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 Abstract— Exploring brain-heart interactions within various 
paradigms, including affective computing, human-computer 
interfaces, and sensorimotor evaluation, has demonstrated 
enormous potential in biomarker development and neuroscientific 
research. A range of techniques, from molecular to behavioral 
approaches, has been proposed to measure these interactions. 
Different frameworks use signal processing techniques, from 
estimating brain responses to individual heartbeats to interactions 
linking the heart to changes in brain organization. This review 
provides an overview of the most notable signal processing 
strategies currently used for measuring and modeling brain-heart 
interactions. It discusses their usability and highlights the main 
challenges that need to be addressed for future methodological 
developments. Current methodologies have deepened our 
understanding of the impact of physiological disruptions on brain-
heart interactions, solidifying it as a biomarker. The vast outlook 
of these methods could provide tools for disease stratification in 
neurological and psychiatric disorders. As we tackle new 
methodological challenges, gaining a more profound 
understanding of how these interactions operate, we anticipate 
further insights into the role of peripheral neurons and the 
environmental input from the rest of the body in shaping brain 
functioning. 
 Index Terms—Autonomic neuroscience, brain-heart interplay, 
cardiovascular research, heart rate variability, physiological 
signal processing, physiological modeling 

I. INTRODUCTION 
s early as 1938, evidence suggesting a functional brain-
heart interaction was reported in a patient with a brain 
injury, showing distinctive electrocardiography patterns 

[1]. Since then, numerous clinical cases have provided 
abundant evidence linking cardiovascular, neurological, and 
psychiatric disorders to changes in the brain-heart interaction. 
For example, severe brain damage can lead to sudden cardiac 
death [2], while cardiac arrhythmias can cause cerebrovascular 
accidents such as ischemic attacks [3]. 

The brain and heart communicate with each other to 
participate in various processes involved in sensing, integration, 
and regulation of bodily activity [4], [5], namely interoception. 
This communication is essential for maintaining neural 
homeostasis and the overall physiological state of the body [6]. 
The interoceptive mechanisms operating within the brain-heart 
axis span various components (Fig. 1), from genetic factors, 
molecular mechanisms, and hormonal and neural pathways [7]. 
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Evidence on genetic factors comes from the links between 
genomic loci associated with both cardiac and brain anatomy, 
but also between cardiovascular issues and genetic risk for 
psychiatric disorders, such as major depression, schizophrenia, 
and bipolar disorder, emphasizing the association between 
brain function and increased cardiovascular risks [8], [9], [10].  

Brain-heart interaction can occur through cellular 
mechanisms involving extracellular vesicles [11]. In the context 
of stroke, evidence indicates an elevated level of circulating 
extracellular vesicles [12] and in the permeability of the blood-
brain barrier [13], eventually leading to posterior cardiac 
dysfunctions [14]. Stroke may also cause the downregulation of 
certain microRNAs [15], which are non-coding RNAs that play 
important roles in regulating gene expression, and their 
transportation through extracellular vesicles may likely target 
and influence heart physiology. Conversely, cardiac damage 
can trigger protein-specific release that can induce thrombosis 
[16] but also alter the regulation of gene expression at the brain 
level [17].  

Heartbeat pulsations during each beat create mechanical and 
electromagnetic effects in the brain. The mechanical force 
generated by the heartbeat sends pressure waves through the 
blood vessels, influencing cerebral blood flow and promoting 
efficient oxygen and nutrient delivery, but also influencing 
neural dynamics [18], which is mediated by mechanosensitive 
ion channels. These ion channels are expressed in sensory 
neurons that contribute to the baroreflex, a mechanism to 
regulate blood pressure [19]. Simultaneously, the electrical 
activity generated by the heart produces electromagnetic fields 
at the brain level [20] that can influence neural oscillations, 
while heartbeats can also reach cortical and subcortical 
structures through different neural pathways. These pathways 
include visceroceptive and spino-thalamocortical pathways 
[21], which are mediated by the autonomic nervous system 
through its sympathetic and parasympathetic branches [4].  

In the context of the brain-heart axis, “connection” typically 
refers to any structural or functional link between brain and 
heart systems, such as nerve links or synchronized activity. 
“Interaction” implies the presence of dynamic influences, either 
through direct or indirect signaling. “Interplay” implies a direct, 
bidirectional exchange between the systems. Finally, 
“coupling” refers to the synchronization of physiological 
activities, emphasizing how these systems act in a coordinated 
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manner. Within this rich repertoire of crosstalk modalities along 
the brain-heart axis, state-of-the-art noninvasive methodologies 
for estimating these brain-heart interactions in humans include 
different approaches. The present review offers a 
comprehensive overview of these approaches, classifying them 
in six different categories.  

The first approach, reviewed in Section II, involves 
measuring transient neural responses to heartbeats, known as 
heartbeat-evoked responses, which rely solely on analyzing 
brain activity in between heartbeats. Experimental findings 
demonstrate that heartbeats and the associated cardiac cycle 
have an impact on perception, information processing, and 
reaction [22]. Cardiac inputs to the brain are hypothesized to 
influence the generation of spontaneous cognition, which 
involves developing a first-person perspective [23].  

In Section III is presented the study of brain-heart axis 
through identification of the brain regions consistently activated 
by the autonomic nervous system, which in turn is known to 
influence cardiac rhythmicity. Autonomic correlates in the 
brain identify the so-called central autonomic network [24], 
playing a leading role in this form of brain-heart interaction.  

Other proposals use signal processing techniques to examine 
statistical pairwise correlations (Section IV), directional 
(causal) modulations (Section V), and higher-order 
interdependencies (Section VI) between brain and cardiac 
autonomic dynamics. These approaches involve time- and 
frequency-domain measures as well as tools taken from 
information theory or dynamical system theory to 
operationalize and quantify concepts like time delay stability 
[25], spectral coherence [26], mutual information [27], Granger 

causality and information transfer [28], redundancy and 
synergy [29], cross-mapping [30], or state-space 
correspondence [31], within the frame of brain-heart 
interactions; more recent methods focus on analyzing neural 
systems using generative models of brain and cardiac dynamics 
that leverage prior physiological knowledge to assess causal 
connections between changes in the brain and heartbeat 
dynamics [32], [33]. Lastly, the newer frameworks reviewed in 
Section VII focus on measuring complex, parallel interactions 
among various brain regions, occurring alongside with 
autonomic processes [34], [35]. These frameworks explore how 
brain networks assessed at different levels of resolution evolve 
in response to physiological fluctuations from other organs. 

A summary of the strategies adopted for measuring and 
modeling brain-heart interactions across the different 
methodologies outlined in this review is presented in Table I. 
Many of these strategies are versatile and can be extended to 
study interactions with other bodily systems, including gastric 
rhythms, respiration, skin conductance, or body temperature. 
The development and application of these methodologies in 
different contexts may help to elucidate the physiological 
underpinnings of the appropriate processing of interoceptive 
inputs, which plays a crucial role in maintaining a healthy brain. 
To achieve this, we analyze the practicality of these methods, 
address current methodological challenges, and outline the 
most notable clinical translations. 

