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 
Abstract—Over the past two decades, intravascular optical 

coherence tomography (IVOCT) has emerged as a promising tool 
for planning percutaneous coronary interventions (PCI), studying 
coronary artery disease, and assessing treatments. With its near-
histological resolution and optical contrast, IVOCT uniquely 
evaluates coronary plaque characteristics, enhancing the guidance 
of interventional procedures. Artificial intelligence (AI) 
techniques have been widely applied to IVOCT imaging, providing 
fast and accurate automated interpretation. These techniques hold 
significant potential for both clinical and research purposes. 
Clinically, automated analysis offers comprehensive assessments 
of coronary plaques, leading to better treatment decisions during 
PCI. For research, automated interpretation of IVOCT opens new 
avenues to understand the pathophysiology of coronary 
atherosclerosis. However, these techniques face several limitations, 
including issues related to spatial resolution, challenges in manual 
assessments, and the additional time required for these analyses. 
This review covers recent advancements and applications of AI 
techniques and computational simulation methods in IVOCT 
image analysis, including vessel wall segmentation, plaque 
characterization, stent analysis, and their clinical applications. 
Furthermore, we discuss the potential of AI-enhanced IVOCT 
analysis to facilitate personalized decision-making, potentially 
improving short- and long-term patient outcomes.  
 

Index Terms—Artificial intelligence, deep learning, finite 
element modeling, intravascular optical coherence tomography, 
machine learning  
 

I. INTRODUCTION 

ARDIOVASCULAR disease is the leading cause of death 
in the United States, with coronary artery disease being the 

most prevalent. Percutaneous coronary intervention (PCI) is the 
most common coronary revascularization procedure, 
accounting for over 600,000 cases per year in the US [1]. This 
number increases further when considering peripheral artery, 
carotid artery, and renal stents. Non-invasive imaging 
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techniques like X-ray angiography and computed tomography 
(CT) angiography primarily reveal the coronary arteries’ 
lumen, providing limited insight into arterial wall tissues. The 
principal methods for intracoronary imaging are intravascular 
optical coherence tomography (IVOCT) and intravascular 
ultrasound (IVUS). These modalities are widely used to assess 
plaque characteristics, guide PCI, and evaluate stent 
deployment and apposition. Additionally, IVUS-combined 
with near-infrared spectroscopy has been clinically utilized to 
aid interventional procedures. One of IVOCT’s primary 
advantages over IVUS is its tenfold greater spatial resolution, 
enabling the visualization of intimal thickening below the 
detection threshold of IVUS [2]. Numerous studies have 
demonstrated IVOCT’s superior accuracy in measuring plaque 
distribution compared to IVUS [3], [4], [5]. Notably, our 
institution, University Hospitals of Cleveland in Cleveland, OH, 
was one of the first hospitals in the US to use IVOCT for 
clinical purposes in 2010. 

Over the past decade, IVOCT has become a promising tool 
for planning PCI. IVOCT-guided PCI offers significant benefits 
over X-ray angiography-guided PCI alone [6], [7]. With its 
near-histological resolution and optical contrast, IVOCT 
uniquely assesses plaque characteristics, enhancing the ability 
to evaluate plaque vulnerability. IVOCT is particularly 
recognized as one of the best methods for identifying high-risk 
local lesions, such as thin cap fibroatheroma (TCFA) and 
microchannel [8]. More than 20 histological and clinical studies 
have conclusively shown that IVOCT can assess in vivo 
histological plaque characteristics, including lipid/calcium [9], 
[10], [11], fibrous cap [12], [13], [14], [15], [16], macrophage 
presence [14], [17], cholesterol crystals [18], [19], 
microchannels [20], [21], thrombus [22], [23], [24], and 
intraplaque hemorrhage [25], [26], [27]. These histological 
findings, observable via IVOCT, have been linked to risk in 
various pathology studies [9], [10], [11], [12], [13], [14], [15], 
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[16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27]. 
Consequently, the enhanced clinical capabilities of IVOCT 
have led to its increased application in PCI, the most widely 
performed revascularization treatment for coronary heart 
diseases. 

Automated interpretation of IVOCT using advanced image 
analysis techniques, particularly those involving machine and 
deep learning, holds significant potential for both clinical and 
research purposes. For clinical purposes, fast and accurate 
automated analysis can provide comprehensive assessments of 
coronary plaques, aiding in the selection of the best treatment 
plan during PCI. Moreover, it can predict stenting outcomes and 
OCT-derived fractional flow reserve (FFR), helping to avoid 
adverse outcomes [28], [29]. For research purposes, automated 
interpretation of IVOCT opens new opportunities by enabling 
detailed examination of plaque structures at the microscopic 
level. This can deepen our understanding of the 
pathophysiology of coronary atherosclerosis, linking numerous 
high-risk plaque features to short- and long-term clinical 
outcomes. Additionally, the integration of artificial intelligence 
(AI)-driven analysis with large datasets can enhance the 
precision of these predictions, ultimately contributing to more 
personalized and effective treatments. 

This report provides an up-to-date review of the clinical 
applications of IVOCT in the quantitative assessment of 
coronary plaques, focusing on newer technologies and their role 
in future clinical support. Our review primarily addresses issues 
related to automated image analysis, such as plaque 
characterization and stent analysis, and their clinical 
applications for predicting short- and long-term adverse 
outcomes.  

 
 

II. SEARCH CRITERION 

To identify related contributions, we conducted search in the 
electronic databases such as PubMed, EMBASE, and Google 
Scholar for all published studies that applied advanced image 
analysis techniques in IVOCT images. The following keywords 
in different combinations were used: intravascular optical 
coherence tomography, quantitative, image processing, AI, 
machine learning, deep learning, finite element modeling, 
computational fluid dynamics, simulation, coronary artery wall, 
plaque, atherosclerosis, FFR, registration, stenting outcome, 
and clinical outcome. The literature search mainly focused on 
studies published after 2018 and up to April 2024. Although 
there were some image analysis papers prior to 2018, most were 
limited with regards to automation. Only the peer reviewed 
papers were included, while no conference proceedings, 
abstracts, preprint (e.g., arXiv and medRxiv), and case reports 
were included. Figure 1 provides a summary of the 
computational analysis of IVOCT for future clinical support.  

III. PLAQUE CHARACTERIZATION 

A. Lumen and Vessel Segmentation 

Segmentation of the IVOCT lumen and vessel (i.e., lumen, 
intima, media, and adventitia) is a crucial step in the 
quantitative assessment of arterial morphology. For example, 
lumen segmentation can be utilized to calculate the severity of 
stenosis and lipid/calcification angle. However, manual tracing 
of the vessel in IVOCT images is labor-intensive and time-
consuming due to the large number of images (up to 540) 
acquired during a typical IVOCT examination. Consequently, 
automated methods based on recent machine/deep learning 
techniques could significantly enhance the efficient analysis of 
coronary artery disease. This is clinically relevant as a robust  
 

 
Fig. 1. Diagram illustrating the computational analysis of IVOCT for future clinical support.   
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indicator for selecting the optimal stent landing zone. In 
addition, this can be used to numerous research purposes 
associated with the progression of pathological formations and 
future risk. Automated vessel segmentations can be divided into 
two main approaches: image processing-based and learning-
based. Supplementary Table S1 summarizes these studies on 
automated vessel segmentation, as well as downstream analyses.  

