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Abstract—The complex structures and intricate 
hyperparameters of existing deep learning models make achieving 
higher accuracy in landslide susceptibility assessment time-
consuming and labor-intensive. Deep forest (DF) is a decision tree-
based deep learning framework that uses a cascade structure to 
process features, with model depth adapting to the input data. To 
explore a more ideal landslide susceptibility model, this study 
designed a landslide susceptibility model combining convolutional 
neural networks (CNN) and DF, referred to as CNN-DF. The 
Bailong River Basin, a region severely affected by landslides, was 
chosen as the study area. Firstly, the landslide inventory and 
influencing factors of the study area were obtained. Secondly, an 
equal number of landslide and non-landslide samples were 
selected under similar environmental constraints to establish the 
dataset. Thirdly, CNN was used to extract high-level features from 
the raw data, which were then input into the DF model for training 
and testing. Finally, the trained model was used to predict 
landslide susceptibility. The results showed that the CNN-DF 
model achieved high prediction accuracy, with an AUC of 0.9061 
on the testing set, outperforming DF, CNN, and other commonly 
used machine learning models. In landslide susceptibility maps, 
the proportion of historical landslides in the very high 
susceptibility category of CNN-DF was also higher than that of 
other models. CNN-DF is feasible for landslide susceptibility 
assessment, offering higher efficiency and more accurate results. 
Additionally, the SHAP algorithm was used to quantify the 
contribution of features to the prediction results both globally and 
locally, further explaining the model. The landslide susceptibility 
map based on CNN-DF can provide a scientific basis for landslide 
prevention and disaster management in the target area.  

 
Index Terms—landslide susceptibility, deep forest, CNN, hybrid 
model 

Ⅰ. INTRODUCTION 
s one of the most common geological hazards 
worldwide, landslides are highly harmful and 
destructive, resulting in substantial casualties and 

property losses each year[1], [2]. The most effective way to 
prevent and manage landslides is regional landslide 
susceptibility assessment (LSA), which explore the nonlinear 
relationships between historical landslides and landslide 
influencing factors(LIFs) to predict the probability of landslides 
in specific areas [3], [4]. High-precision susceptibility 
predictions are crucial for land-use planning and disaster risk 
management [5]. 

With the advancement of computer and data mining 
technologies, traditional machine learning algorithms have 
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been widely applied in LSA studies, including support vector 
machines (SVM), random forests (RF), Extreme Gradient 
Boosting (XGBoost), and artificial neural network (ANN) [6], 
[7], [8], [9]. These algorithms exhibit high predictive accuracy 
and resistance to overfitting when applied to small datasets. 
However, their simple model structures hinder the retention of 
knowledge from previous tasks and the ability to generalize, 
limiting further improvement in prediction accuracy [10]. With 
the rise of artificial intelligence, deep learning (DL) algorithms 
have outperformed traditional machine learning in fields such 
as image classification, image recognition, and speech 
recognition [11], [12]. Deep learning overcomes the limitations 
of traditional machine learning algorithms, with multi-layer 
structures that can fully exploit high-level features and add 
nonlinear representations to fit abstract features. Particularly, 
convolutional neural networks (CNN) are notable for their 
strong feature extraction capabilities. The application of CNN 
in LSA is still developing [13]. [14] were the first to apply CNN 
to LSA, demonstrating that CNN significantly improved 
accuracy compared to traditional machine learning methods, 
thus proving the applicability of CNN in LSA. Improving 
model accuracy is a key development direction for CNN in LSA, 
often achieved by deepening the network layers [15]. However, 
deeper networks are prone to gradient vanishing and exploding, 
making the model difficult to converge [16]. More layers mean 
increased parameters, leading to training difficulties and 
overfitting. Combining CNN with other models is another 
approach to improving accuracy. [5] combined CNN with 
Gated Recurrent Units (GRU) to extract neighborhood and 
sequential features of landslides. [17] proposed heterogeneous 
ensemble learning methods incorporating various DL models, 
achieving better results than single models. Although model 
combinations offer comprehensive feature learning, they often 
increase parameter and computational load, complicating 
training and slowing prediction speed. Achieving optimal 
results often requires significant time and effort.  Nevertheless, 
CNN possess powerful feature extraction capabilities. By 
leveraging the spatial feature extraction advantages of 
convolutional kernels, CNN can obtain deep representations of 
raw data. The extracted features have high robustness and 
stability [18], [19]. Therefore, balancing accuracy and 
efficiency in LSA remains an urgent problem to solve. 

 Inspired by the layer-by-layer processing of deep learning 
algorithms, [20] proposed the deep forest (DF) algorithm, 
which uses a cascade structure to process raw data layer by 
layer for deep feature extraction. DF has four main 
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characteristics: (1) Compared to deep neural networks, DF does 
not require complex hyperparameter tuning and adaptively 
determines model complexity based on input data, making the 
training process simpler. (2) DF performs well with small 
sample sizes, which is particularly important in fields where 
data acquisition is challenging. (3) Due to its ensemble learning 
nature, DF has stronger noise resistance and generalization 
performance. (4) DF avoids gradient descent optimization, 
resulting in faster training speeds and less reliance on large-
scale computing resources. Currently, DF has been widely used 
in image processing, time series prediction, and other fields, 
achieving excellent research results [21], [22], [23]. [24] 
utilized DF to classify multi-source remote sensing data, 
demonstrating that DF outperformed other methods in 
classification accuracy. In comparison to CNN, DF required 
significantly less time for hyperparameter tuning and greatly 
reduced computational complexity. While DF performs well in 
classification tasks, its application in LSA had not been 
explored prior to our work. 

