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Underwater Object Detection Under Domain Shift
Joseph L. Walker , Zheng Zeng , Chengchen L. Wu, Jules S. Jaffe , Kaitlin E. Frasier, and Stuart S. Sandin

Abstract—There is increasing interest in using deep learning–
based object recognition algorithms to automate the labeling of
image data collected from marine surveys. However, underwa-
ter object detection is a particularly challenging problem due to
changes in scattering and absorption of light, and spotty data
collection efforts, which rarely capture the broad variability. Us-
ing deep learning–based object detection systems for long-term
or multisite marine surveying is further complicated by shifting
data distributions between training and testing stages. Using data
from the 100 Island Challenge, we investigate how object detection
performance is impacted by changes in site characteristics and
imaging conditions. We demonstrate that the combined use of data
augmentation and unsupervised domain adaptation techniques can
mitigate performance drops in the presence of domain shift. The
proposed methodologies are broadly applicable to observational
data sets in marine and terrestrial environments where a single al-
gorithm needs to adapt to and perform comparably across changing
conditions.

Index Terms—Aquatic ecosystems, digital images, image
processing, unsupervised learning.

I. INTRODUCTION

O PTICAL imaging has remained an indispensable tool in
oceanographic studies, as it offers detailed descriptions

that are easily interpreted by humans. As a result, a myriad of
systems have been developed for acquiring optical images in
almost every oceanographic context. Autonomous underwater
vehicles and unmanned underwater vehicles equipped with op-
tical cameras have been used for the exploration and mapping
of the seafloor [1], [2], monitoring invasive species [3], and
fisheries management [4]. Imaging systems for in situ studies
of plankton and other marine particles have also been developed
[5], [6], [7], [8]. The rising popularity of these tools has led to an
explosion in underwater optical data collection [9]. This increase
in data has driven the need to develop object detection systems
that can automate the analysis of underwater digital imagery.
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Object detection is a computer vision task concerned with
locating and classifying objects in images or videos. The most
significant advancements in object detection can be attributed to
the use of deep convolutional neural networks. Currently, one of
the most popular architectures for object detection is the faster
region-based convolutional network (Faster R-CNN) [10]. The
Faster R-CNN consists of three modules.

1) A feature extractor convolutional neural network to extract
features from the entire image.

2) A region proposal network, which is trained end-to-end
with the rest of the detection network to propose regions
of interest in the feature map produced by 1).

3) Two fully connected networks for classification and
bounding box regression.

Underwater object detection is a particularly challenging
problem as images are typically of lower quality compared to
out-of-water images due to light scattering and absorption. The
lack of precise control over the relative imaging depth and orien-
tation of objects in underwater environments can produce high
variability in their features. Despite these challenges, numerous
applications of underwater object detection exist, ranging from
the estimation of plankton and fish population densities [11],
biodiversity monitoring of coral reefs [12], unexploded ord-
nance detection [13], and detection of other man-made objects
[14], [15].

A fundamental challenge in incorporating deep learning tech-
nology in oceanography (and most other real-world applica-
tions) arises from the fact that models tend to overfit the training
data distribution. Differences in the training and testing data set
distributions, referred to as data set shifts, have been shown to
contribute to diminished model performance [16], [17], [18].
Changes in the sampling location or methodology can produce
data set shifts by altering image appearance (shifts in illumi-
nation, color, noise, etc.), background features, or statistical
differences in object class features (e.g., new phenotypes or
morphologies of species of interest). The specific term used to
describe the statistical changes in input features is known as
domain shift [18]. Another type of data set shift is prior proba-
bility shift, characterized by differences in the prior probabilities
of predicted variables between the training and testing phases
[19], [20], [21], [22].

For applications of deep learning in oceanography, model
deployment is almost always limited to the same study site
and data collection protocol as the training data. However,
oceanographic data are most often collected in multiple locations
with varying environmental conditions, making the application
of a model built in a single context insufficient to achieve high
performance across use cases. One solution for producing a more
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generalizable model is to annotate data from all environments
in which the model is deployed. However, data annotation is
extremely costly and serves as the primary bottleneck in incor-
porating deep learning in long-term or multisite studies. It is
therefore desirable to develop adaptive deep learning models
that can scale to many study sites even when annotated data are
limited to a single site.