 
1) Image Processing-based Lumen/Vessel Wall Segmentation 

There have been multiple publications using image 
processing approaches without the benefit of a learning system. 
For example, one study [30] employed the Layered Optimal 
Graph-based Image Segmentation for Multiple Objects and 
Surfaces (LOGISMOS) approach for segmenting wall-layers to 
assess the progression of cardiac allograft vasculopathy (CAV) 
(Fig. 2). This method demonstrated a high correlation (R²=0.93) 
between automated and manual segmentations in measuring 
intimal + medial thickness, with an average error of 4.98±31.24 
µm, aligning closely with inter-observer variability. Another 
research effort [31] introduced automatic lumen segmentation 
by detecting a flat structuring element and applying linear 
interpolation. When tested on 667 image frames, the algorithm 
achieved an interclass correlation of 0.97 in lumen area 
assessments, indicating a high level of agreement with manual 
methods. Olender et al. [32] proposed an anisotropic linear-
elastic mesh method to delineate vessel walls in OCT images. 
Validated on 724 frames from seven patients, the method 
achieved an R² of 0.89 for cross-sectional area comparisons. It 
outperformed conventional interpolation techniques, providing 
smoother and more accurate outer vessel border reconstructions 
for diseased vessels. Furthermore, an automated process for 
extracting lumen contours, incorporating pre-processing, 
interpolation, and morphological dilation-erosion smoothing, 
was developed [33]. This method, evaluated on 5,931 pre-stent 
IVOCT images, demonstrated a strong correlation (R=0.988) 
with manual labeling. Additionally, it showed a strong 
correlation (R=0.978) in OCT-derived FFR comparisons. 
Another innovative approach [34] for segmenting lumen 
borders utilized a unique feature calculation approach 
consisting of a gradient convolution field and a Laplacian 
diffusion. This method achieved a sensitivity of 96.4% and an 
F1 score of 97.6% compared to manual assessments, 
highlighting its accuracy and reliability. Additionally, 
leveraging the uniqueness of vascular wall connected region on 
A-lines, another study [35] effectively segmented the vessel 
lumen in IVOCT images. The dataset included 1,436 image 
frames from six patients with intermediate stenosis and various 
intensity artifacts. They implemented a series of preprocessing 
steps (e.g., Gaussian filtering, binarization, morphological 
operation, catheter removal) and a double lumen contour 
restoration scheme, which showed superior performance 
compared to traditional approaches like dynamic programming. 
Most recently, an automatic method for multilayer 
segmentation in constructing biomechanical vessel models was 
developed [36]. Utilizing IVOCT data from six patients, they 
performed preprocessing, lumen detection using Otsu’s 
thresholding [37], and layer edge detection using the Canny 
edge and cubic spline surface fitting. The average errors of the 
automatic contours compared to manually segmented contours 

were 1.40% (internal elastic membrane), 4.34% (external 
elastic membrane), and 6.97% (adventitia-periadventitia 
interface). 
 
2) Learning-based Lumen/Vessel Wall Segmentation 

Learning-based algorithms, categorized into traditional 
machine learning [38] and supervised deep learning [39], [40], 
have greatly improved the segmentation accuracy of the lumen 
and vessel wall in IVOCT images. Building on their previous 
study [41], one research group [38] utilized a traditional 
machine learning model to diagnose Kawasaki disease using 
IVOCT imaging. Their study included 5,040 image frames, 
consisting of 2,900 normal frames and 2,140 pathological 
frames. They trained a random forest model with pre-trained 
VGG-19 features to differentiate between normal and diseased 
arterial walls. Additionally, a VGG-19-based fully 
convolutional network (FCN) was employed to detect tissue 
layers in normal cases. This method demonstrated high 
effectiveness with a sensitivity of 0.93 for intima and 0.91 for 
media, and an accuracy of 0.90 for intima and 0.87 for media.  

For supervised deep learning, Gharaibeh from our group [39] 
segmented the vascular lumen using a refined pre-trained 
SegNet, followed by cleaning the segmentation results with 
conditional random field (CRF) technique. Their approach 
enhanced data by concatenating polar IVOCT images and 
 

Fig. 2.  Automated OCT segmentation followed by JEI yielding clinically
acceptable 3D segmentation of coronary wall layers. (a) Original cross-
sectional and axial views of a 3D OCT dataset. (b) Automated 3-surface 3D 
LOGISMOS approach shows a regional segmentation inaccuracy (arrows) with 
lumen in red, outer intima in green and outer media in orange. (c) JEI
interactions shown in turquoise color provide a suggested position for the outer
media (orange) surface in the axial view. (d) Multi-surface 3D segmentation is 
re-optimized every time a set of correction points is provided –thefew identified 
points shown completely corrected the inaccuracy in 3D. Note that all JEI
modifications are optional such that the full segmentation workflow can be
completed either without any interaction (fully automated) or using human
expertise to guide the segmentation via JEI when needed. Important to realize
is that the experts interact with the algorithm, they never directly retrace the
borders in the image. 

This article has been accepted for publication in IEEE Reviews in Biomedical Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/RBME.2025.3530244

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

 

4 

shifting the start point, analyzing 48 volumes from 34 clinical 
pullbacks. After CRF processing, the method achieved a 
segmentation sensitivity of 0.99 and a Dice coefficient of 0.98. 
They also argued that using the raw polar (r,θ) data shows better 
segmentation performance than using the Cartesian (x,y) data. 
Additionally, a new tool called DeepCap [40], based on a U-
Net architecture, was introduced for automated vessel lumen 
segmentation, optimized for memory efficiency. This study 
included 12,011 expert-labeled images from 22 patients, 
encompassing diverse image conditions such as blood and light 
artifacts, as well as metallic and bioresorbable stents. DeepCap 
demonstrated notable efficiency, utilizing only 12% of the 
parameters of other models and chieving up to 70% faster per-
image inference times on GPUs.  

B. Identification of Principal Coronary Plaques  

Coronary plaque identification is important both for research 
and for planning PCI procedures. When treating highly 
calcified coronary artery lesions with stents, interventional 
cardiologists make stressful treatment decisions that can lead to 
inadequate stent deployment. Additionally, the severity of 
calcification is strongly associated with the degree of 
atherosclerosis, and the extent of calcification is linked to 
higher complication rates during or after PCI [42]. Moreover, 
the extent of lipidic plaque is critical to consider, particularly 
for research studies such as drug development, and to avoid 
placing the stent edge over a lipidic lesion, especially in cases 
of TCFA, due to its instability and potential to promote adverse 
vascular responses. Therefore, accurate identification of 
coronary plaques is essential for both plaque-specific lesion 
preparation and the appropriate selection of therapeutic 
strategies during PCI [43], [44]. Recent image processing 
methods for coronary plaque characterization can be divided 
into frame-level plaque classification, A-line classification, and 
pixel-wise classification. Supplementary Table S1 summarizes 
the automated principal plaque segmentation studies.  
 
1) Frame-level Plaque Classification 

Frame-based methods typically classify each IVOCT frame 
as either normal or diseased (e.g., calcified). Although these 
methods do not provide quantitative plaque assessments, they 
still offer clinically meaningful information. All existing plaque 
classification studies have been based on supervised deep 
learning approaches. For instance, one study [45] employed a 
two-path deep learning architecture to classify IVOCT images 
as plaque or non-plaque. They used data augmentation 
techniques, training two separate ResNet50-V2 models on 
Cartesian and polar images. Their combined model achieved an 
accuracy of 91.7%, sensitivity of 90.9%, and specificity of 
92.4%, demonstrating strong plaque classification capabilities. 
Another study [46] developed a ResNet-based 3D deep learning 
network to classify IVOCT frames as either calcification 
positive or negative. They initialized the model with a 
pretrained ResNet-50 network and retrained it on 
approximately 4,860 images. To address data imbalance, they 
employed a two-phase training approach, achieving a precision 
of 96.9%, sensitivity of 97.7%, and an F1 score of 96.1%, 
showcasing the efficacy of CNN models in plaque classification. 
Additionally, an automated diagnostic algorithm for assessing 

plaque vulnerability in IVOCT images was introduced [47]. 
Using a DenseNet-121 model trained on 44,947 pre-labeled 
images, their algorithm achieved a diagnostic accuracy of 
94.0%, outperforming the average accuracy of 83.8% among 
four general cardiologists. The algorithm's AUCs for 
distinguishing normal vessel, stable plaques, and vulnerable 
plaques were 0.992, 0.952, and 0.998, respectively. Moreover, 
for the first time, a Vision Transformer (ViT)-based deep 
learning model [48] was utilized to detect layered plaque in 
IVOCT images [49]. This study employed the largest dataset to 
date with over 300,000 images (237,021 for training/validation 
and 65,394 for external validation). The ViT-based model 
outperformed a standard CNN-based model, achieving an AUC 
of 0.860 compared to 0.799, indicating the potential of ViT 
models in medical imaging analysis. 
 