In conclusion, the performance of existing deep learning 
models in LSA is closely tied to model structure and 
hyperparameters, resulting in varying quality of landslide 
susceptibility maps. Finding an optimal landslide susceptibility 
model remains a hot topic. DF offers stronger interpretability 
and requires fewer hyperparameters, which can provide 
significant advantages in LSA. However, if the raw data do not 
adequately represent landslide information, training DF may 
not yield optimal prediction results. CNN excels in deep feature 
extraction, while DF adapts model complexity based on input 
data. We designed a LSA model combining CNN and DF. 
Additionally, to clarify the impact of features on prediction 
outcomes, SHapley Additive exPlanations (SHAP) was used to 
explain the DF model prediction [25]. SHAP can generate 
various plots to enhance model interpretability. This study 
validates and discusses the proposed model in the Bailong River 
Basin, providing insights for landslide prevention and risk 
management in the study area and exploring DF's applicability 
in LSA. 

Ⅱ. MATERIALS 

A. Study area 
The Bailong River basin is located in the southern part of 

Gansu Province, covering an area of more than 20,000 km2 (Fig. 
1). The trunk stream of the Bailong River flows through Diebu 
County, Zhouqu County, Dangchang County, Wudu District, 
and Wenxian County. The basin has numerous tributaries, 
including the Minjiang River, Gongba River, Baishui River, and 
Rangshui River. Severe fluvial erosion and widespread 
landslides characterize the region. The main mountain ranges 
include the Minshan and Western Qinling ranges. The area 
features alternating high mountains, valleys, and basins, with 
abundant rainfall in the mid-to-high mountain zones. The 
annual average rainfall reaches up to 1000mm, mostly 
concentrated between May and September. The study area is 
located in the Chaidamu-West Qinling block, known for its 
complex regional tectonics and intense neotectonic activity. The 
intricate lithology and intersecting faults not only shape the 
diverse topography but also govern the occurrence, 
development, and distribution of geological hazards. 

Earthquakes, both within and outside the study area, have 
impacted the region. Notable earthquakes include the 4.5-
magnitude Wenxian earthquake in 2013, the 6.6-magnitude 
Minxian-Zhangxian earthquake in 2013, and the 7.0-magnitude 
Jiuzhaigou earthquake in 2017. Earthquakes cause the 
fragmentation of rock masses and the accumulation of loose 
debris, providing material conditions for landslides. Towns and 
transportation routes in study area are mostly built along river 
valleys, where engineering and economic activities are 
relatively intense. As a result, the study area is highly 
susceptible to geological hazards. 

 

 
Fig. 1 Study area. 

B. Landslide inventory and Landslide influencing factor 
The landslide inventory map of the study area (Fig. 1) was 

constructed by referencing historical landslide data, visual 
interpretation of Google Earth imagery, and field survey data. 
A total of 638 landslide polygons were identified, with the 
largest landslide covering an area of 4.48 km², occurring in 
Jiangdingya, Nanyu Township on July 12, 2018. The landslides 
are categorized into types such as loess landslides, debris 
landslides, and fractured rock landslides. Most landslides were 
triggered by seasonal rainfall and earthquakes. The map shows 
a linear distribution of landslides, predominantly along 
riverbanks and the sides of valleys close to rivers. In addition, 
landslides are also concentrated at intersections and misaligned 
fault zones.  

Through field investigations and analysis of the causes and 
spatial distribution characteristics of landslides in the study area, 
12 Landslide Influencing Factors (LIFs) were identified. These 
factors include elevation, slope, profile curvature, Topographic 
Wetness Index (TWI), Normalized Difference Vegetation Index 
(NDVI), rainfall, land use, lithology, soil type, distance to roads, 
distance to rivers, and distance to faults. Lithology and faults 
were extracted from geological maps, with distance to faults 
calculated accordingly, and the river system was used to 
calculate distance to rivers. Table Ⅰ lists the sources of the LIFs. 
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To visually demonstrate the relationship between landslides and 
LIFs, the landslide inventory map was overlaid on the raster 
images of the LIFs (Fig. 2). The distribution of landslides shows 
a clear pattern with respect to lithology and soil types. We 
consider these two factors as the internal geological 
environment for landslide occurrence. Regarding distance to 
rivers and distance to faults, landslides are mostly distributed 

within low-distance value ranges. The locations of faults and 
rivers are closely related to the internal geological environment. 
Therefore, the combination of these four factors is regarded as 
the fixed environmental characteristics for landslide occurrence, 
referred to as disaster-pregnant environmental factors in this 
study.