 

 
Fig. 1. Pathways of the brain-heart connection. These pathways, which facilitate direct or indirect interactions between the brain and heart, encompass 
various physiological systems beyond the commonly discussed vagus nerve and sympathetic nerves. Additional pathways involve hormonal mechanisms 
within the Hypothalamic-Pituitary-Adrenal axis, and immune mechanisms primarily linked to neuroinflammatory processes initiated by the brain and 
affecting the heart. The gastrointestinal tract contributes through mechanisms related to the innervation of gut pacemaker cells by parts of the autonomic 
nervous system, as well as through gut-mediated effects associated with microbiota and gut dysbiosis, implicated in conditions such as stroke. Interorgan 
communication occurs through microvesicles, which contain gene regulation messengers such as microRNAs. Recently, common genetic factors have been 
identified in brain and heart pathologies, although the mechanisms involved require further elucidation, with some likely associated with genetic regulation 
through microRNAs. Mechanosensation is another mechanism of brain-heart communication, evidenced by baroreceptor mechanisms and mechanosensitive 
ion channels that respond to each pulsation. Interactions between systems (dashed links) can indirectly influence brain-heart communication, as part of 
visceral crosstalk and large systems’ mechanisms. 
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II. COUPLING BEHAVIOR AND NEURAL ACTIVITY WITHIN THE 
CARDIAC CYCLE 

The cardiac cycle consists of two phases: systole, the muscle 
contraction phase; and diastole, the relaxation phase (Fig. 2a). 
Experimental findings reveal that the cardiac phase is 
associated with perceptual awareness and behavior [22]. 
Specifically, humans are more likely to detect a stimulus when 
presented during the diastole, as reported in visual [59], 
auditory [60], and somatosensory detection [61]. Conversely, 
processes such as saccades during visual search [62], visual 
attention [63], active information sampling [64], active tactile 
discrimination [65], reaction time, and motor excitability [66], 
[67] are enhanced during the systole phase. Therefore, in 
behavioral and perceptual awareness research, synchronizing 
neural dynamics with the approximate onset of systole and 
diastole emerges as a compelling approach for analyzing brain-
heart interactions [68]. This approach has recently been 
suggested for extension into fMRI analysis to present stimuli as 
a function of the cardiac phase [69]. 

The analysis of brain responses to heartbeats using heartbeat-
evoked potentials (HEPs) was initially proposed by Schandry 
and colleagues in 1986 [36]. Typically, the computation of 
these potentials involves averaging brain signals across 
windows that are time-locked to the R- or T-peak of the cardiac 
cycle [37] (Fig. 2b). However, there is currently no consensus 
on how to compute them, including aspects like baseline 
correction, cardiac-field artifact removal, and overall 
preprocessing [37]. HEPs have been linked to markers of 
cortical processing of cardiac signals, as they are modulated in 
various conditions, such as perceptual awareness in a healthy 
state [23]. However, there is considerable diversity in the 
specific latencies relative to the cardiac cycle and the scalp 
locations where these effects are observed [70]. Moreover,  
HEPs capture merely the average brain response to heartbeats, 

disregarding its complexity. To uncover the ambiguities of 
heartbeat-evoked potential, further methodological analyses 
have been proposed to highlight these biomarkers, including 
information-based techniques [42], time-frequency analysis 
[38], [39], [40], variability [71], complexity and network 
properties [41]. 

The primary limitation of cardiac cycle-based approaches 
lies in the dynamic variations of sympathetic and 
parasympathetic autonomic activities influencing the cardiac 
cycle. These variations may intricately connect with brain 
dynamics in afferent and efferent manners, leading to a lack of 
specificity regarding the involved physiological dynamics. 
Some intracranial studies have identified specific brain regions, 
such as the anterior cingulate, right insula, prefrontal cortex, 
and left secondary somatosensory cortex [72], [73], as origins 
for heartbeat-evoked potentials. However, identifying the 
cortical and sub-cortical regions involved in heartbeat-evoked 
potentials using non-invasive techniques remains challenging. 

Moreover, limitations also arise from cardiac electric 
currents associated with ventricular contractions [20], which 
can induce artifacts in computing heartbeat-evoked potentials. 
Importantly, it remains to be further elucidated whether 
heartbeat-evoked responses have a direct relationship with the 
recently uncovered pathways from the mechanical effects of the 
brain due to changes in blood pressure caused by each heartbeat 
[22], where recent research in rodent models has shed light on 
this aspect [18]. 

Current protocols to study heartbeat-evoked responses 
typically set a fixed value of latencies and duration for each 
heartbeat to define a baseline. This approach can, however, be 
biased by the heart rate variability of the subject during the task. 
Although some strategies can mitigate the effect of this 
variability (e.g., discarding short intervals, or adapting the 
baseline to the events cycles), the conventional procedure for 
computing and analyzing ECG-based cortical responses is 
rarely questioned. 

III. CO-OCCURRENCES OF AUTONOMIC DYNAMICS IN THE 
BRAIN 

Links between the brain function assessed in specific regions 
and cardiac rhythmicity have been reported in both 
neuroimaging and intracranial studies. The associations of 
autonomic and brain region activities in healthy subjects have 

 
Fig. 2. Measures of brain-heart interaction based on changes in behavioral 
responses and brain activity with respect to the cardiac cycle. (a) Cardiac 
phase methods aim at contrasting responses occurring in the systole and 
diastole phases of the cardiac cycle. (b) Heartbeat-evoked responses aim at 
providing a signature of the evoked brain responses to individual 
heartbeats by averaging brain epochs with respect to a defined phase of the 
cardiac cycle. 
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TABLE I 
BRAIN-HEART INTERACTION METHODOLOGY SUMMARY 

Approach Key references 
Responses to heartbeats  

Heartbeat-evoked potentials [36], [37]    
Heartbeat-evoked oscillatory responses [38], [39], [40] 
Other heartbeat-evoked responses 
(information, complexity, variability) 

[41], [42] 

Brain correlates of autonomic cardiac rhythms  
Functional brain imaging + autonomic 
outflow measures 

[24], [43], [44] 
 

Brain-heart oscillatory couplings  
Correlation, coherence [25], [26], [45]     
Information theory, nonlinear coupling # [27], [31], [46]     
Symbolic representations # [47], [48] 

Brain-heart causal interactions †  
Granger causality ‡, Transfer Entropy # [28], [49], [50]     
Synthetic data generation modeling ‡ § [32], [51], [52]     
Convergent cross-mapping # [30], [53] 

Higher-order interactions ¶  
Multivariate correlation ‡ ¶ [54]    
Partial information decomposition ‡ ¶ #  [29], [55], [56]      
Global brain dynamics ¶ # [35]     
Brain connectivity ¶# [34], [57]    
Multilayer ¶ [58] 

† allows directionality estimation, ‡ model-based, # detects nonlinear 
interactions, § time-varying estimation, ¶ collective interactions (3 or more 
nodes) 
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been related to direct autonomic control, although the causal 
relationship is not directly assessed. The estimation of the 
sympathetic and parasympathetic activities is traditionally done 
through heart rate variability (HRV) spectral integration at low 
(LF: 0.04–0.15 Hz) and high frequencies (HF: 0.15–0.4 Hz), 
respectively [74], although with some variability in the bands’ 
definitions. Because some studies have shown that the 
estimation of sympathetic activity from HRV can be biased 
[75], sympathetic markers are also gathered from other 
physiological activity, such as sympathetic nerve neurogram or 
electrodermal activity [24].  