2) A-line Classification 

A-line classification methods focus on each A-line along with 
their adjacent A-lines in the raw polar (r,θ) IVOCT images. 
Unlike pixel-wise classification, A-line classification considers 
each A-line as containing mixed plaques, such as fibrous and 
lipidic or fibrous and calcified, and typically classifies the 
plaque as fibrolipidic and fibrocalcific. Previous studies can be 
categorized into three groups, consisting of traditional machine 
learning-based, CNN-based, and hybrid approaches. For 
machine learning, Prabhu from our group [50] utilized a 
comprehensive set of handcrafted features, including lumen 
morphology and optical attenuation, to identify fibrolipidic and 
fibrocalcific A-lines. They developed a machine learning model 
using random forest and support vector machine (SVM), trained 
on an extensive dataset of approximately 7,000 images, 
including clinical and ex-vivo images, and validated against 3D 
cryo-imaging/histology. CRF was used for 3D classification 
noise cleaning. On a test set of over 1,700 images, the model 
achieved sensitivities/specificities of 94.5%/87.3% for 
fibrolipidic and 74.8%/95.3% for fibrocalcific plaques. 

For CNN-based approaches, another research from our group 
[51] developed an automated method for plaque classification. 
Their preprocessing steps included lumen segmentation, 
guidewire shadow removal, and noise reduction. The CNN 
architecture featured two convolutional, two max-pooling, and 
two fully connected layers. After classification, they applied a 
CRF and morphological processing to clean noisy A-line 
classifications. This CNN approach achieved accuracies of 77.7% 
for fibrocalcific, 86.5% for fibrolipidic, and 85.3% for other 
plaque types. Notably, CRF cleaning improved classification 
results by 10-15%. Additionally, one study [52] classified A-
lines in IVOCT as fibrolipidic or fibrocalcific plaques using a 
shallow CNN architecture. They first identified the lumen 
boundary using the ARC-OCT algorithm [53] and then 
classified each A-line with a CNN model comprising three 
convolutional and two fully connected layers. Classification 
accuracy was further enhanced by incorporating OCT-specific 
transformed images based on attenuation coefficient estimation, 
improving the overall accuracy from 74.9% to 83.5%.  

For a hybrid approach, another innovative method from our 
group [54] combined deep learning features with hand-crafted 
lumen morphology features for plaque characterization in 
IVOCT images. They extracted 100 deep learning 
convolutional features and 371 lumen morphological (e.g.,  
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eccentricity, best-fit line features, and superficial attenuation) 
features, training a random forest classifier on these 471 
features. Their approach achieved sensitivities/specificities of 
84.8%/97.8% and 91.2%/96.2% for fibrolipidic and 
fibrocalcific plaques, respectively, indicating a promising result 
in plaque characterization. 
 
3) Pixel-wise Classification 

Pixel-wise classification provides the most comprehensive 
assessment of plaque morphology by analyzing each pixel in 
IVOCT images. All existing pixe-wise classification studies 
have been conducted using supervised deep learning 
approaches. For instance, one method [55] combined CNN and 
the random walk algorithm for plaque segmentation. The CNN 
pre-segmented the plaque area, providing seed points for the 
random walk refinement. The Jaccard similarity coefficients for 
lipid, calcified, and fibrotic plaques were 0.864, 0.864, and 
0.876, respectively, showing high similarity to manual 
assessments. Another approach  [39] employed a pretrained 
SegNet model for vascular lumen and calcification 
segmentation. This method involved preprocessing steps (e.g., 
log transformation and noise reduction) and data augmentation 
by concatenating raw polar IVOCT images with offset angular 
shift. It achieved sensitivities of 0.85, 0.99, and 0.97 for 
calcified, lumen, and other tissues, respectively. Agreement 
between manually and automatically obtained stent-
deployment calcification scores [28] was acceptable. 
Additionally, a fully automated semantic segmentation method 
using SegNet and CRF for noise reduction was developed by 
our group [56]. After preprocessing steps, including lumen 
segmentation, guidewire shadow removal, pixel shifting, and 

noise filtering, the SegNet model was trained on 4,892 image 
frames across 57 pullbacks. Their method achieved sensitivities, 
specificities, and Dice coefficients of 87.4%/89.5%/0.801 for 
lipidous plaques and 85.1%/94.2%/0.734 for calcified plaques. 
The differences in mean clinical plaque attributes (e.g., arc 
angle and depth) between manual and automated methods were 
minimal (<4%). A novel approach [57] introduced a deep 
residual U-Net for vulnerable plaque segmentation, employing 
a loss function that combined weighted cross-entropy and the 
Dice coefficient. To address class imbalance, the original 
IVOCT data was augmented by rotating the image foreground 
clockwise by 30-300 degrees. This method was evaluated using 
pixel accuracy, mean pixel accuracy, mean intersection over 
union, frequency weight intersection over union, precision, and 
sensitivity, outperforming conventional models with a 
sensitivity of 91.4%.  

Some studies have suggested that multi-step approaches could 
yield better segmentation results compared to one-step methods. 
For instance, Lee from our group [58] proposed a two-step deep 
learning method for characterizing coronary calcified plaque. 
The first step used a shallow 3D CNN for major lesion detection, 
followed by SegNet for detailed plaque segmentation. 
Compared to the standard one-step approach, this two-step 
approach significantly improved sensitivity (from 77.5% to 
86.2%), precision (from 73.5% to 75.8%), and F1 score (from 
0.749 to 0.781). Similarly, a three-step framework for plaque 
segmentation in IVOCT images was proposed [59], using U-
Net for lumen segmentation and a self-attention ResNet for 
image classification. Although the classification performance 
was exceptional (100% sensitivity for lipid and calcification), 
the segmentation step showed lower Dice coefficients of 60.5% 
and 71.8% for lipid and clacification, respectively. Another 
two-step approach for plaque characterization [60] first 
segmented the outer border of the ROI using a level-set method 
to isolate the visible superficial layer. Cropped square patches 
from the ROI were then used as input for a dense-block-SegNet 
(DBSegNet) for detailed segmentation. This approach achieved 
sensitivities of 91.8% for both calcified and lipid plaques and 
92.8% for fibrous plaques (Fig. 3).  

There have also been attempts to develop integrated plaque 
characterization software using deep learning. For example, a 
deep convolutional network with a U-shaped encoder-decoder 
architecture was developed [61], utilizing pseudo-3D input 
from consecutive IVOCT cross-sections. This model, trained on 
a dataset comprising 11,673 images from 509 pullbacks, 
achieved Dice coefficients of 0.906 for fibrous plaques, 0.848 
for calcified plaques, and 0.772 for lipid plaques, demonstrating 
excellent agreement in plaque burden quantification (R²=0.98). 
The model was integrated into the commercial software 
OctPlus, developed by Shanghai Pulse Medical Technology, 
Inc. Building on extensive experience with IVOCT imaging, 
our group [62] introduced the Optical Coherence TOmography 
PlaqUe and Stent (OCTOPUS), a comprehensive analysis 
software for coronary plaques and stents in IVOCT images. The 
software quantifies various aspects, including stent deployment 
characteristics, strut level analysis, calcium angle, and calcium 
thickness. Incorporating deep learning for plaque segmentation 
and machine learning for stent strut identification, OCTOPUS 
reduced manual editing time by approximately 80%, with only 
3.8% of plaque pixels requiring manual adjustments.  