Data augmentation (DA) is often used to artificially increase
the volume of available training data [23]. This process involves
defining a set of augmentation functions that alter the appearance
of the training data while preserving the class label, effectively
synthesizing new data examples from existing data. Commonly
used augmentation functions include image flipping, cropping,
translation, and noise addition. These augmentations are often
treated as universal, as they are used across a range of image
recognition applications. In some cases, it may be possible to
design specialized augmentation functions that address known
sources of variability to improve model generalizability. For
example, if future data are expected to be collected using an
imaging system with higher illumination intensity, then illu-
mination synthesis could be used to simulate the difference
between collected and future data. However, this approach may
require a priori knowledge of the variability and well-defined
augmentation functions that accurately model the variability.

The problem of domain shift has received a significant amount
of attention in recent years primarily for the development of
autonomous driving. In this context, collecting and annotating
data from enough environments, weather conditions, and sensor
configurations to ensure that future data are not outside the
training distribution may be prohibitively costly or impossible.
In practice, it may only be possible to collect labeled data from
a single source domain; however, acquiring unlabeled data from
the testing, i.e., target, domain may be more attainable. In such
circumstances, it has been shown that leveraging both labeled
data from a source domain and unlabeled data from a target
domain can help achieve better performance on data from the
target domain [24], [25], [26], [27]. This technique is referred
to as unsupervised domain adaptation (UDA).

Prior works in underwater object recognition under domain
shift have largely focused on using domain generalization tech-
niques [28], [29], [30]. Unlike UDA, domain generalization
methods aim to build models that can generalize well across mul-
tiple target domains without accessing unlabeled target domain
data during training [31]. Domain generalization techniques are
particularly beneficial in object detection applications where the
data arrive continuously and need to be processed in real time.
However, in cases where the real-time annotation is not required
and unlabeled target data are available during training, UDA
has been shown to outperform domain generalization [32], [33].
We describe three commonly used classes of UDA methods in
Section I-A–C.

A. Adversarial Feature Learning

First introduced in the context of image classification, ad-
versarial feature learning (AFL) involves the use of a domain
classifier to adversarially train the model to learn domain invari-
ant features [25]. Source images are assigned one domain label,

whereas target images are assigned another. The domain classi-
fier’s objective is to categorize images based on their respective
domains. During backpropagation, the weights of the domain
classifier are updated and then the gradients are pushed through
a gradient reversal layer before being applied to the weights of
the convolutional layers. This results in the learning of features
that fool the domain classifier that are domain-independent.

B. Image-to-Image Translation

Another more intuitive approach to adaptation is to match
the appearance of the source domain images to that of the
target domain (or vice versa). Image-to-image translation re-
duces the domain discrepancy in the pixel domain, which has
the advantage of utilizing human visual inspection for qual-
ity assessment. Many contemporary image-to-image translation
techniques borrow directly from or use ideas similar to the
CycleGAN model [34].

C. Pseudolabeling

Pseudolabeling (PL) leverages the model’s own predictions
on unlabeled target data to create pseudolabels, essentially
“teaching” itself by treating its own outputs as ground truth.
This process generally follows a three-step process.

1) The model is trained on labeled source data, establishing
a foundation for the task.

2) The model uses this knowledge to predict labels for the
unlabeled target data, creating initial guesses for the target
domain.

3) To refine these guesses, the model retrains, incorporating
both source data and unlabeled target data with its own
pseudolabels added as additional examples.

This iterative process improves the quality of pseudolabels
and boosts the model’s performance on the target domain.

D. Contributions

The goal of this study is to train a Faster R-CNN model
using labeled data from one source environment that can scale to
many target environments. To do this, we use a combination of
DA and UDA techniques to minimize domain shifts between
environments. Our primary contributions are summarized as
follows.

1) We present a new underwater object detection data set for
domain adaptation experimentation.