Neuroimaging studies have employed diverse approaches to 
capture the central autonomic network, involving brain regions 
correlated with autonomic activity. Most studies either 
correlated autonomic signal time courses with voxel time 
courses or confirmed stimulus-induced autonomic modulation, 
while fewer studies used parametric or conjunction designs 
[24]. As presented in Fig. 3, meta-analyses on fMRI studies 
[24], [43] revealed that the most reported brain regions involved 
in autonomic correlates are the thalamus, hippocampus, 
amygdala, right anterior insula, left posterior insula, cingulate 
cortices, and a few structures from parietal lobes. Intracranial 
electrophysiological recordings have further confirmed the 
involvement of the anterior and posterior insula, along with 
limbic system components such as the amygdala, hippocampus, 
and anterior and mid-cingulate regions [76]. Altogether, this 
evidence highlights the involvement of numerous high-order 
regions and the forebrain, but also several nuclei in the medulla, 
such as the nucleus of the tractus solitarius, nucleus ambiguous, 
parabrachial Kolliker fuse nucleus [2], [77]; but also in the 
cerebellum [44], [78]. Further regions have been described in 
relationship to complex HRV patterns [77], including temporal 
gyrus, planum temporale, frontal orbital cortex, opercular 
cortex, paracingulate gyri, cingulate gyri, temporal fusiform, 
superior and middle frontal gyri, lateral occipital cortex, 
angular gyrus, precuneus cortex, frontal pole, intra-calcarine, 
supra-calcarine cortices; although, lacking specificity with 
respect to their sympathetic or parasympathetic origin.  

Region-specificity with associations to sympathetic and 
parasympathetic activations has also been reported [24]. 
Sympathetic activations are generally associated with regions 
pertaining to executive and salience networks, while 
parasympathetic activations are more associated with regions in 
the default mode network. However, those regions represent a 

trend and should not be considered as sympathetic- or 
parasympathetic-exclusive structures per se. 

IV. APPROACHES FOR QUANTIFYING COUPLING BETWEEN 
BRAIN-HEART TIME SERIES 

Pairwise methods measuring the statistical association 
between variables have been exploited to explore brain-heart 
interactions. The adopted techniques span from conventional 
linear correlation methods [25], [45], [54] to frequency 
approaches such as cross-spectrum and spectral coherence, also 
combined with information-theoretic methods [55], [79] and 
other nonlinear interdependence measures [27], [31], [80], [81]. 
With an approach as simple as the correlation function, analyses 
on source-reconstructed EEG signals have validated some of 
the findings from earlier neuroimaging studies [82], showing 
that the insula, amygdala, hippocampus, anterior and mid-
cingulate cortices are involved in autonomic changes. 
Nevertheless, a crucial procedural prerequisite before applying 
such measures is the extraction of relevant variables from the 
brain and cardiac signals, typically in the form of time series 
that capture synchronous information about brain and 
cardiovascular oscillations. This is usually done by building 
time series that map the dynamics of EEG oscillations via 
spectral analyses and correlating them with HRV expressed by 
the series of the cardiac interbeat intervals at the scale of ~1 sec 
[25], [47], [48], [54], or with series mapping the sympathetic or 
parasympathetic component of HRV at longer time scales of ~1 
min [26], [28], [31], [49]. On the other hand, alternative 
approaches looking directly at the cross-spectrum or spectral 
coherence between electrocardiogram and brain activity have 
been proposed [83], [84], but it is important to note that these 
approaches may not necessarily capture functional coupling. 
Instead, they often quantify isoelectric properties shared by the 
brain and the heart, which can sometimes arise as mere artifacts. 
Therefore, coherence analysis, particularly concerning HRV 
features [26], [48], should be prioritized to better understand the 
functional aspects of brain-heart coupling. 

Correlation and spectral coherence-based analyses assume 
linear interactions between the analyzed signals. As a model-
free alternative, coupling and synchronization measures have 
been proposed to detect nonlinear dependencies between pairs 
of signals. In particular, the phase-space approach of 
synchronization likelihood [81] was proposed as a brain-heart 
coupling measure and tested on sleep EEG, showing a close 
relationship between a broad part of the EEG spectrum and 
high-frequency HRV, being especially prominent in the delta-
alpha range [31]. Further methodologies, such as Joint 
Symbolic Dynamics, detect patterns emerging from the 
interactions between time series by coarse-graining the series 
into sequences of symbols [85]. This approach was tested on 
patients diagnosed with schizophrenia, showing insights into 
the effects of the antipsychotic medication on the relationships 
between HRV, baroreflex, and cortical dynamics [48], [85]. 

 Approaches framed in dynamical information theory 
dynamics have shown relevance in studying physiological 
couplings with a high presence of non-linear dynamics [86]. 
Understanding the complex dynamics of information exchange 
between variables over time is crucial in various fields, 
particularly in studying complex systems like the nervous 

 
Fig. 3. Central autonomic network components, based on a meta-analysis 
of autonomic correlates [66]: parietal lobe substructures, including the 
precuneus, angular gyrus, and supramarginal gyrus; anterior and posterior 
insular cortices; subgenual, pregenual, and dorsal anterior cingulate 
cortices; posterior cingulate cortex; and subcortical structures, including 
the thalamus, amygdala, and hippocampus. 
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system. Formal quantification of information has become a 
basis for unraveling the complexities of information processing 
within physiological systems. The methodologies relying on 
information measures include mutual information, joint 
entropy, and instantaneous information shared between 
processes. It is worth noting that the computation of these 
measures involves discretizing random variables through 
uniform quantization or rank ordering, thus introducing 
discretization parameters which have to be set reaching a 
tradeoff between resolution and computational reliability [87].  

The Maximal Information Coefficient quantifies linear and 
non-linear correlations between time series [80]. The 
computation is based on the mutual information between time 
series, normalized by the minimum joint entropy. The method 
does not require symbolic transformations. Furthermore, it may 
capture non-linear relationships, as similarities between time 
series are quantified regardless of their related distributions. 
This method has been tested in emotion elicitation, revealing 
insights into the brain-heart dynamics associated with arousal 
[27]. 

Among the plethora of methodologies available, the 
combination of cross-spectral and information-theoretic 
approaches stands out as a promising tool for analyzing brain-
heart interactions [55], [79]. Whereas spectral analysis provides 
a frequency-specific lens through which to examine the 
interactions between multiple time series, multivariate 
information measures allow the detection of information 
exchanges that may not be discernible through traditional time-
domain analyses or spectral measures alone.  

While the methods reviewed so far assume stationarity, 
physiological systems often exhibit non-stationary behavior. 
Consequently, time-varying approaches have been proposed 
[46]. These methods enable, for instance, the estimation of 
information storage at each instant [88], capturing abrupt and 
gradual changes in stored information over time. By applying 
these techniques to study brain-heart interactions, distinct 
patterns may appear over time-varying information-storage 
across different phases of the cardiac cycle. This highlights the 
importance of considering non-stationarity in understanding 
dynamic processes within physiological systems. 

Further methods exist to study linear interactions in the time 
and frequency domains as well as synchronizations and 
nonlinear interdependencies between pairs of time series [89], 
[90], [91], [92], [93], [94], [95]. However, most of these 
methods are derived from dynamical systems theory, in which 
the signals are used to reconstruct the underlying state-space of 
a latent dynamical system at every time. Although these 
methods can capture nonlinear couplings, they require a large 
amount of data to provide robust and unbiased estimators and 
are extremely sensitive to artifacts and nonstationary trends. 