Fig. 3.  Successful pixel-wise classification examples from certain datasets.
column-(a) IVOCT image, column-(b) ground-truth, and column-(c) illustrates
the segmentation results obtained with our proposed deep learning neural
network. The annotation colors for each tissue is denoted at the bottom of the
resulting plane. 
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To effectively train deep learning models, it is important to 
select images that represent various types of plaques and their 
characteristics. Our group explored methods to reduce the 
number of images requiring detailed annotation, thereby 
minimizing the effort needed for manual labeling [63]. We 
tested different percentages (10-100%) of training images 
derived from two approaches: equally spaced image 
subsampling and deep-learning clustering. The first approach 
involved selecting images at fixed intervals from the volume, 
while the deep-learning clustering method used an autoencoder 
to create a deep feature space representation, followed by k-
medoids clustering, with the cluster medians used for training. 
For a given sampling ratio, the deep-learning clustering method 
performed as well as or better than the equally spaced sampling 
approach and the method trained using all labeled data. Our 
results highlight strategies to reduce the significant effort 
needed for annotating images, especially in applications with 
high image variability.   

In addition, several additional patch-wise classification 
studies on IVOCT images have contributed to advancements in 
plaque characterization. For example, one study [38] identified 
and characterized pathological lesions in IVOCT images, 
classifying them as calcification or fibrosis. They extracted 
features using three CNN networks (AlexNet, VGG-19, and 
Inceptionv3) and employed random forest classifiers with 
majority voting for final classification, achieving 
sensitivities/specificities of 0.84/0.95 and 0.94/0.96, 
respectively. Another study [64] proposed a semi-automated 
algorithm for plaque identification, relying on texture features 
from manually selected ROIs. They focused on classifying 
atherosclerotic plaques (calcium, lipid, and fibrous tissue), 
achieving an average accuracy of 90.3% in plaque 
characterization. Additionally, a study [65] detected plaque 
erosion using a deep learning approach that combined Mask R-
CNN for initial mask identification with SVM for classification. 
To label 3D connected regions, they employed 26-connectivity 
neighborhood system [66]. Their method showed a sensitivity 
of 0.800, a precision of 0.734, and an AUC of 0.707.  

C. Segmentation of Microscopic Elements in Coronary 
Plaques  

With its near-histologic resolution and optical contrast, 
IVOCT enables the visualization of microscopic elements in 
coronary plaques associated with vulnerability, such as TCFA, 
microchannels, cholesterol crystals, and macrophage 
infiltration. In IVOCT images, TCFA is defined as a thin 
fibrous cap with a thickness of less than 65 µm overlying a large 
lipid pool [67]. Microchannels appear as signal-free 
tubuloluminal structures with no connection to the vessel lumen, 
visible in more than three consecutive IVOCT frames [20]. 
Cholesterol crystals are identified as linear regions of high 
intensity [68], and macrophage infiltrations show up as punctate, 
signal-rich spots that exceed the background noise of the image 
[68]. However, the identification of these microscopic plaques 
has been the focus of only a few research groups, primarily 
relying on supervised deep learning. Supplementary Table S1 
provides a summary of the relevant segmentation studies.   

Building on a 2018 study [41], one research team [38] used 
features from AlexNet, VGG-19, and Inceptionv3 CNNs for  

 
macrophage detection in IVOCT images, employing random 
forest classifiers and majority voting for final classification. 
They achieved a specificity of 0.97, sensitivity of 0.89, and 
accuracy of 0.92. Another study [69] developed a simple image 
processing method for automated detection of macrophage 
infiltration in coronary plaques. By calculating normalized-
intensity standard deviation values and using an optimized 
threshold, they attained around 88% sensitivity and specificity 
from postmortem coronary segments.  

Automated fibrous cap segmentation has been explored in 
several studies using traditional machin learning [70], semi-
automated deep learning [71], and fully automated end-to-end 
deep learning approaches [61], [72]. Using traditional machine 
learning features (e.g., local binary patterns and gray level co-
occurrence matrices) combined with SVM, lipid plaque borders 
and fibrous cap thickness were characterized [70]. The SVM 
model showed 89.6% sensitivity and 78.6% specificity for lipid 
identification, with an 8.6% error in cap thickness measurement 
compared to manual assessment. Additionally, a semi-
automated deep learning method [71] was developed to detect 
lipidous plaque and assess fibrous cap thickness in IVOCT 
images (Fig. 4). The DeepLab-v3 plus deep learning model was 
used to determine the extent of lipidous plaque. Following lipid 
detection, the outer border of the fibrous cap was determined 
using a dynamic programming algorithm. This method 
exhibited excellent discriminability for lipid plaque, achieving 

Fig. 4.  Three-dimensional (3D) visualizations of fibrous cap thickness on the
representative IVOCT pullbacks, including: (A) short lesion with TCFA, (B)
long lesion with TCFA, (C) short lesion without TCFA, and (D) long lesion
without TCFA. The reader can zoom in each artery to see variations of fibrous 
cap thickness. (A) Although the lesion length was not too long (< 7 mm), the 
average fibrous cap thickness was less than 65 μm across the lesion indicating 
that the lesion is prone to rupture. (B) There were two lipidous lesions having 
15 mm (left) and 5 mm (right) lengths. Both lesions were heavily lipidic with
a mean cap thickness of < 65 μm. The artery was much more prone to rupture
than (A). (C) The lesion was stable, since the length was short (< 3 mm) and 
the fibrous cap thickness was always greater than 150 μm. (D) Although the 
fibrous cap thickness was always over 80 μm across the lesion, the lesion length 
was very long (> 30 mm). There were several spots approaching toward the
vulnerable plaque than (C). The color map visualizes the fibrous cap in the
range of 0 to 300 μm. The yellow arrows indicate representative IVOCT frames
of each rendering. Our method provides comprehensive fibrous cap map in the
entire IVOCT pullback, so clinicians can make appropriate treatment decisions.
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a sensitivity of 85.8% and an A-line Dice coefficient of 0.837. 
Automated cap thickness measurement required significant 
modifications in only 5.5% of frames. For fully automated end-
to-end segmentation, Chu et al. [61] employed a U-shaped 
encoder-decoder deep learning architecture with pseudo-3D 
input from stacked IVOCT frames. They addressed class 
imbalance using a hybrid loss function combining cross-
entropy and focal Tversky losses, achieving moderate precision, 
recall, and Dice coefficients for different plaque components. 
In a recent study [72], a fully automated deep learning method 
was specifically designed for the segmentation of fibrous caps. 
This method was developed and externally validated using 
substantial IVOCT datasets, comprising more than 32,000 
images from 227 pullbacks. It provided highly reliable 
segmentation results during both five-fold cross-validation and 
external validation, achieving Dice coefficients of 0.846 and 
0.816, respectively. Moreover, the discrepancy in fibrous cap 
thickness measurements between the manual and automated 
methods was minimal (~3.0 µm). 

