are most commonly adopted in assessing
the similarity between acoustic spectra were used in this article.
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