TABLE Ⅰ  
THE SOURCES OF DATA FOR LIFS USED IN THIS STUDY 

Data name Data source Type Resolution LIFs 
DEM https://vertex.daac.asf.alaska.edu Raster 12.5m Altitude 
    Slope 
    Profile curvature 
    TWI 
Land use http://globallandcover.com/ Raster 30m Land use 
River https://www.openhistoricalmap.org Vector 1:5000 Distance to rivers 
Vegetation normalization index http://www.geodata.cn/ Raster 1000m NDVI 
Soil type http://www.fao.org/soils-portal Raster 1000m Soil type 
Geological map http://geodb.cgs.gov.cn/ Vector 1:1000,000 Lithology 
    Distance to faults 
Road http://data.tpdc.ac.cn Vector 1:1000,000 Distance to roads 
Rainfall http://www.geodata.cn/ Raster 1000m Annual average cumulative rainfall 

 

 
Fig. 2 The spatial distribution of LIFs. 

Ⅲ. METHODOLOGY 
This study constructs a landslide susceptibility model 

integrating CNN and DF. Fig. 3 shows specific workflow. 
Firstly, multicollinearity tests are conducted on the obtained 
LIFs, and the frequency ratio of LIFs is calculated based on 
landslide inventory. Next, a landslide dataset is constructed 
based on similar disaster-prone environments, of which 70% is 
the training set and 30% is the testing set. Subsequently, the 
landslide susceptibility prediction is achieved by leveraging the 
feature extraction capability of CNN and the classification 
ability of DF. Finally, the performance of different models is 
evaluated by comparing accuracy metrics and landslide 
susceptibility maps (LSMs). Additionally, SHAP is used to 
explain the contribution of features to the results in the CNN-
DF model. 

A. Factor analysis 

1) Multicollinearity 
Multicollinearity refers to the presence of a high degree 

correlation among independent variables. If multicollinearity 
exists, it can introduce redundant information into the model 
and negatively impact the accuracy of the results [26]. Since 
landslides result from the combined action of LIFs, the 
independence of these factors is crucial for accurate 
susceptibility assessments. A common method for evaluating 
multicollinearity is the variance inflation factor (VIF). The 
formula for calculating VIF is given in Equation (1). 

𝑉𝑉𝑉𝑉𝑉𝑉 =
1

1 − 𝐴𝐴2
=

1
𝑇𝑇𝑇𝑇𝑇𝑇

(1) 

Where 𝐴𝐴2 is the multiple correlation coefficient of a given 

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2025.3541638

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



4 
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 

 
Fig. 3 Flowchart of this study. 

 
LIF with the other LIFs in a regression analysis, while TOL 
stands for tolerance. The higher the correlation of this LIF with 
the remaining LIFs, the closer 𝐴𝐴2 approaches 1, resulting in a 
larger VIF value. When 𝑉𝑉𝑉𝑉𝑉𝑉  >5 or 𝑇𝑇OL<0.2, it indicates a 
significant multicollinearity problem among LIFs [27]. 

2) Frequency ratio 
The frequency ratio (FR) is a widely used statistical approach. 

In landslide susceptibility assessments, it is commonly applied 
to quantitatively describe the correlation between classified 
LIFs and historical landslides[28]. The FR value is used to 
represent the contribution of specific intervals or subclasses of 
LIFs to landslide occurrences. A higher FR value indicates a 
greater influence of that category on landslide occurrence. The 
formula for calculating FR is given in Equation 2.  

𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 =

𝑁𝑁𝑖𝑖𝑖𝑖
𝑁𝑁𝑟𝑟
�

𝐴𝐴𝑖𝑖𝑖𝑖
𝐴𝐴𝑟𝑟
�

(2) 

Where 𝑁𝑁𝑖𝑖𝑖𝑖 is the number of landslide grid units within the 

interval of the environmental factor;  𝑁𝑁𝑟𝑟 is the total number of 
landslide grid units in the study area; 𝐴𝐴𝑖𝑖𝑖𝑖 is the number of grid 
units within the interval of the environmental factor; 𝐴𝐴𝑟𝑟 is the 
total number of grid units in the study area; 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖  is the 
frequency ratio of the 𝑗𝑗-th category of the 𝑖𝑖-th environmental 
factor. 

B. Dataset construction 
In landslide hazard assessment, common evaluation units 

include grid cells and slope units. Due to the highly variable 
terrain and complex geological environment of the study area, 
slope units are superior to grid units for describing the 
mechanical mechanisms of slopes, lithology, and 
environmental boundaries. Slope unit statistically aggregates 
the corresponding grid units, eliminating the influence of 
outliers and more accurately representing the terrain and its 
associated factor characteristics [29] . The curvature watershed 
method identifies terrain breakpoints based on curvature and 
inverse curvature to delineate watersheds, which are then 
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overlaid to generate slope units. This method produces 
relatively uniform units that capture comprehensive terrain 
information [30] . In this study, the study area was divided into 
222,916 slope units using this method. The attributes of LIFs 
for each slope unit were obtained using zonal statistics tool of 
ArcGIS. 

Similar environments are constructed based on disaster-
pregnant environment factors, which enables the incorporation 
of prior knowledge in the non-landslide sample selection 
process[31]. This completes the construction of the dataset. The 
specific steps are as follows:  

(1) FR normalization of disaster-pregnant factors. The 
formula for normalization is given in Equation 3.  

𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖′ =
𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖

max�𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖� − min�𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖�
(3) 

Where 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖′ represents the weight between category 𝑗𝑗 of 
LIF 𝑖𝑖  and the typical category of landslide occurrences 
under LIF 𝑖𝑖. 

(2) Similar environment classification. Each slope unit 
generates a weighted one-hot encoding for a total of 29 graded 
categories of the 4 disaster-pregnant factors. Based on 
similarity, all slope units are classified into 205 similar 
environments. 