Our group [73] focused on identifying microchannels in 
IVOCT images using deep learning. We employed the DeepLab 
v3+ model for initial segmentation, followed by a CNN with 
three convolutional layers, two maximum pooling layers, and a 
fully connected layer to classify each candidate as a 
microchannel or non-microchannel. Data augmentation was 
applied to both raw polar IVOCT images and microchannel 
candidates. The classification network achieved high accuracy 
with a sensitivity of 99.5% and specificity of 98.8%. This step 
increased the Dice coefficient for microchannel segmentation 
from 0.71 to 0.73. 

D. Non-tissue Structures  

Some studies have been potentially helpful in aiding 
comprehensive vessel analysis in IVOCT images, including 
side branch and catheter detection (Table S1). One such study 
[74] automated side branch ostium detection by first 
segmenting the lumen boundary using dynamic programming 
and then identifying side branch ostium points. This method 
introduced a novel curvature definition through global view 
angle calculations, achieving a sensitivity of 82.8%, specificity 
of 98.7%, and precision of 86.8%. Another group of studies 
[54], [56], [58], [71], [73] effectively removed guidewire and 
shadow regions in IVOCT images using an accumulated 
intensity map and dynamic programming. Additionally, a U-
shaped encoder-decoder architecture was employed to detect 
non-tissue structures, such as the guidewire and side branches, 
achieving high precision, sensitivity, and Dice coefficients for 
both structures [61]. Another approach [75] proposed an 
automatic side branch detection method that utilizes adjacent 
frame correlation. This method consists of three main steps: 
computing the distance in a single frame, calculating the width 
gradient of the candidate region in the adjacent frame, and 
conducting a quantitative analysis of the side branch. By 
employing 19 IVOCT pullback runs, they achieved an F1 score 
of 87.3%, compared to manual segmentation.  

 
 

IV. STENT ANALYSIS 

Coronary stents are frequently used in PCI to treat significant 
obstructive lesions. Numerous clinical studies have shown that 
stent strut distribution in the vessel wall can affect the outcome 
of PCI [76], [77], [78]. In particular, some studies have 
suggested that inadequate stent strut coverage and apposition 
may be associated with an increased risk of short- and long-
term adverse outcomes [79], [80], [81], [82]. Several stent trials 
have used strut coverage, assessed by IVOCT, as their primary 
end point [83], [84], [85], [86], [87]. Accurate quantitative 
analysis requires precise segmentation that can detect lumen 
contours and stent struts. Consequently, various machine 
learning [88], [89] and supervised deep learning [90], [91], [92] 
approaches for stent analysis have been reported (Table S1). 

In a landmark machine learning study, Wang et al. [88] 
proposed a novel method for stent detection in IVOCT images 
using a Bayesian network and graph search. Initially, they 
computed the probability of stent strut appearance using a 
Bayesian network and analyzed stent wire continuity from 
adjacent frames in an en face view. Subsequently, they 
localized the depths of all the stent struts in a pullback using a 
graph cut algorithm. Utilizing more than 8,000 clinical images 
form 103 pullbacks, their method achieved a recall of 0.91 and 
a precision of 0.84. Another study [89] developed highly-
automated algorithms for stent strut detection and classification 
in IVOCT images. Building on their group's prior algorithms 
[93], they first detected stent struts, then trained a SVM model 
using 21 features to classify each strut as covered or uncovered. 
This approach demonstrated excellent classification 
performance, with a sensitivity of 94% and specificity of 90% 
(Fig. 5). They also improved tissue coverage thickness 
measurement, surpassing the accuracy of commercial products. 

Fig. 5. 3D visualization of stent. A. Blood vessel wall is rendered in gold and
stent is in grey. B. Vessel wall is removed. Lumen is rendered in red.
Uncovered struts are in white and struts with different tissue coverage thickness
are color coded in blue and green. 
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For deep learning approaches, Jiang et al. [90] proposed two 

automatic methods for detecting metallic stent struts using 
YOLOv3 and R-FCN networks. To enhance performance, they 
implemented data augmentation by rotating images and 
adjusting anchor box sizes. Both methods achieved over 95% 
in precision and sensitivity, with R-FCN outperforming 
YOLOv3 across all metrics. Additionally, a U-shape-like deep 
learning architecture was employed for stent strut detection [91]. 
Using pseudo-3D images to aggregate information from 
adjacent frames, this method was independently tested on an 
extensive dataset of 21,363 images from 170 IVOCT pullbacks, 
achieving outstanding segmentation (Dice: 0.907) and 
detection results (precision: 0.943, sensitivity: 0.940). Most 
recently, another study [92] utilized a U-Net model combined 
with MobileNetV2 and DenseNet121 to segment two major 
clinical stent types, including metal stents and bioresorbable 
vascular scaffolds (BVS). To address the imbalance of 
background and stent strut pixels, they cropped each image into 
multiple sub-images for network training, resulting in sub-
images containing stent struts. Their method demonstrated a 
Dice coefficient of 0.86 for BVS segmentation and a 
precision/sensitivity of 0.92/0.92 for metal stent segmentation. 

Lu from our group [94] introduced the OCT Image 
Visualization and Analysis Toolkit for Stent (OCTivat-Stent), a 
toolkit for automated IVOCT pullback analysis. This software 
automates the detection of the guidewire, lumen boundary, and 
stent struts, and quantifies tissue coverage and stent contour. It 
also calculates strut-level tissue thickness, coverage, and 
malapposition area, leading to a 30% reduction in inter-
observer variability. 

V.  OCT-DERIVED FRACTIONAL FLOW RESERVE (FFR) 

FFR plays a crucial role during PCI by providing a 
physiological measurement of the severity of coronary artery 
stenosis through the pressure gradient across a lesion. This 
measurement aids in the decision-making process for stenting 
and optimizes patient outcomes [95]. Since IVOCT enables 
precise reconstruction of vessel dimensions, several studies 
have developed IVOCT-derived FFR using computational fluid 
dynamics (CFD) [96], [97], [98], [99] and machine learning 
[100] methods. Supplementary Table S1 summarizes studies 
focusing on IVOCT-based FFR measurements. 

Using CFD, Tian et al. [96] introduced the novel software 
package, enabling automated computation of OCT-based FFR 
(OFR) from IVOCT pullbacks (Fig. 6). The software, primarily 
based on hyperaemic volumetric flow rate at the inlet boundary, 
has undergone validation in multiple studies [97], [98], [99]. 
One such study [97] involved computational analysis in 125 
vessels from 118 patients, where OFR demonstrated an 
accuracy of 90%, sensitivity of 87%, and specificity of 92% in 
identifying wire-based FFR ≤0.8. The average analysis time for 
OFR was 55±23 seconds per IVOCT pullback, with minimal 
intra- and inter-observer variability (0.00±0.02 and 0.00±0.03, 
respectively), highlighting its high clinical applicability. 
However, limitations exist in clinical practice due to constraints 
in OCT coronary geometry, such as the absence of side branch 
geometry and the prolonged time for 3D reconstruction and 
CFD simulation. 

Addressing these limitations, another study [100] developed 
a machine learning model to predict FFR using IVOCT images. 
They selected 36 features based on expert opinion and literature 
review, including epidemiological data, medical history, and 
plaque characteristics. The random forest model demonstrated 
good correlation with wire based FFR (R=0.853, p<0.001) and 
high accuracy in classifying FFR ≤0.8, with sensitivity, 
specificity, and accuracy in the testing group being 100%, 
92.9%, and 95.2%, respectively.  