V. CAUSALITY IN BRAIN-HEART INTERPLAY: ESTIMATION OF 
BOTTOM-UP AND TOP-DOWN INFORMATION FLOW 

Causality holds significant relevance due to increasing 
evidence indicating a higher incidence of certain brain 
conditions in the presence of cardiovascular conditions and vice 
versa. The bidirectional brain-heart relationship underscores the 
importance of understanding the causal pathways between the 
cardiovascular system and brain health. Identifying causal links 

can inform preventive strategies and interventions aimed at 
mitigating the risk and progression of cardiovascular and 
neurological disorders. 

Causal mechanisms in brain-heart interplay have been 
demonstrated experimentally through invasive methods 
combining neuromodulation, lesion and pharmacological 
approaches across human and animal models. 
Neuromodulation targeting either brain or peripheral nerves has 
shown measurable effects on the other system. For example, 
transcranial magnetic stimulation of brain areas within the 
central autonomic network can modulate heart rate [96], while 
vagus nerve stimulation can influence brain oscillatory patterns 
[97]. Beta-blockers, commonly used to manage irregular heart 
rhythms, also impact brain activity, likely mediated by brain-
heart pathways [98], [99]—even in cases where these drugs do 
not cross the blood-brain barrier. Pharmacological 
interventions have further clarified causal brain-heart 
communication during tasks involving heartbeat perception 
[100]. Recently, heart rate modulation through optogenetics has 
shown behavioral changes [101], suggesting that altering 
cardiac rhythms can affect brain activity. 

In a non-invasive manner, different signal processing 
techniques have been employed to estimate functional brain-
heart interactions. Brain connectivity measures [102] and 
methods investigating causal interactions in physiological 
signals [89], [103] are potential candidates to unveil brain-heart 
interactions. Existing tools aim to uncover the interactions 
within systems composed of multiple components. Key insights 
lie in discerning coupling direction, strength, and occurring 
time lags. Most used approaches rely on Granger-causality-
based and entropy-based techniques quantifying the directed 
information transfer between signals and implemented via 
linear model-based or nonlinear model-free estimators [103], 
mutual nonlinear predictions detecting asymmetric relations in 
pairs of signals [89], [104], [105], and synthetic causal models 
of the underlying generative neural dynamics, among other 
connectivity measures [106].  

Granger causality (GC) is a statistical method to determine 
whether a time series can forecast another [107]. Therefore, GC 
can assess directional interactions between time series. GC 
estimation consists of comparing the extent to which the 
putative driver improves the prediction of the target above the 
extent to which the target can be predicted by its own past 
states. While traditional GC approaches rely on linear 
regression, nonlinear prediction models can also be adopted 
[108], [109]. GC has been primarily used to describe brain 
network connectivity [110], [111] and cardiovascular 
interactions [112], [113], but also to gather brain-heart 
interactions.  

For instance, Duggento and colleagues revealed that some 
regions previously described as correlated with autonomic 
dynamics are actually associated with brain-to-heart neural 
control [78], [114]. Faes et al. [28] characterized the topology 
of brain-heart interaction networks during sleep using GC, 
highlighting bidirectional communications between the cardiac 
parasympathetic variability and the beta EEG activity and 
unidirectional brain-to-heart interactions when slower brain 
waves are considered [28]. Further evidence on GC applied to 
EEG showed that brain-to-heart coupling increases in the left 
hemisphere for positive emotional valence and in the right 
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hemisphere for negative valence, as gathered from prefrontal, 
somatosensory, and posterior cortices [50].  

Clinical evidence has been provided for the cases of sleep 
apnea and epilepsy. During sleep recordings, GC revealed 
differences between healthy controls and patients suffering 
obstructive sleep apnea, where a bidirectional brain-heart 
coupling in the lower frequency ranges could distinguish 
between the participants’ groups [115]; an impaired brain-to-
heart communication during severe sleep apnea-hypopnea 
syndrome was detected using GC computed across whole-night 
recordings [116], also showing the potential of long-term 
ventilation therapy to recover the physiological brain-heart 
interaction patterns. In epilepsy, GC revealed a dominance of 
the brain-to-heart causality, over the heart-to-brain counterpart, 
suggesting the central control of autonomic dynamics during 
the ictal phase of the seizures [29]. 

Granger-causal information can be gathered also from 
entropy-based methods, such as the Transfer Entropy (TE), 
which provides a model-free probabilistic tool to assess the 
information transfer between time series [117]. TE provides a 
viable alternative to nonlinear GC models, bringing the 
advantage of generality (no functional forms are imposed for 
the analyzed nonlinearities) at the cost of lower computational 
reliability (longer datasets are required for reliable probability 
estimation). Therefore, TE has been proposed as an alternative 
measure of effective connectivity[118] and to detect potential 
asymmetries in the interactions [117], [119]. 

In the context of brain-heart interplay, TE has been tested in 
sleep and schizophrenia. In sleep EEG, TE revealed that the 
beta power conveys the largest amount of bidirectional brain-
heart information flow across different sleep stages, being 
weaker in the transitions from light sleep to deep sleep and to 
REM sleep [49]; a direct comparison between linear GC and 

nonlinear TE evidenced the role of nonlinear correlations in 
driving brain-heart interactions during sleep [28].  

In schizophrenia, TE revealed a stronger heart-to-brain 
interplay as compared to healthy controls [47]. A normalized 
version of the TE, estimated via non-uniform embedding [119] 
between the time series of HRV and EEG complexity, was 
employed as well by Yu and colleagues [120], who revealed the 
existence of unidirectional effects of the cardiac period length 
on the irregularity of the brain waves in the resting and mental 
stress states. Similarly, distinguishing between physiological 
changes induced by internally-driven attention, linked with 
short-term memory assessment, and externally-driven 
attention, associated with automatic and transient responses to 
external stimuli; the findings revealed that heart-to-brain 
information flow increased, while the brain-to-heart flow 
decreased during externally-driven attention compared to 
internally-driven attention [121]. 

Alternative approaches for estimating directional 
interactions between time series use the concept of cross-
predictability, whereby embedding vectors from one series are 
used to predict future states of the other. These approaches lay 
their ground on the theory of dynamical systems, based on the 
concept of state-space correspondence [105], whereby it is 
assumed that it should be possible to cross-map between the 
variables observed from a system and extract predictability 
measures from such cross-mapping. The most popular method 
in this context is Convergent Cross-Mapping (CCM) [89], a 
statistical tool for cross-prediction that exploits the idea that the 
reconstructed states from a responding signal can be used to 
cross-map the driver signals. Convergent Cross-Mapping has 
been used to study brain-heart interactions [53], with particular 
evidence on epilepsy [30], [122], [123], [124]. Interestingly, 

 
Fig. 4. Modeling bidirectional brain-heart interaction through block diagrams of the coupled heartbeat and brain signal generation systems. The heartbeats’ 
generation in the sinoatrial node is an integrate-and-fire model (red block), the integral pulse frequency modulation model, which receives the sum of 
sympathetic and parasympathetic inputs and the baseline heart rate (HR). The model generates the heartbeats as a train of pulses each time the integration 
reaches a defined threshold (Thr). Autonomic dynamics (yellow block) are disentangled in the sympathetic and parasympathetic components, which are 
individually modeled as oscillators whose amplitude is modulated (AM) on time as a function of the changes in EEG power. In the brain part, EEG signals are 
modeled as the sum of five frequency bands (green block), typically, d: 0-4 Hz, q; 5-8 Hz, a: 9-12 Hz, b=13-30 Hz, g: 31-50 Hz, whose powers (aF; with F: d, 
q, a, b, g) are individually modeled (blue block) as an autoregressive process that receives autonomic modulations as an external term (ARX model). 