2) We present a framework for developing robust underwater
object detectors that are more resilient to data set shifts.

3) For our task, we show that existing UDA techniques can
be improved by incorporating DA.

4) In the case of limited training data (as in our case),
we show that the HM-multivariate Gaussian distribution
(MVGD)-HM [34] image-translation algorithm can pro-
duce better image-to-image translation results than more
sophisticated methods such as CycleGAN.

5) Our data set and code are publicly available and will be
used to augment data collection for the 100 Island Chal-
lenge (100IC) project (described in Section II-A) and other
projects requiring robust underwater object detection.
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Fig. 1. Sampling locations, dates, and methodology. (a) Data were collected from two regions (red boxes) in the Tropical Pacific Ocean. (b) Study sites from the
Tuamotu Archipelago region, which include the islands Takapoto (TAK), Rangiroa (RAN), and Huahine (HUA). The sampling date for each study site is reported
as MM/YYYY. (c) Study sites from the Palmyra Atoll, which include sites in the southern (PS), southwest (PSW), and northwest (PNW) parts of the island.
(d) For each study site, a survey plot (100 or 200 m2) is defined and imaged by divers in a grid pattern. (e) Photograph of the SUIT.

II. MATERIAL AND METHODS

A. Data Set

The 100IC is an ongoing collaborative effort based at Scripps
Institution of Oceanography, University of California San Diego,
San Diego, CA, USA, to digitally archive and monitor coral
reefs across the globe. Using tools of large-area imaging, high-
resolution images have been collected and collated to form
comprehensive digital mosaics and 3-D reconstructions from
multiple coral reef sites at each of over 100 islands across the
globe. These detailed maps enable the study of benthic dynamics
at an unprecedented spatial scale. The 100IC has incorporated
the use of smart underwater imaging telemeters (SUITs) to
facilitate in situ environmental data collection to complement
visual surveys of coral reefs [36]. The 100IC has produced a
unique data set of this standardized object (the SUIT) that has
been imaged across multiple study sites and imaging conditions.
This data set, consisting of a single annotated class, is therefore
particularly well suited for the study of binary underwater object
detection under domain shift.

In this study, we consider the subset of 100IC image data that
were collected from two regions in the Tropical Pacific Ocean.
The data come from the islands Huahine (HUA), Takapoto
(TAK), and Rangiroa (RAN) in the Tuamotu Archipelago region
as well as three sites around the Palmyra Atoll, which include
sites in the southern (PS), southwest (PSW), and northwest

(PNW) parts of the island. The location and sampling date of
these sites and an illustration of the data collection procedure
and SUIT are shown in Fig. 1. Example images from each of
the six sites are shown in Fig. 2. Table I presents the count
of images collected and bounding box annotations per study
site, along with statistics describing the distribution of bounding
box sizes. In the following sections, we identify two types of
variability across the images which make detection of the SUITs
challenging.

B. Variability in Low-Level Features

In the context of image processing, low-level visual infor-
mation may include brightness, texture, color distribution, and
noise. In the 100IC imagery, these features can change accord-
ing to various physical phenomena that influence the image
formation process. Due to the large spatiotemporal range of
the sampling, it is likely that the inherent optical properties of
the seawater are inconsistent across sampling periods. This can
lead to different degrees of color distortion and contrast loss.
The ambient light field is also subject to change according to
weather conditions leading to inconsistent scene illumination.
Caustic patterns on the seafloor, especially visible in Fig. 2(d),
can create bright white regions that are similar to the white
pixels of the SUIT display. Finally, some images have been
color-corrected, whereas others have not. In cases where color
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Fig. 2. Example images collected from the six study sites. The bounding boxes containing the SUITs are shown in orange.

TABLE I
DATA SET STATISTICS FOR EACH STUDY SITE

TABLE II
IMAGE FEATURE SIMILARITY BETWEEN STUDY SITES

TABLE III
SUIT SIZE SIMILARITY BETWEEN STUDY SITES

correction is applied, broad assumptions (such as constant scene
depth) are made. Therefore, there is high variability among
the color-corrected images including noticeable depth-related
artifacts.