(3) Balanced sampling method based on similar 
environments. After processing, 638 historical landslide sites 
yielded 864 landslide slope units. The process for selecting non-
landslide slope units based on landslide slope units and similar 
environments is detailed in Fig. 4. Similar environments 
sampling can further improve the identification of potential 
landslides.  

 
Fig. 4 Balanced sampling of landslide and non-landslide samples based on similar environments. 

 
C. Landslide susceptibility assessment model 

This study presents a landslide susceptibility model that 
integrates CNN with DF, termed the CNN-DF model. The 
structure of the model is illustrated in Fig. 5. The CNN module 
employs convolutional operations to learn high-level feature 

representations from the raw data, expanding these into a 
higher-dimensional space. These expanded features then serve 
as inputs to the Deep Forest module. The DF module leverages 
its strong classification capabilities to predict landslide 
susceptibility. The main components of the CNN-DF model are 
detailed as follows.  

 

 
Fig. 5 Structure of the CNN-DF model. 
1) CNN module 

CNN is a specialized feedforward deep learning algorithm. 
Its network structure primarily includes an input layer, 

convolutional layers, pooling layers, fully connected layers, and 
an output layer[11]. Due to the unique characteristics of the 
convolutional layers, CNN possesses strong feature extraction 
and nonlinear computation capabilities, allowing it to directly 

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2025.3541638

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



6 
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 

extract salient features from raw data. This capability 
effectively avoids the need for complex mathematical methods 
to extract data features, which is often required in traditional 
deep learning methods[32]. The structure of CNN constructed 
in this study is shown in Fig. 6. The activation functions in the 
convolutional layers and non-output dense layers significantly 
enhance the nonlinearity of the neural network, making this 
parameter crucial. We chose the widely used ReLU function for 
these layers [33]. In the output layer, since we aim to obtain the 

susceptibility probability of the evaluation units, the sigmoid 
function was employed as the activation function. Additionally, 
after experimentation, we found that increasing the number of 
CNN layers does not necessarily improve performance. 
Therefore, we adopted a relatively shallow CNN model to 
achieve the predictions. The trained CNN model is employed 
for feature extraction, where raw features are input, and the 
output of the first dense layer is used as the extracted high-level 
features.  

 
Fig. 6 Structure of CNN model. 

 

 
Fig. 7 (a) Structure of deep forest model. (b) Illustration of landslide class vector generation. 
2) DF module 

DF is a deep learning model based on RF. Similar to the 
layer-by-layer processing of raw features in deep neural 
networks, DF employs a cascade structure for feature learning, 
thereby fully utilizing deep features to enhance classification 
performance[20]. As shown in Fig. 7a, the input to the DF 
model consists of a sequence of features, with a length of 256, 
extracted by the CNN. The final output is the probability that 
the input sample 𝑥𝑥 belongs to class 1, representing landslide 
susceptibility. In the Binner module, feature values are 
discretized into multiple unique values, which accelerates the 

construction of decision trees. The model has a depth of 𝑁𝑁 
layers, with each layer comprising two Random Forests and two 
Completely Random Forests. The subsequent cascade layer 
receives the feature information processed by the previous layer 
and concatenates this output with the input vector before 
passing it to the next layer. When transferring to a new level, 
the model's performance is evaluated using a validation set. If 
there is no significant performance gain, the training process is 
terminated. Consequently, the number of cascade layers is 
determined automatically by the model.  

The process of forming class vectors for each forest is 
illustrated in Fig. 7b. The Completely Random Forest is 
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composed of multiple trees, each containing all features but 
randomly selecting one feature as the split node for the split tree. 
Splitting continues until each leaf node contains a single class. 
Random Forests also consist of multiple trees, with each tree 
randomly selecting √𝑑𝑑  features (d is the total number of 
features), and then determining the split node based on the Gini 
score, as defined in Equation 4. To reduce the risk of overfitting, 
the class vectors generated by each forest are produced through 
K-fold cross-validation. Then the class distribution of all leaf 
nodes is averaged to get the class vector. 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 1 −�𝑝𝑝𝑖𝑖2
𝑘𝑘

𝑖𝑖

(4) 

Where 𝑘𝑘 is the number of sample classes, which is 2 in this 
study; 𝑝𝑝𝑖𝑖   denotes the proportion of samples of class 𝑖𝑖  in the 
dataset at the current node. 

 

 
Fig. 8 Calculation of evaluation metrics. 

D. Evaluation methods 
The confusion matrix is a matrix representation used to 

measure the performance of a classification model. The model's 
predictions on the testing set are classified as landslide if the 
predicted value is greater than or equal to 0.5, and as non-
landslide if it is less than 0.5. Using the true classes and 
predicted classes, a confusion matrix can be constructed [34]. 
As shown in Fig. 8, based on the confusion matrix, evaluation 
metrics such as Accuracy, Precision, Recall, F1 score, FPR 
(False Positive Rate), and TPR (True Positive Rate) can be 
computed. Here, FPR represents the X-axis and TPR represents 
the Y-axis of the ROC (Receiver Operating Characteristic) 
curve, and the AUC (Area Under the Curve) value is also a 
commonly used performance metric. The larger the AUC value, 
the better the model's performance and accuracy.  