Autonomic 
outflow

Thr

Reset

+
-

∑

sympathetic
oscillator

Integral pulse frequency 
modulation modeling

ECG signal

EEG signalsBrain 
modulation

Autonomic 
modulation

a!(t)a!(t-1)

∑

sin(! t)

HR
parasympathetic

oscillator

EEG signal generation

Markovian 
EEG model

Autonomic dynamics

sin(" t)
sin(# t)
sin(θ t)
sin(δ t)

a"(t-1)
a#(t-1)
aθ(t-1)
aδ(t-1)

ARX 
model 

AM

AM

a"(t)
a#(t)
aθ(t)
aδ(t)

…

∫

This article has been accepted for publication in IEEE Reviews in Biomedical Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/RBME.2025.3529363

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

 

7 

although the underlying concept and assumptions are different, 
CCM and GC yielded overlapping results on the analysis of 
time series of HRV features and the envelopes of delta and 
alpha EEG activity [29], [30]. These consistent findings suggest 
that cortical oscillations drive the autonomic activity before, 
during, and after the development of epileptic seizures. 

Synthetic data generation models are frameworks that aim to 
estimate the directionality of the interactions following a logic 
of generative neural dynamics (Fig. 4). These models assess the 
directed modulations between EEG oscillations (at a given 
frequency band) and cardiac sympathetic/parasympathetic 
activity time series [32], [51], [52]. The estimates of brain-to-
heart interplay are quantified through Integral Pulse Frequency 
Modulation models [125], [126], [127], which are represented 
as an integrate-and-fire computation that receives as inputs the 
linear combination of autonomic inputs and their respective 
amplitude modulation coming from the brain. The heart-to-
brain interplay is quantified through a model based on the 
generation of synthetic EEG series using an adaptative Markov 
process on brain power series [128]. The model estimates the 

ascending modulations from the heart to the brain using least 
squares in a first-order auto-regressive process, in which the 
Markovian neural activity generation uses its previous neural 
activity and the current heartbeat dynamics as inputs. This 
approach offers a time-resolved estimation of bidirectional 
brain-heart interactions, which has been used to model the 
physiological dynamics in emotions, showing that ascending 
cardiac inputs modulate brain dynamics in different contexts of 
arousal [33], [51], [129]. This modeling has also been tested in 
clinical conditions, including mood disorders [130] and patients 
in coma [131].  

VI. BRAIN-HEART HIGHER-ORDER INTERACTIONS 
Complex systems often exhibit interactions among multiple 

components beyond simple pairwise connections, involving 
higher-order interactions among three or more nodes [132]. 
These higher-order interactions can significantly impact 
collective network behavior but are often overlooked in 
traditional analyses. To address this gap, characterizations of 

 
Fig. 5. Frameworks of higher-order brain-heart interactions. (a) Brain-heart interactions as a complex network system analyzed via multi-node interplay. (b) 
Cardiac-brain connectivity framework draws relationships between brain connectivity and cardiac dynamics by capturing the individual brain links that covary 
with cardiac dynamics, to identify the whole network associated with these changes. (c) Cardiac-global brain dynamics aims at quantifying the relationship of 
network measures, such as integration and segregation, and parallel changes in cardiac dynamics. (d) Multi-layer frameworks in brain-heart interactions model 
the different nodes within pre-defined layers and re-refined ones as per their functional relationships. 
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pairwise and higher-order interactions among multivariate time 
series focus on assessing the equilibrium between redundant 
and synergistic information (Fig. 5a).  

Synergy arises from collective statistical interactions within 
a network that cannot be inferred when the sources of 
information are considered in isolation; as such, synergy 
amplifies the efficiency of information exchange by leveraging 
interactions among multiple system elements. Redundancy, on 
the other hand, encapsulates information conveyed equally by 
more sources; it ensures system robustness but at the expense 
of not fully utilizing the available information capacity [133]. 
These characterizations offer a more detailed understanding of 
how information flows and how it is used within complex 
systems. 

Frameworks conceptualized for the analysis of higher-order 
interactions include those based on the Shannon theory of 
information, which captures the balance between redundant and 
synergistic information among groups of three or more 
variables via measures of information transmission [134] and 
its generalizations, such as the O-information [135]. The 
framework of partial information decomposition [88] is more 
powerful as it provides separate measures of synergy and 
redundancy but is also more complicated because its 
unequivocal formulation requires going beyond classical 
information theory [136]. Additionally, implementing these 
higher-order frameworks is challenging, as they require 
computing entropies in high-dimensional spaces. 
Consequently, their reliable application has so far depended on 
linear parametric models [56], [137]. However, despite being 
still under active development, these frameworks are gaining 
strong relevance for the analysis of multivariate biological 
systems, for instance, in the brain and cardiovascular system, 
where redundancy and synergy have been found to play distinct 
roles in explaining the mechanisms that govern robust and 
flexible physiological regulation [133], [137], [138]. Therefore, 
higher-order interaction frameworks could become pervasive in 
the analysis of brain-heart interaction. In the following we 
illustrate how novel analytical frameworks can bring new 
insights into the study of the functional coupling of brain and 
heart signals. 

While some studies have started analyzing the spatial 
distribution of the brain activity associated with cardiac 
dynamics in terms of high-order brain-heart interactions [29], 
[54], the investigation of multi-scale behavior has been limited 
by the fact that the theoretical frameworks have been 
formalized with focus on random variables, thus with no 
explicit account of temporal correlations. However, the recent 
introduction of a dynamic framework for the analysis in 
networks of random processes, formalized via measures of 
entropy and mutual information rates [55], [56], [139], has 
introduced an approach to assess higher-order interactions in 
rhythmic processes with rich oscillatory content. The O-
information rate, quantifying the equilibrium between 
redundancy and synergy from a novel dynamic perspective 
[56], exploits spectral representations of vector autoregressive 
and state space models to assess interactions among groups of 
processes in specific time and frequency bands after whole-
band integration. It allows for highlighting redundant and 
synergistic interactions emerging at defined frequencies, 
offering insights not detectable using traditional time-domain 

measures. One can relate the O-information rate to pairwise 
measures of dynamic coupling like spectral coherence [139], 
decompose it into measures quantifying Granger causality and 
instantaneous influences in different frequency bands [56], or 
examine its gradients to derive low-order descriptors offering 
insights into the individual contributions of variables in shaping 
high-order informational circuits [140]. These recent 
developments hold great promise for ongoing and future 
investigations on the dynamic interplay between cardiovascular 
and neural oscillations. 

Further statistical inference methodologies can be embedded 
in these frameworks of higher-order interactions [141] to 
characterize functional links within physiological networks. 
Validation on theoretical and numerical simulated networks 
demonstrated its ability to represent higher-order interactions, 
but also to detect cascades, by dynamically identifying drivers 
and targets within the networks. These approaches aim at 
further describing the hierarchical dynamics within the system, 
allowing the evaluation of dynamic networks depicted by 
multivariate time series [139], offering versatility and 
scalability for exploring interactions beyond pairwise 
connections.  