We provide a quantitative measure for low-level feature sim-
ilarity between the environments by comparing the image fea-
tures extracted from a VGG16 [37] encoder. For each of the eight
study sites, a centroid is calculated by averaging the extracted
image features. The pairwise distances between the centroids
are used to calculate the similarity between the study sites using
a cosine similarity measure. The pairwise similarity values are
reported in Table II.

C. Variability in SUIT Scale

Another source of variability is created by changes in struc-
tural features associated with the SUITs themselves, caused by
changes in scale and orientation. The data used in this study
were collected using a Nikon D780 or Nikon D7000 camera
used in combination with a 24 mm and 18 mm wide-angle lens,
respectively. This affects the apparent size of the SUITs in the
images. Variability in the distance between the camera and the
seafloor can make the SUITs appear to be differently sized.
Topography is also highly variable across the environments. In
environments with highly textured benthic surfaces, the SUITs
are more likely to be imaged at an angle. For each of the eight
sampling locations, we calculate the average bounding box size
and compute the magnitude of the pairwise differences between
each of the averages. We divide these differences by the largest
difference to scale the values to be between 0 and 1 and then
subtract each of the values from 1 to calculate the similarity. All
pairwise similarity scores are reported in Table III.
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TABLE IV
LEAVE-ONE-IN CROSS-VALIDATION RESULTS

1) Progressive Domain Adaptation: We use UDA tech-
niques to mitigate performance drops caused by image feature
differences. Specifically, we compare two different approaches
that follow the progressive domain adaptation (PDA) method
proposed by Hsu et al. [27]. The authors proposed PDA as a
method for gradually aligning the features of a model using a
multistage feature alignment approach. First, a synthetic image
data set is generated by mapping the source images to the target
domain using a CycleGAN. In the first stage, the features of
the source and synthetic domains are aligned using AFL. In the
second stage, the features of the synthetic and target domains
are aligned using AFL.

The original PDA method uses a CycleGAN to produce the
synthetic data set [27]. However, CycleGANs typically require
large amounts of training data to produce quality image map-
pings. For the experiments in [27], Hsu et al. used between
3475–41 986 images to train the CycleGAN models. This
amount of data is often not available for many oceanographic
applications where data collection and annotation is difficult.
For this study, only 81–835 instances of the SUIT were collected
from each study site. In our initial CycleGAN experiments, we
observed that nearly all the translated images featuring SUITs
exhibited substantial distortions and failed to retain their char-
acteristic features. For this reason, we replaced the CycleGAN
with the HM-MVGD-HM color-matching algorithm which re-
quires no training [35]. The HM-MVGD-HM algorithm uses
an analytical solution to an MVGD color transfer equation in
addition to classical histogram matching. Example synthetic
images using CycleGAN and HM-MVGD-HM are shown in
Fig. 6. We report object detection performance using CycleGAN
and HM-MVGD-HM in Table IV.

Since the original paper by Hsu et al. [27] was published,
other multistage adaptation approaches have been proposed. In
this study, we compare the performance of the original method
with a semisupervised version of PDA similar to the method by
Inoue et al. [38], which uses PL instead of AFL. Unlike Inoue
et al. [38], we do not use image-level annotations from the target
domain. We compare the results of this PL approach using both
CycleGAN and HM-MVGD-HM and report results in Table IV.

2) Data Augmentation: To address variability in SUIT object
size, we implement five DA techniques, each designed to simu-
late a potential source of variation. The (x,y) pixel coordinate of
the SUIT center in an image is arbitrary and is determined only
by the SUIT’s placement relative to the transect during image
collection. To prevent the models from learning irrelevant pat-
terns related to the position of the SUITs, we simulate different
SUIT placements by applying random image translations and
rotations. We define this set of placement transformations as
TP = {translation, rotation}. The distance between the cam-
era and the bottom will affect the apparent size of the SUIT.
Simulating imaging at a closer range can be approximated by
using random cropping. However, imaging at greater distances
involves simulating the effects of resolution and contrast loss. To
simulate these effects, we created an augmentation function that
performs downsampling followed by contrast reduction. The
subsequent image is then zero-padded to the original image size.
Because symmetrically padding the image would bias SUIT
placement toward the image center, padding is followed by a
random translation. We refer to this augmentation as distance.
To simulate different imaging angles, we adopt an approach
similar to that presented by Huang et al. [39] by applying
perspective transformations to the images. Because perspective
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Fig. 3. Data augmentations. (a) Example image from the TAK study site. (b)–(f) Output of the translation, rotation, perspective transformation, cropping, and
distance image augmentation functions, respectively, using the image in (a) as input.