E. SHapley Additive exPlanations (SHAP) 
The core concept of SHAP is rooted in the Shapley value 

from cooperative game theory, originally employed to quantify 
players' contributions in cooperative games[35]. When applied 
to machine learning models, SHAP values are utilized to 
quantify the contribution of each feature to model predictions, 

computed according to Equation 5. SHAP explains the DF 
prediction outcome as the sum of contribution values from 256 
input features, formulated according to Equation 6. For local 
explanations, the SHAP algorithm processes the model 
predictions according to Equation 7. 

𝜙𝜙𝑖𝑖 = �
|𝑆𝑆|! ∙ (𝑛𝑛 − |𝑆𝑆| − 1)

𝑛𝑛!
[𝑓𝑓(𝑆𝑆 ∪ {𝑖𝑖}) − 𝑓𝑓(𝑆𝑆)]

𝑆𝑆⊆𝑁𝑁\{𝑖𝑖}

(5) 

Where 𝑁𝑁  represents the set of all features;  𝑆𝑆 ⊆ 𝑁𝑁\{𝑖𝑖} 
denotes a subset of features excluding feature 𝑖𝑖 ; |𝑆𝑆| denotes the 
size of subset 𝑆𝑆  ; 𝑓𝑓(𝑆𝑆)  represents the model prediction on 
subset S; (𝑆𝑆 ∪ {𝑖𝑖}) denotes the model prediction when feature 𝑖𝑖 
is added to subset 𝑆𝑆. 

𝑔𝑔(𝑧𝑧′) = 𝜙𝜙0 + �𝜙𝜙𝑖𝑖

𝑀𝑀

𝑖𝑖=1

𝑧𝑧𝑖𝑖′ (6) 

Where𝑔𝑔(𝑧𝑧′) represents the model's output being explained; 
𝑧𝑧𝑖𝑖′  denotes the binary representation of the corresponding 
feature;  𝜙𝜙0 denotes the mean prediction across all samples; 𝑀𝑀 
represents the total number of features. 

𝑓𝑓(𝑥𝑥) = ln
𝑃𝑃

1 − 𝑃𝑃
(7) 

Where 𝑓𝑓(𝑥𝑥)  represents the processed value; P denotes the 
model prediction result. 

Ⅳ. RESULTS AND ANALYSIS 

A. Landslide influencing factor analysis 
The multicollinearity test results for the 12 LIFs calculated 

using Python are shown in Table Ⅱ. The VIF values of the 
selected LIFs are all below 5, indicating no significant 
multicollinearity among the 12 LIFs. Rainfall has the highest 
VIF value and the lowest TOL value, at 3.0043 and 0.3329, 
respectively, so no adjustments to the LIFs are necessary. They 
can be used as explanatory variables for landslides 
susceptibility modeling in this study.  

The frequency ratio statistics of the classified influencing 
factors can further analyze the spatial development patterns of 
landslides. The frequency ratio results for all LIFs are shown in 
Fig. 9. The elevation results show that landslides mostly occur 
below 3000m, with the highest propensity between 1500-
2000m, corresponding to the elevation along riverbanks. The 
slope range with the highest landslide propensity is 30°-45°. 
The profile curvature results show similar landslide 
propensities within the ranges (-20,0) and (0,20). The TWI 
values show a generally negative correlation with landslide 
propensity. The annual average rainfall results show that 
landslides mostly occur in the range of 600-900 mm/year; 
rainfall can destabilize slopes and trigger landslides. The land 
use results show that forest areas have the highest landslide 
propensity, as the strong transpiration of forests can induce 
heavy rainfall, increasing landslide risk. The NDVI results 
show that landslide propensity is higher within the range of 0.4-
0.7, indicating that vegetation cover indirectly affects slope 
stability. The lithology results show higher FR values under 
conditions of mixed sedimentary rocks and carbonate 
sedimentary rocks, indicating a higher landslide propensity on 
soft rock slopes. The soil type results show higher FR values 
under conditions of Cambisols and Luvisols, indicating a higher 
landslide propensity in fine-textured soils. These types of 
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lithology and soil, with higher landslide propensity, are mostly 
distributed along riverbanks. The results for distance to roads, 
rivers, and faults show a negative correlation with landslide 
propensity. Compared to other factors, the FR results for 

lithology, soil type, distance to rivers, and distance to faults 
show very clear landslide propensities, confirming the 
rationality of the chosen disaster-pregnant environmental 
factors.  

 

 
Fig. 9 Area proportion, landslide area proportion and FR value of each LIF subcategory. (i)The land use types include: Cultivated 
Land (1), Forest (2), Grass Land (3), Shrubland (4), Wetland (5), Water Body (6), Artificial Surfaces (7). (g) The lithology types 
include: Acid plutonics (1), Acid volcanic (2), Unconsolidated sediment (3), Carbonate sedimentary rock (4), Intermediate 
plutonics (5), Intermediate volcanics (6), Siliciclastic sedimentary (7), Mixed sedimentary rock (8), Basic plutonics (9), 
Metamorphics (10). (h) The soil types include: Anthrosols (1), Chernozems (2), Cambisols (3), Leptosols (4), Luvisols (5), 
Phaeozems (6), Planosols (7), Regosols (8). 