VII. CARDIAC-RELATED BRAIN NETWORK DYNAMICS 
Most previous studies have predominantly focused on the 

interaction between specific brain or scalp regions and 
heartbeat dynamics, disregarding the dynamic nature of brain 
networks and their role in numerous neural functions [25], [56], 
[142], [143]. In line with this, there have been proposals for 
frameworks to study brain-heart interactions that explore the 
relationship between ongoing brain network organization and 
cardiac oscillations. Some fMRI studies have explored the 
relationship between HRV and connectivity in certain brain 
regions [57], [144], [145]. However, these approaches rely on 
the definition of a seed, typically defined as one of the main 
nodes of the central autonomic network. In a more agnostic 
manner, these frameworks can be extended to the identification 
of the brain networks associated with changes in cardiac 
dynamics in certain conditions. In a recent study, authors 
examine the interplay between pairwise brain connectivity and 
cardiac dynamics (Fig. 5b). This framework explores the 
relationship between triads by quantifying the coupling 
between the pairwise brain region connectivity and the cardiac 
dynamics, with the ultimate goal of identifying all the links 
associated to a network that is formed with the ongoing changes 
in cardiac dynamics under different conditions [34]. 

Another related framework provides biomarkers related to 
large-scale brain-heart interaction by quantifying the intricate 
dynamics between global brain activity and cardiac dynamics 
[35] (Fig. 5c). This framework showcases how the study of 
brain-heart interactions can be approached in various conditions 
where global neural dynamics are not fully understood by solely 
examining the dynamics of specific brain regions. It delves into 
the variations in global network dynamics, focusing on 
parameters such as efficiency, clustering, modularity, and 
assortativity within brain connectivity matrices [146]. The aim 
of this framework is to provide a holistic quantification of 
global dynamics and their relationships with the fluctuations in 
cardiac sympathetic-vagal dynamics [35]. While the framework 
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primarily focuses on characterizing brain dynamics through 
changes in brain connectivity structure, it can also be extended 
to other metrics of global brain dynamics, such as the synergy-
redundancy balance or global brain signals (e.g., EEG 
wideband power or fMRI global signal). Although the 
physiological meaning of these global parameters is debated 
[147], this approach could offer valuable insights into large-
scale brain-body dynamics [148], especially in the context of 
ascending arousal signaling that can also modulate cognitive 
processing [149].  

As a proof-of-concept, it was proposed to approach brain-
other organs interactions through frameworks of multilayer 
networks [150] (Fig. 5d). The multilayer structure provides a 
comprehensive framework for understanding, for instance, 
complex interactions by incorporating detailed structural and 
functional information across multiple levels [151]. Multilayer 
network analysis offers a means to study the human brain's 
diverse functional layers, enabling the potential integration of 
brain-heart interactions. This framework may also allow the 
modeling of the interactions at different scales, from molecular 
to systemic mechanisms [14] at different layers. Multilayer 
analysis may contribute to transcend from brain-centered 
analyses, fostering a holistic understanding of brain-other organ 
interactions. Operationalizing multilayer definitions depends 
on the specific phenomena modeled, offering flexibility in 
adapting to various research contexts. For example, functional 
interactions between signals in different body regions can be 
conceptualized as a network layer (Fig. 5d), where the 
interactions from one layer (e.g. brain regions) can influence 
other ones  (e.g. that estimated from multivariate skin or gut 
signals) [58]. The direct interaction observed between cardiac 
dynamics and the neocortex further illustrates these dynamics 
[21]. Similarly, cortical layers can receive information from 
lower-body regions via non-neural pathways, bypassing the 
middle layers [18]. In this view, network dynamics could better 
explain physiological interactions, as compared to traditional 
analyses focused on individual and isolated brain region 
activations [152]. By integrating empirical evidence from 
brain-heart interplay, multilayer frameworks hold promise as an 
integrative framework for advancing our understanding of 
complex systems, but more importantly, their relationships with 
cognition and behavior. For instance, to enlighten how 
physiology relates to the active inference of bodily states, 
potentially anticipating interoceptive sensations [153].  

A summary of the approaches adopted across the different 
methodologies outlined in this review are presented in Table I. 

VIII. METHODOLOGICAL APPLICABILITY  
The applicability of methods for analyzing brain-heart 

interactions depends on various factors, with the most 
significant being the amount of available data, prior 
physiological knowledge, and underlying hypotheses regarding 
time, frequency, and regional dimensions. Below, we outline 
some of these factors that need to be considered, including 
aspects related to physiological causality analysis [106], which 
are not exclusive to brain-heart interactions.  

A. Limited amount of data 
When data is scarce, visualizing brain-heart interactions 

graphically can be more valuable. Symbolic transformations of 
the data are ad-hoc methods commonly used in such instances. 
These approaches may prove suitable due to their robustness 
against noise and potential accounting for nonlinearities. They 
often prioritize pairwise comparisons over multivariate 
analyses. 

Additionally, the analysis of HRV is limited by the length of 
the recording. Short-term recordings, typically one minute or 
less, may not capture the full range of HRV fluctuations of 
interest and are more susceptible to transient artifacts and 
anomalies [154]. Therefore, balancing the duration of 
recordings as a function of the expected physiological outcomes 
is necessary to achieve reliable and representative HRV 
measurements. 

Instead, in large datasets containing rich information from 
multiple brain regions, model-free methods offer 
computationally tractable estimations and can facilitate an 
agnostic search for hierarchical dynamics. Within this 
framework, phase space methods provide a model-free 
approach to detect such dynamics, even in multivariate time 
series. 

B. System agnostic analyses 
Without prior knowledge of the systems studied, coupling 

measures drawn from information theory offer versatility, as 
they are less likely to overlook nonlinear couplings. 
Information theory-based methods can be further extended to 
have notions of causality and multivariate interactions. 
However, these analyses have to be re-considered in cases of 
limited amount of data, given the computational resources 
needed, for instance, to estimate probability distributions. 

C. Prior knowledge available 
With prior knowledge at hand, measures and models 

investigating causality are likely to offer a more informative 
framework. Some of these approaches are easily adaptable to 
the available data and can be applied directly or in transformed 
and multivariate analyses. The expected complexity of these 
methods should be balanced with the available data. For 
instance, if multiple auto-regressive processes need to be 
conducted, detecting only linear interactions may suffice for the 
analysis needs. 

D. Region-agnostic analyses 
When the goal is to comprehend global neural dynamics 

without prior hypotheses regarding specific brain regions 
involved, network-based analyses may be suitable. This is 
particularly applicable in cases with uncertainty in the data due 
to population heterogeneity or neural damage preventing 
analysis in the same region for all subjects. Methods based on 
global network dynamics offer characterizations that are 
regions-specific independent, enabling comparisons of global 
dynamics across the dataset's heterogeneity. However, these 
approaches may necessitate control measures to ensure that the 
effects observed are not attributable to differences in the 
number of nodes or network densities. 
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IX. METHODOLOGICAL CHALLENGES 

A. Improving specificity of the brain regions involved in 
brain-heart interactions 

Current data-driven methods for inferring and analyzing 
complex networks involve constructing a model from observed 
time series, where nodes represent units in the system and 
edges/hyperedges signify functional pairwise/higher-order 
dependencies between these units. However, most models are 
constructed from scalp-recorded EEG signals, often 
overlooking subcortical dynamics. This is a common 
shortcoming of most of the methodologies reviewed in this 
work, which should be overcame by future research targeting 
the specific cortical sources and their connectivity underlying 
the sensor/electrode level interactions [155]. This challenge can 
be approached by adapting the methodologies for assessing 
coupling and causality from heart and brain time series 
(Sections IV and V), currently developed using scalp EEG 
signals, to source-reconstructed signals [82] and adaptations for 
fMRI recordings. The cortical signals would likely refer to the 
regions previously identified as those belonging to the central 
autonomic network (Section III). These efforts will include 
modeling the relationships between electrophysiological 
activity and metabolic activity by accounting for the different 
confounding factors that appear when measuring various 
signals with different generative natures. 