VI. IVOCT PULLBACK REGISTRATION 

IVOCT-IVOCT pullback registration is essential for clinical 
studies on stenting outcomes, major adverse cardiovascular 
events (MACE), neoatherosclerosis, and CAV (refer to Section 
X for details). Despite its importance, there are only a few 
studies on IVOCT pullback registration (Table S1). One notable 
study [101] developed an automated method for registering pre- 
and post-stenting IVOCT pullbacks. The process began with 
segmenting calcifications in raw polar IVOCT images using 
deep learning. They then generated 1D representations of 
calcium thickness along the pullback and registered the 
pullbacks by calculating the cross-correlations between pairs of 
1D graphs. This approach demonstrated that each frame 
matched its corresponding image more accurately than adjacent 
frames, indicating a registration accuracy within a 1-frame 
interval (±200 µm).  

 
 
 

Fig. 6. Computation of OFR from OCT image pullback and Validation with
FFR. a Coronary angiography shows two moderately obstructed lesions (I and
II) in the LAD. FFR was measured by pressure wire at asterisk. b The computed
OFR value was color-coded and superimposed on the 3D reconstructed LAD
lumen. In this case, the computed OFR was 0.86 at the most distal position.
Cross-sectional OCT images at I and II show detailed plaque morphology. c
FFR shows the lesions were physiologically nonsignificant, with FFR value of
0.85 at the asterisk position. d The computed OFR value at each position along
the artery was also superimposed on the lumen diameter curves. OCT optical
coherence tomography; FFR fractional flow reserve; OFR OCT-based FFR;
LAD left descending artery 
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VII. COMPUTER SIMULATIONS USING IVOCT-IMAGE-
DERIVED FINITE ELEMENT ANALYSIS AND COMPUTATIONAL 

FLUID DYNAMICS 

Computer simulations, including finite element analysis 
(FEA) and CFD, have become powerful tools for studying the 
complex interactions between stents and arteries, as well as the 
hemodynamic alterations following stenting procedures. 
Initially, computer simulations focused on uncovering the 
mechanisms of stenting in complex lesions using stylized 
models. However, with advancements in imaging technologies, 
image processing software, and computing capabilities, patient-
specific models have been developed from IVUS or IVOCT 
images. These developments allow for more accurate 
predictions of stenting outcomes and pave the way for more 
advanced stenting planning tools.   

A. FEA for Stent-Artery Interaction 

Patient-specific artery models reconstructed from IVOCT 
images have been utilized to evaluate stenting procedures in 
complex lesions. For example, one study [102] developed such 
a model to study stent overlap in long lesions. The results 
indicated that stent overlap leads to greater lumen gain but also 
poses a higher risk of tissue damage and restenosis. 
Consequently, they recommended using multiple stents with 
minimal overlaps when a single stent is not feasible. In another 
context, heavily calcified coronary arteries were assessed [103] 
to understand how calcification attributes influence stent 
expansion using a patient-specific model based on IVOCT 
images. They quantified cross-sectional calcification attributes 

(e.g., angle, maximum thickness, and area) at various 
longitudinal locations, revealing that stent expansion is 
correlated with the calcification angle and area. Additionally, 
another study [104] examined the impact of different post-
dilation parameters on the effectiveness of enhancing stent 
expansion in heavily calcified coronary arteries. FE simulations 
were conducted alongside ex vivo experiments, which involved 
post-dilations using balloons of increasing diameters and 
inflation pressures for each diameter (Fig. 7). The FE 
simulations aligned well with the ex vivo experiments, showing 
similarities in the stented lumen area and stent malapposition. 
The results suggested that using a balloon at a higher inflation 
pressure could safely improve the lumen area. Furthermore, the 
stress distribution across the vessel wall indicated that increased 
fibrosis stretch after each post-dilation enhances the stented 
lumen area. A large calcification angle was found to reduce the 
vessel’s stretchability, leading to stent under-expansion. The 
initial lumen area and the circumferential length of fibrosis, 
indicating the amount of stretchable tissue, were key factors in 
determining the potential for stent expansion and the risk of 
vessel rupture. These could serve as indices for optimal stenting. 
In summary, the development of patient-specific FE models 
from IVOCT images marks significant progress toward 
evaluating and predicting stenting outcomes in clinical 
scenarios.  

B. CFD Analysis for Stent-Artery Interaction 

By integrating FEA and CFD simulations, one study [105] 
assessed the hemodynamic alternations following stenting and 
post-dilation in a heavily calcified coronary artery. The fluid 
domain was reconstructed based on the FE simulation results, 
and CFD simulations were then conducted to quantify the 
hemodynamic alternations. Pulsatile blood flow was simulated 
using a Windkessel-type boundary condition. The analysis of 
the instantaneous wave-free ratio (iFR) demonstrated the 
efficacy of the post-dilation procedures. Another study [106] 
investigated the influence of side branches, located upstream 
and downstream of the stenosis lesion, on FFR evaluation using 
CFD simulations. The results indicated that the upstream side 
branch had a minimal effect on FFR evaluation, whereas a 
downstream branch with a larger diameter (greater than one-
third of the main vessel’s diameter) resulted in a lower FFR 
value. These findings were validated by clinical measurements. 

VIII. IVOCT PLAQUE CHARACTERISTICS USED TO REFINE 

CCTA ANALYSES  

IVOCT imaging has been used to identify the presence and 
characteristics of coronary atherosclerosis. However, its 
invasive nature limits its applicability, particularly in patients 
early in the disease process. In contrast, coronary computed 
tomography angiography (CCTA) is a non-invasive imaging 
modality that enables assessment of both luminal stenosis and 
atherosclerotic plaque morphology throughout the entire 
coronary tree [107], [108], [109]. While clinical interpretation 
of CCTA has traditionally focused on luminal stenosis, 
emerging evidence suggests that analyzing various plaque and 
vessel wall features may further enhance risk stratification  

Fig. 7. Strain distribution in the fibrotic tissue and calcification at a
representative cross section Z = 10 mm. 
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[110], [111], [112], [113], [114], [115]. These findings support 
the further development of quantitative CCTA assessments. A 
few studies have even begun exploring the prediction of 
IVOCT-defined plaque characteristics using CCTA image 
analysis (Table S1). 

For example, one study [116] explored whether conventional 
plaque assessment and radiomics in CCTA could predict high-
risk plaques as determined by IVOCT. They analyzed seven 
conventional plaque features and calculated 935 radiomic 
parameters, including first-order statistics and gray level 
matrices. Using stratified cross-validation with 1,000 repeats to 
minimize overfitting, they found that the fractal box counting 
dimension of high attenuation voxels was most accurate in 
identifying IVOCT-defined TCFA (AUC: 0.80, CI: 0.72-0.88). 
Low attenuation plaque was the most effective conventional 
metric (AUC: 0.66, CI: 0.58-0.73). Another investigation [117] 
examined the association between PCAT radiomics from 
CCTA images and IVOCT-defined vulnerable-plaque 
characteristics (i.e., microchannel and TCFA). They extracted 
1,356 radiomic features from the lesion and the entire vessel, 
using stratified cross-validation with 1,000 repeats to evaluate 
the predictability. Both lesion-based and vessel-based methods 
performed similarly in identifying TCFA and microchannel, 
with comparable accuracy (88% for TCFA and 91% for 
microchannel). Most recently, a study [118] compared different 
plaque types between CCTA and IVOCT. After co-registering 
CCTA and IVOCT scans using distance to reference points,  

 
they found CCTA's diagnostic performance to be excellent in 
detecting any IVOCT-identified plaque, with sensitivity, 
specificity, and accuracy of 92%, 98%, and 93%, respectively. 
This suggests CCTA's effectiveness in identifying coronary 
plaques, except for sub-millimeter sizes indicative of early 
atherosclerosis. 

IX. CLINICAL OUTCOMES RESEARCH USING QUANTITATIVE 

IVOCT ASSESSMENTS 

IVOCT has been utilized in numerous clinical studies due to 
its ability to provide a comprehensive assessment of both 
macroscopic and microscopic coronary plaques, which are 
predictive of future risk. In this section, we have categorized 
these studies into five groups: stenting outcomes, MACE, neo-
atherosclerosis, target vessel failure (TVF), and CAV 
applications (Table S1).  