TABLE Ⅱ 
THE VIF AND TOL VALUE OF LIFS MULTICOLLINEARITY 

ANALYSIS 
LIFs VIF TOL 

Altitude 2.74 0.37 
Slope 1.91 0.52 
Profile curvature 1.05 0.96 
TWI 1.92 0.52 
Rainfall 3.00 0.33 
Land use 1.08 0.93 
NDVI 1.68 0.60 

Lithology 1.18 0.85 
Soil type 2.0812 0.4805 
Distance to roads 1.3837 0.7227 
Distance to rivers 2.5869 0.3866 
Distance to faults 1.0893 0.918 

 

B. Evaluation of model performance 
Hybrid models are an important approach to improving the 

performance of machine learning models [17], [36]. The 
performance of the DF model significantly influences the 
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performance of hybrid models in this study. To validate the 
performance of the DF model, we also employed RF, SVM and 
CNN for susceptibility modeling, with model parameters 
determined through trial and error. Similar to the CNN-DF 
model, we also established CNN-RF and CNN-SVM models. 
To ascertain whether the features derived from convolutional 
operations of CNN improve the predictive results of the DF 
model compared to the original features, the testing set 
evaluation metrics are presented in Table Ⅲ and Fig.10. The 
CNN-DF model not only outperforms the DF and CNN models 
but also surpasses all other single and hybrid models in accuracy. 
The DF model shows significantly higher evaluation metrics 
compared to the SVM, RF, and CNN models, indicating that 
both the DF model and the CNN-DF model exhibit good fitting 
accuracy and predictive performance. When the features 
processed by CNN are input into the DF classifier, the model's 
predictive performance improves, producing more accurate 
susceptibility results. The DF classifier achieves better 
recognition with the new features compared to the original 
features. In Fig. 10b, the CNN-SVM model shows an increase 

in AUC by 0.0013 compared to the SVM model, but a decrease 
by 0.0124 compared to the CNN model. The hybrid model of 
SVM did not achieve the expected improvement in evaluation 
metrics. In contrast, the CNN-RF model shows an increase in 
AUC by 0.0033 and 0.0011 compared to the RF and CNN 
models, respectively, consistent with the trend of AUC 
improvement seen in the CNN-DF model. This indicates that 
the strategy of hybrid modeling is feasible.  
 

TABLE Ⅲ  
ACCURATE METRICS FOR DIFFERENT MODELS USING 

TESTING DATASET 
Models ACC Precision Recall F1-score 
SVM 80.29% 0.7622 0.8699 0.8125 
RF 80.48% 0.7949 0.8216 0.8080 
CNN 80.86% 0.7712 0.8773 0.8209 
DF 82.71% 0.8077 0.8587 0.8324 
CNN-SVM 80.30% 0.7828 0.8439 0.8122 
CNN-RF 80.48% 0.7790 0.8513 0.8135 
CNN-DF 82.90% 0.7960 0.8848 0.8380 

 
Fig. 10 ROC curves of different models using testing dataset. 

 
C. LSM 

The trained single models and hybrid models were applied to 
predict and visualize landslide susceptibility across the entire 
Bailong River Basin. The final LSMs clearly illustrate the 
susceptibility in different areas, aiding government and the 
public in disaster prevention planning. Due to the uneven 
distribution of susceptibility probabilities, natural breaks 
classification was used to categorize the results into very high, 
high, medium, low, and very low susceptibility[37], [38]. The 
natural breaks method identifies natural groupings inherent in 
the data, maximizing differences between categories while 
ensuring values within each category are as similar as possible. 
The LSMs for each model are shown in Fig. 11. To highlight 
differences in model susceptibility results, specific areas were 
enlarged to show more detailed features. Generally, the majority 
of very high susceptibility (VHS) areas in the CNN, DF, and 
CNN-DF models are distributed along riverbanks, with 
concentrated VHS regions in the central part of the study area, 
corresponding to the spatial distribution of rainfall. In the CNN 

results, concentrated VHS areas also appear in the northwest 
and southeast boundaries, correlating with high rainfall regions, 
indicating the CNN model's sensitivity to rainfall features. In 
the CNN-DF results, these concentrated areas are reduced, 
indicating the improvement in model accuracy. In terms of area 
proportions for each susceptibility level, the DF model's VHS 
areas account for only 25.1%, and VHS areas for 6.22%, which 
is not conducive to landslide prevention. In contrast, the CNN 
model shows relatively high proportions of very high 
susceptibility (VLS) and VHS areas, which is also not ideal. 
The CNN-DF model resolves this issue, with its VLS and VHS 
areas falling in between the proportions of the two single 
models, enhancing reliability. Similar phenomena are observed 
in the CNN-SVM and CNN-RF results, where the proportion of 
VLS and VHS areas is significantly reduced, demonstrating the 
effectiveness of the hybrid model improvement strategy. 
Comparing the DF model's susceptibility results with those of 
RF, SVM, and CNN models, RF and DF results are similar, 
whereas SVM and CNN show large VHS areas in the northwest 
boundary, affecting result reliability.  
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Fig. 11 LSMs generated using (a) SVM, (b) CNN-SVM, (c) RF, (d) CNN-RF, (e)DF, (f) CNN-DF, (g) CNN. 
 