transformation, cropping, and distance augmentations can dis-
tort the apparent size of the SUIT, we refer to this set of transfor-
mations as TS = {perspective, cropping, distance}. Fig. 3 shows
examples of all five augmentations.

3) Models: All models use a Faster R-CNN architecture with
a VGG16 [37] backbone. We consider five primary models.

1) Baseline: Faster R-CNN trained without UDA or DA.
Models are trained on data from a single study site and
applied directly to a target site.

2) DA: Same as baseline but trained using DA.
3) CGAN: Same as baseline but source images are first

translated to the target domain using a CycleGAN [34].
4) AFLCGAN: Faster R-CNN trained with PDA using AFL

and CycleGAN, as proposed by Hsu et al. [27].
5) PLCGAN: Faster R-CNN trained with PDA using PL and

CycleGAN, similar to that presented in [38].
In addition to these five primary models, we consider vari-

ants of the AFL and PL models by incorporating DA and
the HM-MVGD-HM color-matching algorithm. AFLCM and
PLCM indicate that the CycleGAN has been replaced with the
HM-MVGD-HM color-matching algorithm. AFLCM+DA and
PLCM+DA indicate that the CycleGAN has been replaced with
the HM-MVGD-HM color-matching algorithm and DA is used
during the alignment stages.

4) Experimental Setup: The models undergo training and
testing following a leave-one-in cross-validation methodology.
Specifically, they are trained using labeled data from a single
source study site while each remaining study site is considered
individually as the target domain. All study sites with at least
400 bounding box annotations are used as source and target
environments. Study sites with fewer examples are used as
target domains only. For models using DA, one augmentation is
selected randomly from both TP and TS (defined in Section II-C).
The transformations are applied only during training to both
source and target images. During testing, no augmentations are
applied. The process of incorporating DA into the AFL process
is shown in Fig. 4. Models using PL follow a similar process to
Fig. 4, except pseudolabels are used during the alignment stages.

A batch size of one is used during training and the images are
resized to 500 × 751. All experiments were run using a Tesla
P100 GPU and Intel Xeon 6126 CPU.

III. RESULTS

Table IV shows that in all adaptation scenarios, AFLCM

outperformed or performed very similarly to the best-performing
model. The two most notable exceptions are the cases where the
model is adapted to the PS target domain. This case suggests
that PL approaches may have an advantage when there are fewer
available images in the target domain (see Table I). The limited
data likely hampered the AFL approaches because a larger data
set is required to train the domain discriminator network. Addi-
tionally, the higher ratio of bounding box annotations to available
images reduces the potential for pseudolabels to introduce false
positives.

The performance of baseline varied significantly across the
adaptation experiments. Tables II and III indicate that the
TAK→HUA and TAK→RAN adaptations have relatively high
image features and SUIT size similarity. For both adaptations,
baseline performed comparatively well with the other models
providing little improvement. For adaptation instances with
relatively low image feature similarity but similar SUIT size sim-
ilarity, which includes TAK→PS, TAK→PNW, and PNW→PS,
models utilizing some form of UDA outperformed DA and
baseline. This supports the hypothesis that UDA techniques are
most effective for bridging differences in low-level features.