A. Stenting Outcome Prediction 

In the landmark study, Fujino et al. [28] introduced a novel 
IVOCT calcium scoring system for predicting stent expansion 
index (SEI). Utilizing multivariable linear regression, they 
developed a scoring system where points were assigned based 
on calcium angle (>180° = 2 points), thickness (>0.5 mm = 1 
point), and length (>5 mm = 1 point). Their OCT calcium score 
demonstrated better predictive accuracy for stent expansion <70% 
compared to coronary angiogram (AUC: 0.86 vs. 0.84, p=0.79). 
Building on this approach, another study [29] created an 
advanced machine learning model to predict vessel expansion 

Fig. 8. Predicted stent area in cases with different calcifications severity. Predicted stent area in a case of under-expansion in a heavily calcified lesion (left panel
A–E) and a case with a well-expanded stent in a vessel with relatively little calcification (right panel F–J). (A, F) Three-dimensional rendering with calcifications
in white, (B, G) longitudinal view before stenting with calcifications in white, (C, H) longitudinal view after stenting, and (D, I) predicted (orange) and actual 
(green) SEI following stenting. Our method predicted an SEI of 69%, which is close to the actual value of 62%, in which both values were indicative of under-
expansion. The vertical bars in (D, I) show the locations corresponding to the minimum SEI values. The closeness of their location further suggests the predictive
value of the regression model. The predicted and actual SEIs were 94 and 96%, respectively, and their locations were very close together. (E and J) show the effect 
of calcifications on stent expansion. Predicted and actual lumen areas after stenting are in blue and red, respectively. The orange curve represents the pre-stent 
lumen area for the registered pullback. In (E), areas were not enhanced after stenting because of the presence of calcifications (frames 50–70). (J) is associated 
with a well-expanded stent (frames 25–80). 
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success as measured by SEI. They first segmented the lumen 
and calcifications in pre-stent IVOCT images using deep 
learning and extracted 39 features, including 18 lumen and 21 
calcification features. Using LASSO for feature selection, their 
Gaussian regression model achieved outstanding performance 
(root-mean-square-error = 0.04±0.02 mm², R=0.94±0.04, 
p<0.0001) when combining lumen and calcification features 
over 31 frames (Fig. 8). This method significantly surpassed the 
previous state-of-the-art method [28]. 

B. MACE Prediction 

One investigation [119] examined the link between 
macrophage infiltration detected by IVOCT and MACE. They 
found a significantly higher MACE rate in patients with plaque 
erosion and macrophage infiltration (21.6%) compared to those 
without (5.9%, p=0.008). Multivariable Cox regression 
identified plaque erosion with macrophage infiltration [hazard 
ratio (HR) = 2.95, 95% CI: 1.09-8.02, p=0.034] as independent 
MACE predictor. Another study [120] evaluated the prognostic 
significance of plaque characteristics and residual syntax score 
(rSS) in predicting MACE. They discovered that the presence 
of TCFA in culprit lesions and higher rSS levels were 
significantly linked to MACE occurrence. A combination of 
rSS and TCFA yielded the highest prediction accuracy (AUC: 
0.816, 95% CI: 0.765-0.860). Additionally, a study [82] 
analyzed post-stenting IVOCT images to identify predictors of 
device-oriented clinical endpoints (DoCE) and major safety 
events (MSE). Key findings included that a smaller minimal 
stent area and total malapposition volume ≥7.0 mm³ were 
independent predictors of DoCE and MSE, respectively. 
Additionally, they noted that a total malapposition volume ≥7.0 
mm³ post-stent was associated with an increased incidence of 
late malapposition and uncovered struts.   

C. Neo-atherosclerosis Prediction 

Our group [121] focused on the predictive capability of 
IVOCT-defined plaque characteristics for in-stent neo-
atherosclerosis. The study analyzed images before and 18 
months post-stent implantation, including 180 lesions from 90 
patients. We evaluated 17 plaque features from baseline IVOCT 
images, such as lesion length, lumen area, calcium angle and 
thickness, and fibrous cap characteristics (thickness, surface 
area, and burden). Multivariate logistic regression analysis 
revealed that a larger fibrous cap surface area was strongly 
associated with the development of neo-atherosclerosis (odds 
ratio 1.38, 95% CI: 1.05-1.80, p<0.05).  

D. TVF Prediction 

Another study [122] investigated the prevalence of neo- 
atherosclerosis after PCI and its impact on long-term outcomes 
using IVOCT imaging. The findings linked renal insufficiency 
and poor lipid to lipidic neo-atherosclerosis, and severe renal 
insufficiency and female sex to calcified neo-atherosclerosis. 
Female sex (HR=2.05, 95% CI: 1.36-3.09, p<0.001) and lipidic 
neo-atherosclerosis (HR=1.56, 95% CI: 1.06-2.30, p=0.03) 
were associated with an increased incidence of TVF. Another 
study [123] analyzed clinical and procedural variables to 
predict TVF using ultrathin-strut drug-eluting stents. Key 

predictors identified included age, ST elevation myocardial 
infarction, reduced left ventricular ejection fraction, diabetes, 
and renal dysfunction. They also discovered that the use of 
intracoronary imaging, specifically IVOCT, significantly 
reduced TVF risk. In another study [124], clinical outcomes 
between IVOCT-guided and IVUS-guided PCI were compared 
in a large cohort of 2008 patients. Although lacking sufficient 
statistical power, their findings suggested that IVOCT-guided 
PCI was not inferior to IVUS-guided PCI.   

E. CAV Prediction 

Numerous studies have performed quantitative assessments 
of IVOCT pullbacks for the early diagnosis of CAV [30], [125], 
[126], [127], [128], [129], [130], [131], [132], [133], [134], 
[135], [136]. For instance, one study [125] analyzed 50 baseline 
and follow-up IVOCT pullbacks post-heart transplant using a 
3D LOGISMO graph-based approach. They observed 
significant changes in mean luminal area and intimal thickness 
within the first-year post-transplant, particularly in the proximal 
parts of the vessels. Another investigation [126] characterized 
quantitative and qualitative IVOCT measurements in 82 
patients to determine indicators of early CAV progression. The 
study observed significant increases in median mean intimal 
thickness, intimal volume, and percentage intimal volume from 
baseline to follow-up, along with a decrease in lumen volume. 
Another study [127] investigated whether CAV causes similar 
vascular remodeling in major coronary arteries. They analyzed 
IVOCT pullbacks at 1-mm intervals using QCU-CMS software 
(Medis Medical Imaging, the Netherlands) and measured 
luminal area, intimal area, intimal thickness, and medial area. 
Measurements in the LAD were identified as stronger 
predictors of CAV progression, suggesting that LAD 
measurements are superior for CAV prediction. 

There have also been interesting studies analyzing pediatric 
heart transplant recipients using quantitative IVOCT 
assessment. Cote et al. [128] investigated the relationship 
between intimal thickening and ventricular function in 17 
pediatric heart transplant recipients, finding significant 
correlations with longitudinal diastolic strain rate and stroke 
volume index. Another comparison [129] of intimal thickness 
and intima/media cross-sectional area ratios in pediatric 
recipients observed greater thickness in cases with rejection or 
concurrent CAV, especially in patients not treated with statins. 
Both studies demonstrated that IVOCT can provide insights 
into coronary vascular changes in pediatric transplant recipients, 
which are not detectable by angiography. Further research [130] 
compared quantitative IVOCT measurements between 
pediatric and adult heart transplant patients at two post-
transplant intervals. They observed that relative intimal 
hyperplasia peaked early in children and was significantly more 
pronounced in the pediatric cohort than in the adult cohort. 
These results imply that the prevalence of IVOCT findings may 
vary according to age- and time-dependent differences.  