The proportion of slope units with historical landslides in the 
VHS level can also validate LSM reliability [39]. As shown in 
Fig. 12, we counted the proportion of landslide slope units in 
each susceptibility level for the seven models. In the CNN-DF 
model, 90.76% of slope units with historical landslides fall into 
the VHS area, the highest among all models, exceeding the DF 
and CNN models by 0.58 and 3.51, respectively. Similar 
improvement trends were observed in the CNN-SVM and 
CNN-RF models. These phenomena are also visible in detailed 

figures, indicating the hybrid models' enhanced prediction 
accuracy. Compared to single models, the DF model has a 
higher proportion of historical landslides in the VHS area than 
the SVM and RF models, demonstrating DF's excellent 
predictive capability, closely related to the superior 
performance of the CNN-DF model. The statistical results of 
landslide slope units align with the model evaluation metrics in 
section 4.2, confirming that the CNN-DF model has the best 
performance and accuracy.  
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Fig. 12 Percentage of historical landslide slope units in landslide susceptibility classes. 

 

Ⅴ. DISCUSSION 

A. Performance of models 

1) Advantages of Deep Forest 
Despite the numerous landslide susceptibility models based 

on machine learning and deep learning, models like DF that can 
automatically determine parameters and halt training when 
performance no longer improves are rare. This characteristic 
eliminates the need for manual hyperparameter tuning, making 
the prediction results more rational and accurate. SVM, a 
classic machine learning model, classifies using a hyperplane 
with hyperparameters determined through grid search [40]. 
However, it performs the worst in terms of the proportion of 
historical landslide slope units, indicating its insufficient ability 
to capture nonlinear relationships. RF is a tree-based ensemble 
learning method. Comparing various accuracy metrics, the 
performance of DF exceeds that of RF. This is because RF only 
trains multiple decision trees simultaneously and uses a voting 
mechanism to obtain the final result, enhancing prediction 
accuracy [41], [42]. In contrast, DF introduces a cascade 
structure, which allows for more comprehensive feature 
learning. Additionally, the use of k-fold cross-validation helps 
avoid overfitting, thereby improving the accuracy of the 
landslide susceptibility assessment model. While CNN 
demonstrates good performance in feature extraction and 
classification, training a higher-performance model requires 
significant expertise in model architecture design and 
hyperparameter tuning [14]. The DF model has the advantage 
of complexity being adaptively adjusted based on the input 
training data, making it broadly applicable to datasets of 
different scales. 

2) Advantages of hybrid model 
Ensemble learning is gaining popularity, especially in 

complex environments and large-scale scenarios, where hybrid 
models often yield better predictions and higher accuracy than 
single base models. Hybrid models can provide high-quality 
predictions when different models yield varying results in the 
same region [43]. Due to the limited application of DF in 
landslide susceptibility, there is currently no hybrid model 
incorporating DF for this purpose.  

Both CNN and DF represent cutting-edge deep learning 
models. CNN employs convolutional layers for powerful 
feature extraction and offers structural flexibility. It has been 
applied multiple times in landslide susceptibility mapping, 
consistently achieving excellent prediction results [19]. A 
trained CNN exhibits stable feature learning without overfitting, 
enabling the extraction of high-quality data features. The DF 
model has only one parameter, the number of cascade layers, 
which is automatically determined during the training process. 
By combining the advantages of both models, we innovatively 
propose the CNN-DF model. This hybrid model focuses solely 
on the structure to build a highly robust CNN. For performance 
evaluation, it is crucial that the training and testing sets have 
similar distributions. The evaluation metrics derived from such 
a testing set can more accurately reflect model performance 
[44]. In this study, the training and testing sets were selected 
based on similar environments, encompassing various complex 
geological conditions of landslides, thus meeting the 
requirement of similar distribution. According to the evaluation 
metrics, our constructed CNN model exhibits excellent 
predictive ability and is suitable for feature extraction. 
Comparing the accuracy metrics of the testing set, the 

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2025.3541638

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



12 
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 
performance of the CNN-DF model is superior to that of the DF 
model. Further comparison of the proportion of historical 
landslide slope units reveals a 0.58% improvement in the CNN-
DF results over the DF model, indicating that the CNN-DF 
model produces the most optimal results. Additionally, we 
selected a landslide not included in the training and testing sets 
for susceptibility comparison and field validation to assess the 
model's accuracy. As shown in Fig. 13, the location of this 
landslide was predicted as VHS by both the CNN and DF 
models in part, whereas the CNN-DF model predicted the entire 
area as VHS. This indicates that the CNN-DF model, by 
combining the strengths of both models, achieved more 
accurate predictions. 

 

 
Fig. 13 (a) Google Earth image, (b) field verification photo, (c) 
LSM generated using CNN, (d) LSM generated using DF, (e) 
LSM generated using CNN-DF. 