B. Improving the estimation of the directionality of the 
interactions between the brain and heartbeat dynamics 

On the one hand, distinguishing genuine interactions from 
mere correlations between brain and cardiac signals posits an 
utmost challenge. This requires emphasizing the need for 
methodologies capable of uncovering true causation and 
functional relationships. In this line, methods accounting for the 
physiological priors, such as generative modeling [33], [51], 
[52], could diminish the quantification of spurious correlations. 

On the other hand, deciphering physiological dynamics may 
highly rely on understanding which system influences the other 
in specific conditions. While time-resolved estimations enable 
the observation of dynamic interactions within closed-loop 
physiological circuits, those works rely on pairwise measures 
to assess functional dependencies as those described in Section 
IV. However, these measures may not fully capture the 
interactions within complex systems that often exhibit 
collective behaviors at different hierarchical levels, involving 
more than two network nodes. To address this limitation, 
methods may explore multivariate approaches like conditional 
causality measures [78] or follow the approaches eliciting 
higher-order interactions among multivariate time series 
reviewed in Section VI. In this direction, the incorporation of 
strategies to uncover hierarchies of the interactions would 
enhance the causality estimation [139]. 

C. Achieving high time-resolution in the multiscale and time-
resolved estimation of brain-heart interactions 

Given that physiological dynamics at the brain and heart 
level occur at different time scales, unfolding the complex 
interplay between brain and cardiac activities at a higher 
sampling rate posits different challenges based on the brain 
recording modality. Solutions include optimizing time-

frequency analyses by incorporating state-of-the-art solutions 
for better time resolution, such as Wavelet transforms and 
smoothed Wigner-Ville distributions [156], [157]. In this line, 
development in time-resolved estimations may provide 
sufficient information for real-time applications, such as brain-
computer interfaces and neurofeedback. Another crucial point 
is the different scales of oscillations, typically observed 
between brain and heart rhythms, requiring multi-scale and 
cross-scale markers allowing the exploration of new modes of 
brain-heart interaction. 

D. Overlooking the complex network nature of brain-heart 
interactions 

While existing information-theoretic measures provide 
valuable insights, a limitation is their characterization of system 
dynamics with a single value, overlooking the rich oscillatory 
content inherent in complex network time series. For instance, 
brain-heart interactions involve rhythms in different frequency 
bands with varying physiological significance. While such 
information is disregarded by approaches targeting heartbeat-
evoked responses (Section II), it is accounted for in several 
pairwise interaction measures using time series that map the 
amplitude of selected brain rhythms over time (Sections IV and 
V). However, the most complete account of the variety of brain 
rhythms requires developing an approach that connects spectral 
representation with higher-order interactions. In response, some 
emerging frameworks such as those discussed in Section VI 
account for the time- and frequency-domain analysis of higher-
order interactions in multivariate stochastic processes mapping 
network system activity [56].  Upon these frameworks, 
multivariate decompositions may provide a better 
understanding of complex network dynamics, particularly in 
capturing the diverse nature of higher-order interactions across 
different bodily rhythms. 

E. Overlooking the hierarchy of neural oscillations 
While multiple nodes may interact dynamically over time, a 

characterization of the hierarchical architecture of network 
dynamics remains challenging. In this line, identifying the 
leading nodes of a complex system may be relevant for targeted 
treatments using neuromodulation, pharmacologically or brain 
stimulation techniques. Network science techniques can be 
employed to further describe these interactions, exploring the 
level of brain network controllability from visceral or 
peripheral bodily inputs, studying the nodes in charge of 
network integration and segregation with respect to peripheral 
bodily signals, and employing various approaches to estimate 
causality and directionality of those measures among multiple-
node signals. 

F. Uncovering hidden brain-heart coupling patterns with 
interpretable artificial intelligence 

A challenge in signal processing for assessing causality is 
identifying parallel, nonlinear patterns that traditional methods 
often overlook, especially those based on pairwise correlations. 
To address the potential limitations of coupling measures in 
capturing complex interactions, deep learning-enhanced 
algorithms have been proposed [158], [159], [160], [161]. 
These algorithms help to analyze, for instance, directed 
functional connectivity patterns distinguishing two 
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experimental conditions. Such tools employing explainable 
artificial intelligence [162] serve to optimally decompose the 
output prediction of a neural network on a specific input by 
backpropagating the contributions of all neurons in the artificial 
neural network to every feature used [163]. These post-hoc 
analyses can be employed to identify and distinguish the 
different information inflow and outflow patterns. 

G. Methodology translation to other bodily rhythms 
One advantage of studying cardiac dynamics is the well-

established physiological basis, as cardiac function modeling 
has a long research history. This knowledge should allow the 
development of ad-hoc models incorporating physiological 
priors, which is more challenging for other bodily rhythms, like 
those originating in the respiration and gut dynamics. 

Methodologies for quantifying simple pairwise interactions 
can be readily adapted to other bodily signals, such as skin 
conductance, eye movements, or blood pressure. However, for 
slower bodily signals, like breathing or gut rhythms, specific 
brain signal processing techniques are necessary. For example, 
phase-amplitude coupling has been used to study brain-gut 
interactions, capturing the slow changes in brain activity within 
the alpha band [164]. These techniques could mitigate spurious 
correlations when measuring the coupling between relatively 
slow signals with much faster signals (e.g., respiration vs EEG). 

X. TRANSLATIONAL PERSPECTIVES 

A. Mental health and neuromodulation treatments 
The relationship between mental health and the bodily state 

has been paramount. Recognizing dysfunctions in interoception 
has become increasingly important in understanding various 
mental health conditions, including anxiety disorders, mood 
disorders, eating disorders, addictive disorders, and somatic 
symptom disorders [165]. Our understanding of the complex 
relationship between mental health and interoception has 
primarily been informed by behavioral evidence [166], yet a 
physiological explanation of affective states and associated 
disorders remains elusive [167].  

Research into clinical and subclinical depression has 
predominantly centered on examining the brain dynamics of 
individuals exhibiting depressed mood symptoms. However, 
systematic analyses show that brain imaging-based biomarkers 
cannot identify depression at the individual level [168]. 
Moreover, evidence has shown that depression extends beyond 
a brain-exclusive disorder; it is intricately linked to 
cardiovascular conditions [169]. For instance, mood disorders 
are linked to an increased risk and more unfavorable prognosis 
of coronary heart disease [170]. Conversely, individuals with 
cardiac pathologies exhibit a higher prevalence of depression 
and depressive symptoms when compared to the general 
population [171], [172]. Recent research on brain-heart 
interactions suggests that depressed mood is associated with an 
intensified control over slow HRV changes [130] or reduced 
control over fast ones [173]. Similarly, some of those dynamics 
have been shown in anxiety as well [174]. These preliminary 
results suggest that research into brain-heart interactions holds 
immense promise for advancing the development of improved 
biomarkers crucial for the detection, prevention, and 
stratification of mental health conditions.  