For adaptation instances with low SUIT size similarity, in-
cluding every scenario in which study site PNW is used as
a source, DA outperformed all models that did not use DA,
except in the case of PNW→PS. We note that this case also
exhibits low image feature similarity and that DA still brought
significant improvements compared to baseline. As is shown
in Fig. 5, baseline is restricted to predicting regions that are of
a similar size to the bounding box annotations of the source
data set. The added augmentation functions allow the model
to consider a greater range of bounding box predictions. This
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Fig. 4. (a) Overview of the augmented version of the AFL progressive domain adaptation method by Hsu et al. [27] using the HM-MVGD-HM color-matching
algorithm and data augmentation, referred to as AFLCM+DA. A source image (blue oval) and a target image are drawn from the source and target study sites,
respectively. A synthetic image is generated by color-matching the source image to the target image using the HM-MVGD-HM algorithm. The synthetic and target
images are then augmented, producing the images seen in the green and red ovals, respectively. Black arrows represent the feature alignment steps. (b) Illustration
of the adversarial feature alignment process. In the first stage of training, features are extracted from the labeled source image and unlabeled synthetic image,
denoted as featL and featU, respectively. Supervised object detection is performed using only featL. Adversarial feature learning is performed by passing both
featL and featU to the domain classifier whose gradients are reversed during backpropagation when passed through the gradient reversal layer (GRL). In the second
stage of training, features are extracted from the labeled synthetic image and unlabeled target image, where labels for the synthetic image are inherited from the
source image.

Fig. 5. Region proposals (red) from four different models for an example image from the target study site of two adaptation experiments. (a) Using TAK as a
source and PSW as a target. (b) Using PNW as a source and PS as a target. Ground truth bounding boxes are shown in yellow.

supports the hypothesis that DA techniques may be more effec-
tive for bridging apparent structural differences in the objects of
interest.

The PNW→PS and PNW→PSW adaptations are assumed
to be the most difficult as they exhibit low image features and
SUIT size similarity. This difficulty is evident by the very low
performance of baseline in both cases. Despite the large shift
in data distributions, the best-performing model was able to
improve performance on the target domains dramatically.

Transforming images from the source domain to the target
domain using the HM-MVGD-HM algorithm requires no addi-
tional training. Generating all ten synthetic data sets for the ten
adaptation experiments took approximately 40 min or approxi-
mately 0.5 s per image. Generating the synthetic images using a
CycleGAN required significantly more memory allocation and
increased training time. CycleGAN training took about 5–6 min
per epoch or 16.6–20 h in total for each source/target pair. As

seen in Table IV, the trainable CycleGAN generally did not pro-
vide improved performance compared to the HM-MVGD-HM
algorithm. We believe that the relatively small number of SUIT
annotations per study site was insufficient for training a Cycle-
GAN and resulted in poor target domain rendering of the SUITs
(see Fig. 6).

We performed ablation on the five DA functions for adap-
tations TAK→HUA and PNW→PSW and show the results in
Fig. 7. These two adaptations were selected for ablation due to
their representation of extreme cases, where SUIT size similarity
is either very small or very large (see Table III). The results of
the ablation reveal that the performance contribution of each
of the five augmentation functions is strongly dependent on the
variability in apparent size. In cases where there is little to no
difference in apparent object size between the source and target
study sites, the incorporation of any amount of DA can negatively
impact performance [see Fig. 7(a)]. However, if the difference
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Fig. 6. Qualitative comparison of image-to-image translation methods using images from TAK and PS as source and target, respectively. (a) Random image
drawn from TAK to be translated to PS. (b) Example image from PS. (c) TAK image is color-matched to the target image using the HM-MVGD-HM algorithm.
(d) TAK image is translated to the PS environment using a CycleGAN model.

in apparent object size is large, the choice of augmentation
functions can have a substantial impact on performance [see
Fig. 7(b)].

The results suggest that in the case where it is known a priori
that the target domain objects will appear much larger/smaller,
then the best results may be achieved by limiting the set of
augmentations to a set of function(s) that exclusively model
this difference. Fig. 7(a) and (b) suggests that incorporating
augmentation functions that do not directly relate to the sources
of variability may negatively impact performance. However, we
note that the cases studied in the ablation represent the extreme
cases and that in the absence of a priori knowledge of the ob-
ject variability, AFLCM+DA (trained using all augmentations)
still performs the best on average and therefore we conclude

that using the entire set of augmentations is a strong default
choice.