 

 
Fig. 14 (a) The LSM result of CNN-DF . (b-n) Stacked bar chart of the area proportion of the five susceptibility classes in each 
LIF subcategory. 
3) Analysis of landslide-prone areas 

Fig. 14 presents a stacked bar chart showing the area 
proportions of the five susceptibility levels within each LIF 
classification. This provides a quantitative and intuitive 
observation of the distribution of landslide-prone areas [45]. 
The distribution of VHS areas within the factors correlates 
clearly with the frequency ratio analysis results of the factors, 
further demonstrating the reliability of the hybrid model. The 
VHS area proportion is negatively correlated with the distance 
to rivers, faults, and roads. Rivers and faults are considered 
internal fixed features of the study area. Roads are generally 
constructed along human settlements, indicating that human 
activities contribute to the occurrence of landslides. The VHS 
proportion shows distinct patterns in specific lithological and 
soil type categories, with mixed sedimentary rock, carbonate 
sedimentary rock, cambisols and luvisols predominantly 
distributed along riverbanks, underscoring the close 
relationship with internal fixed features. The non-landslide 
samples were selected based on similar environmental 

constraints where landslides develop. In terms of land use, VHS 
areas are predominantly in forests, where strong transpiration 
increases the frequency of rainfall. The less evident patterns in 
other factors do not imply a lack of contribution, as landslide 
development and triggering result from the combined effect of 
multiple factors. 

 

B. SHAP analysis 
The SHAP algorithm calculates the marginal contributions of 

the 256 sequential features extracted by the CNN to the model's 
predictions, providing both global and local explanations for the 
model. SHAP values are determined by the magnitude of the 
feature values of the samples[46]. Based on the SHAP 
algorithm, the feature importance ranking of the CNN-DF 
model can be obtained (Fig. 15). Fig. 15a shows the global 
feature importance, where the mean absolute SHAP value of 
each feature across all given samples is considered as the 
importance of that feature. Fig. 15b is a summary plot, which 
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combines feature importance and feature value changes, 
showing the SHAP value of each feature for single sample. The 
most important feature is feature 245. Among the top 20 
features displayed, except for features 134 and 126, all other 
features show a negative contribution as their values increase. 
Fig. 16 is a dependence plot, illustrating the interaction effects 
of features 245 and 254 on the model's prediction results. Using 

the SHAP algorithm to visualize local explanation information, 
a waterfall plot for a single sample is obtained (Fig. 17). In the 
displayed top 10 features, features 3 and 63 promote the 
occurrence of landslides, while the remaining features inhibit 
landslides. The local explanation plots based on the SHAP 
algorithm can effectively elucidate the reasons behind the 
prediction results of individual samples. 

 

 
Fig. 15 Plots of feature importance ranking. 

 
Fig. 16 SHAP dependence plot for feature 245 and 254. 

 
Fig. 17 The influence of single feature on model prediction. f(x) denotes the predicted value of a single sample; E[f(x)] denotes the 
expected value of f(x) for all samples. 
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C. Generalization ability of the proposed model 

To validate the generalization capability of the proposed 
model, we conducted a test in the main urban area of Lanzhou 
City. Detailed information on historical landslide data and 
influencing factors can be found in the literature[5]. The dataset 
was constructed based on raster units. Non-landslide units were 
randomly selected in equal numbers from non-landslide areas 
based on the existing landslide units. The dataset was split into 
a training set and a validation set at a 7:3 ratio. The model 
structure and hyperparameter settings were kept consistent with 
those used in the Bailong River Basin. The test results showed 
that the proposed model achieved an accuracy of 96.21%, an 
F1-score of 0.9626, and an AUC value of 0.9898 on the 
validation set, outperforming the SVM, RF, and CNN models. 
The predicted susceptibility map is shown in Fig. 18. Compared 

to the LSMs produced by the SVM, RF, and CNN models, the 
LSM generated by the proposed model shows a smaller area of 
VHS around historical landslides and the largest proportion of 
VLS areas, which is more favorable for landslide prevention 
and control [31]. The experimental results demonstrate that the 
proposed model performs excellently across different scenarios 
and exhibits strong generalization capability. 

 
In summary, the CNN-DF model leverages the optimization 

capabilities of DF to effectively handle classification problems 
in high-dimensional feature spaces. It avoids overfitting and 
poor classification performance issues associated with 
traditional CNN methods due to fully connected layers. These 
innovations confer the model with excellent performance and 
flexibility in classification tasks.  

 

 
Fig. 18 LSMs of the main urban area of Lanzhou City. 

 
 

Ⅵ. CONCLUSION 
This study presents a LSA model that combines CNN and DF, 

applied to the Bailong River Basin in China. It is the first 
instance of using DF in LSA. The CNN's multiple 
convolutional layers are employed to extract high-level features, 
which are then used as inputs for the DF model instead of raw 
data. The performance of the CNN-DF model was validated 
using relevant evaluation metrics and compared with the 
prediction results of CNN, DF, SVM, RF, CNN-SVM, and 
CNN-RF. By comparing various accuracy metrics, landslide 
susceptibility maps, and the historical landslide slope unit 
proportions in VHS, the following conclusions were drawn: (1) 
DF outperforms CNN, SVM, and RF in prediction capability, 
and CNN-DF outperforms CNN-SVM and CNN-RF, indicating 
the superior performance of DF. (2) The prediction ability of 
CNN-DF is superior to that of DF, with an AUC value increase 
of 0.02 and an improvement of 0.58% in the historical landslide 
slope unit proportion. This demonstrates that the features 

extracted by CNN are more conducive to identification by DF 
classifier, further enhancing the predictive accuracy and 
performance of DF. Additionally, the SHAP algorithm was used 
to explain how the model achieves its predictions. Therefore, 
the CNN-DF model is feasible for LSM, offering higher 
efficiency and more accurate results. The LSM results of this 
study can provide a scientific basis for landslide prevention and 
disaster management in the target area. In the future, we will 
explore more ideal landslide susceptibility models.  
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