X. FUTURE DIRECTIONS 

With its unprecedented resolution, IVOCT provides new 
research opportunities. Assessing detailed plaque structures 
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(e.g., TCFA and microchannels) at the microscopic level will 
enhance our understanding of the pathobiology of individual 
plaque structures. Integrating known risky plaque 
characteristics with new microscopic biomarkers could provide 
deeper insights into the mechanism of coronary atherosclerosis. 
While serial IVOCT imaging is valuable for clinical studies, 
accurate and automated registration of baseline and follow-up 
pullbacks is essential. Using AI techniques to correlate IVOCT 
findings with patient data may help identify those at high risk 
for future adverse events, such as MACE and TVF. 

While several small studies have indicated a potential role for 
IVOCT in enhancing PCI, there is no substantial evidence 
confirming its superiority over IVUS or angiography in 
improving clinical outcomes. However, the automatic 
interpretation of images, including those of TCFA and plaque 
erosion, could facilitate the widespread clinical application of 
IVOCT. Since IVOCT imaging enables quantitative assessment 
of calcification and lipid extent, it can help select the best 
treatment plan and adjust the landing zone and stent length to 
avoid placing rupture-prone plaques (e.g., TCFA) at the edge of 
the stent. Additionally, automated IVOCT analysis can 
accurately predict post-stenting outcomes (e.g., SEI) prior to 
stenting, as reported by [28], [29]. For instance, if the target 
vessel is at risk of under-expansion, the interventional 
cardiologist can opt for a plaque modification method (e.g., 
atherectomy). Furthermore, automated analysis has the 
potential to identify non-culprit lesions that should be treated 
despite the lack of significant obstruction. Consequently, 
further research is needed to evaluate the benefits of 
quantitative IVOCT-based management in patients with ACS. 

Another promising technique for enhancing the clinical value 
of IVOCT imaging is the integration of near-infrared 
fluorescence (NIRF) to target specific coronary plaques, such 
as lipid-rich plaque [137], [138], [139], [140]. This dual-
modality imaging method allows for the simultaneous 
acquisition of detailed structural and molecular information 
from atherosclerotic plaques. The use of targeted contrast 
agents, such as porphyrin lipid nanoparticles, enables NIRF to 
highlight specific biological markers within plaques, enhancing 
anatomical detail. Combining this technique with deep learning 
can further enhance clinical and research potential. Deep 
learning algorithms can analyze the extensive data generated by 
NIRF-OCT imaging to identify patterns and predict outcomes 
with high accuracy. These algorithms can facilitate the 
automated detection and characterization of high-risk plaques, 
potentially improving diagnosis and treatment planning. By 
integrating deep learning, the NIRF-OCT technique can deliver 
real-time, precise assessments of plaque composition and 
stability, ultimately leading to better-informed clinical 
decisions and improved patient outcomes. 

Enhanced and automated plaque characterization in IVOCT 
could pave the way for personalized treatments by enabling 
clinicians to make more informed decisions. Over the past 
decade, the development of preventive and cardioprotective 
therapies, such as P2Y12 antagonists, direct oral anticoagulants, 
PCSK9 inhibitors, icosapent ethyl, and GLP-1 agonists, has 
highlighted the need for personalized medicine. This approach 

ensures that each patient receives the most appropriate 
treatment in a cost-effective manner. By automating the 
identification of high-risk vessels, we can better guide intensive 
therapies in clinical settings and select suitable cohorts for 
testing new therapies. Accurately determining high-risk lesions 
can also inform revascularization strategies; for instance, 
deploying an additional stent to secure a high-risk lesion 
alongside treating a stenosis. Accurate plaque change 
assessments through precise registration can enhance 
mechanistic studies in drug development. Moreover, 
recognizing high-risk characteristics in IVOCT may provide 
valuable insights for other imaging modalities.  

Deep learning holds significant potential to transform 
clinical care in medical imaging. It could facilitate the 
interpretation of IVOCT images, aiding in plaque 
characterization and guiding vessel preparation strategies (e.g., 
deciding between direct stenting and plaque modification). 
However, there are three major limitations that hampers its 
clinical adoptation. First, the deep learning data currently 
available for IVOCT interpretation is limited and lacks 
replication. Additionally, a major challenge in clinical practice 
is the time-intensive nature of these analyses, which often 
require human intervention, especially in cases with high 
plaque content or poor image quality. Consequently, existing 
software remains predominantly research-focused and labor-
intensive, limiting its clinical applicability. To overcome these 
challenges, there is an urgent need for community-driven 
efforts to develop and share fully labeled public IVOCT 
datasets. The lack of open-source datasets not only limits model 
reproducibility but also raises questions about the feasibility of 
widespread AI adoption in this domain. Collaborative 
initiatives to create and maintain such datasets could accelerate 
innovation, ensure model reproducibility, and facilitate the 
integration of deep learning into routine clinical workflows. 
Second, the interpretability of AI models remains a critical 
challenge. Interpretability is essential for building clinician 
trust and securing regulatory approval, as it allows users to 
understand how AI models analyze data and make predictions. 
Without this transparency, clinical users may hesitate to adopt 
AI-driven tools, particularly in high-stakes medical 
applications. Techniques such as SHAP (SHapley Additive 
exPlanations) [141] and LIME (Local Interpretable Model-
Agnostic Explanations) [142] provide valuable insights into 
model behaivor by highlighting the features most influential in 
a given prediction. Applying these methods can make AI 
models more transparent and understandable, thereby bridging 
the gap between advanced algorithms and practical clinical 
utility. Third, the training of AI models with diverse datasets 
remains a critical concern. Disparity studies emphasize the 
importance of accounting for sex, race, and other demographic 
variability, as well as differences in clinical settings, to ensure 
AI models are robust and generalizable. A lack of diversity in 
training data can result in biased models that fail to perform 
well across diverse populations or in varying clinical contexts. 
This highlights the need for strategies to obtain diverse datasets, 
such as multi-institutional collaborations and inclusion of 
underrepresented populations in data collection efforts. 
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Addressing these challenges will improve the generalizability 
and robustness of AI models, ultimately enhancing their 
reliability and clinical utility. The recent FDA approval of AI-
powered IVOCT plaque characterization software (e.g., 
UltreonTM 2.0, Abbott Vascular, Santa Clara, CA, USA) marks 
a significant advancement, with its clinical use underway. The 
increased accuracy, accessibility, and interpretability of such 
software, supported by extensive datasets, will likely drive 
broader clinical adoption. 

Advancements in software that integrates AI-driven 
quantitative plaque evaluations with biomechanical coronary 
artery analysis are poised to enhance their relevance in both 
research and clinical settings. The finite element method, a 
cornerstone in biomechanics, has already shown its 
effectiveness in diverse clinical applications. For instance, 
FFRCT (Heartflow Inc., Redwood City, CA, USA) exemplifies 
this by combining CFD and AI algorithms to derive FFR from 
CCTA for the entire coronary tree. Similarly, developing deep 
learning models trained on computational frameworks could 
expediently predict mechanical outcomes, such as stenting 
outcomes as a function of stent diameter and length. 
Furthermore, combining plaque analysis with other metrics, 
such as stenosis severity and OCT-derived FFR, might enhance 
the comprehensive cardiovascular risk assessment using 
IVOCT, including the progression of in-stent restenosis. 
Nonetheless, research demonstrating the link between plaque 
characteristic changes and clinical outcomes improvement is 
essential for incorporating these analyses into routine clinical 
practice.  
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