IV. DISCUSSION

Developing generalizable object detection models is compli-
cated by shifts in data distribution. We have shown that domain
shift can greatly impact detection performance. However, we
demonstrate that by combining DA with existing UDA tech-
niques, performance drops can be significantly reduced. This is
a significant finding, as the results provide the possibility for
broad spatiotemporal surveying even when annotated data is
limited to one study site. We further show that models can be
trained to be robust against other sources of variability including
color correction and object scale.
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Fig. 7. Ablation on the five augmentation functions: translation (trans.), rotation (rot.), perspective (per.), cropping (crop.), and distance (dist.). (a) Ablation
results using TAK as source and HUA as target. (b) Ablation results using PNW as source and PSW as target. The performance of AFLCM, which uses no data
augmentation, is shown in green. The performance of AFLCM+DA, which uses all five augmentations, is shown in red. The ablation applies each one of the five
augmentations individually with AFLCM. (a) TAK→HUA (similar mean SUIT size). (b) PNW→PSW (dissimilar mean SUIT size).

Overall, the results of the cross-validation experiments are
intuitive - source and target study sites with low visual differ-
ences produced higher baseline performance and, in these cases,
more sophisticated models produced marginal improvements.
However, in many cases, study sites with significant visual dif-
ferences benefited tremendously from the combined use of UDA
and DA. An alternative approach to bridging differences in data
distributions could involve the use of light attenuation models
that are specific to each environment. However, this would re-
quire accurate measurement and prediction of the ambient light
field and inherent optical properties of the water column. This
approach is likely most appropriate when target domain image
data is unavailable during training, which may include real-time
detection tasks. In these cases, a priori knowledge of future imag-
ing conditions should be leveraged to synthetically generate the
training data set. If target data is available during model training,
we propose that the main advantage of using the techniques
developed in this study is that they require no prior knowledge of
the light field or water column properties. Instead, environment-
agnostic features can be learned through the combined use of
image translation and AFL. This data-first approach also has
the advantage of scaling to many sources of visual variability
beyond water column properties that can be difficult to model,
including different cameras or lenses or illumination patterns
(e.g., shadows or caustics).

There is growing interest in using video to conduct oceano-
graphic surveys [40], [41]; however, directly applying still
image-based object detection models to video presents unique
challenges. These challenges include increased computational
costs and motion blur and video defocus. In addition, the
methods outlined in this study assume that target domain data
are available during training; however, applications of real
-time object detection and live target searching may be incom-
patible with this assumption. In these cases, the models must be
able to scale to multiple target domains using source data alone.
We conclude that domain randomization techniques remain the
best possible solution when target domain data are unavailable
[42], [43], [44].

In many real-world applications of machine learning, includ-
ing in oceanography, the available annotated data are insufficient
for training models with large parameter spaces and could result
in overfitting [45]. Fig. 6 shows that the SUITs translated by
the CycleGAN exhibit lower visual quality compared to those
produced by the HM-MVGD-HM algorithm. This discrepancy
is likely attributed to the sparse representation of SUIT instances
within the image data set, with only approximately 10% of
the images containing a SUIT. The scarcity of SUIT instances
during CycleGAN training led to the blurring of SUIT features,
causing the loss of their characteristic geometric details during
the translation process.

V. CONCLUSION

Two major present-day obstacles hindering advances in the
analysis of oceanographic data include 1) challenges in devel-
oping analysis tools that are robust across different conditions,
equipment, and locations; and 2) costs associated with trying
to collect and annotate variable data sets from which effective
models can be trained. Our results indicate that the procedures
developed in this study may be a viable solution for improving
model robustness while reducing the human data annotation
effort. We view this as a critical step for maximizing the utility
and cost-effectiveness of oceanographic field campaigns.

Data Availability: All data used in this study are avail-
able on the project’s GitHub repository (https://github.com/
JosephLWalker96/underwater-object-detection).
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