Beyond diagnosis and disorders’ characterization, some 
treatments for depression include the use of transcranial 
magnetic stimulation (TMS), which uses magnetic fields to 
stimulate brain regions. However, the physiological 
mechanisms are not fully understood. From a systems 
perspective, TMS is believed to induce neuroplastic changes in 
the brain, promoting the formation of new neural connections, 
but also to modulate the excitability of neural circuits in the 
prefrontal cortex, which may contribute to restoring more 
balanced and healthy neural functioning [96]. However, several 
factors have been found or hypothesized to alter TMS 
effectiveness in treating depression; for instance, the specific 
TMS treatment protocol (location, frequency, intensity, and 
duration of sessions) can impact its effectiveness or the inter-
subject variability in their pathology phenotype and their TMS 
responses. Recent work introduces the concept of a brain-heart 
network, which intersects with the functional nodes of the 
previously described depression network [96]. 
Neuromodulation studies using TMS typically trigger key 
nodes within this network, specifically the dorsolateral 
prefrontal cortex and the anterior cingulate cortex, which have 
a subsequent impact on cardiac dynamics. This evidence 
emphasizes the significance of incorporating brain-heart 
interplay measurements in human depression treatments, 
especially those involving neuromodulation. Developments on 
this can target the heterogeneity of the outcomes using 
neuromodulation, allowing the potential development of 
personalized therapies for depression. In this line, Neuro-
Cardiac-Guided TMS treatment has emerged motivated by this 
brain-heart network [175], which enhances the precision of the 
TMS location. While a thorough delineation of the 
physiological dynamics is still pending. The frameworks of 
brain-heart interplay present a compelling approach to tackle 
the difficulties of neuromodulation in depression, which may 
provide biomarkers capable of stratifying patients based on 
their anticipated outcomes. 

B. Neurodegeneration, stroke, and rehabilitation engineering 
Autonomic dysfunction under neurodegeneration can 

involve various bodily systems, including those generating the 
cardiovascular dynamics [176], [177]. Further research in 
different neurodegenerative conditions has suggested a 
disruption in the awareness of one's heartbeats, as measured 
from cardiac interoception tasks [178], [179], [180], [181], 
[182], suggesting a disruption in the communication between 
the brain and the heart. However, only recently brain-heart 
interactions have been assessed in these conditions, for 
instance, to characterize autonomic dysfunctions [183], 
orthostatic hypotension [184], or dopaminergic therapy effects 
on motor symptoms [34], [35]. On the other hand, brain damage 
caused by stroke can lead to extensive changes in the nervous 
system as well. Abundant evidence exists on the brain-heart 
effects caused by stroke, from molecular to systemic changes 
[14].  

One of the main challenges in these conditions is the 
recovery of sensorimotor functions. Recently, brain-heart 
interactions have shown a close relationship with different 
aspects of responsiveness, decision-making, and motor 
functions [65], [66], [67], [185]. In particular, this knowledge 
can be embedded in brain-computer interfaces (BCIs), as they 
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hold promise in restoring lost sensorimotor abilities after 
suffering brain damage from conditions such as Parkinson's 
disease, stroke, and multiple sclerosis [186]. However, their 
effectiveness varies because BCIs typically require 
customization for each patient [187], [188]. For this, developing 
objective markers for monitoring task performance, learning, 
and progress remains one of the main challenges in BCIs [187], 
[188]. The study of brain-heart interactions in motor imagery 
and BCIs has emerged only recently [189], [190]. These studies 
show that biomarkers based on brain-heart interactions hold 
promise in identifying distinct couplings concerning cognitive 
and sensorimotor synergies. Therefore, the understanding of the 
specific contributions of cardiac dynamics can further enlighten 
the rehabilitation of sensorimotor abilities, by either facilitating 
the relearning of movements and enhancing functional 
recovery, for instance, by enabling patients to control on-screen 
commands, robotic exoskeletons, or prosthetic limbs [191].  

Neural damage resulting from neurodegeneration or stroke 
often extends beyond specific brain regions, impacting various 
parts of the nervous system. In contrast to being solely localized 
to one area, this widespread pathology underscores the 
importance of exploring brain-heart interactions. Such 
investigations offer valuable frameworks for comprehending 
the physiopathology of these diseases and designing 
rehabilitation strategies, particularly those leveraging BCIs. 

C. Severe brain damage, consciousness, and 
neuroprognostication 

In clinical practice, standard consciousness assessment after 
severe brain damage relies on characterizing bedside 
responsiveness [192]. Therefore, the presence of consciousness 
is often associated with the detection of non-reflex behavior. 
However, the challenge arises from the patients’ high 
heterogeneity in their clinical phenotype, which may be 
translated into different sensorimotor impairments and 
fluctuations in vigilance, leading to a high rate of misdiagnosis 
[193], [194]. The research of an accurate consciousness 
diagnosis based on behavior and the exploration of 
neuroimaging and electrophysiology techniques to reduce the 
misdiagnosis rate has been part of extensive consciousness 
research [195]. One of the explored approaches is based on the 
variability of the neural responses to heartbeats at the bedside, 
indicative of the relationship between the presence of 
consciousness and a healthier brain-heart connection [71]. 
These responses to heartbeats were found to complement other 
EEG-based markers of consciousness [196] and to be more 
complex and more segregated through the scalp as a function of 
the level of consciousness [41]. Further evidence revealed that 
cardiac inputs in the brain seem to participate in the conscious 
processing of ongoing exteroceptive information, which also 
appears as a signature of consciousness in these patients [197], 
[198]. 

Exploring brain-heart interactions can provide valuable 
insights into the physiological condition following severe brain 
damage. This approach holds promise for identifying 
biomarkers that could aid in addressing the ongoing challenges 
faced in the clinical practice of these patients. For instance, 
prognostication remains challenging due to our limited 
understanding of the multisystem physiological implications 
caused by severe brain damage. In this direction, patients with 

severe post-cardiac arrest brain injury were found to display 
bidirectional brain-heart interactions that scale with the severity 
of the brain injury and with patients' neurological outcomes at 
3 months [131]. 

Thus, the field of research focusing on brain-heart 
interactions offers a promising avenue for unraveling the 
complexities of physiology following severe brain damage. By 
investigating this relationship, diagnostic and prognostic 
biomarkers can be identified to provide valuable insights into 
the clinical phenotype of these patients. Ultimately, such 
advancements have the potential to revolutionize the way we 
understand and manage critical care monitoring, offering 
personalized approaches tailored to their specific needs and 
conditions. 

XI. CONCLUSION 
There is an abundance of coupling measures that can be 

exploited for the analysis of brain-heart interplay, each with its 
own set of advantages and drawbacks. Beyond an overview of 
the methods, we aimed to provide some conclusive remarks and 
guidance on when to explore specific frames providing 
coupling measures, based on the study objective and the data 
available. In doing this, we highlighted the key methodological 
challenges in current approaches to measuring and modeling 
brain-heart interactions. Addressing these challenges will 
undoubtedly enhance our understanding of the physiological 
mechanisms underlying various neural functions, including 
interactions between the brain and other organs. Our outlines 
also offer insights into a research agenda for advancing methods 
for accurately estimating brain-heart interactions. 

The ongoing evidence is uncovering non-linear, complex, 
and bidirectional communications between brain and heart 
dynamics. Further developments in these methodologies will 
contribute to a better understanding of the physiological 
dynamics involved in regulation mechanisms, predicting 
coding, and cognitive functions.  

Finally, we highlighted some significant advancements in 
understanding the physiopathology of diseases and their 
connections with brain-heart interactions. These advancements 
prompt new research avenues where brain-heart interactions 
play a crucial role in understanding diseases, transforming them 
into diagnostic tools. Additionally, they offer insights into 
prognostic tools, treatment evaluation, and the design of 
personalized and targeted interventions. 
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