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EMSNet: Efficient Multimodal Symmetric Network
for Semantic Segmentation of Urban Scene from

Remote Sensing Imagery
Yejian Zhou, Yachen Wang, Jie Su, Zhenyu Wen, Puzhao Zhang, Wenan Zhang

Abstract—High-resolution remote sensing imagery (RSI) plays
a pivotal role in the semantic segmentation (SS) of urban
scenes, particularly in urban management tasks such as building
planning and traffic flow analysis. However, the dense distribution
of objects and the prevalent background noise in RSI make it
challenging to achieve stable and accurate results from a single-
view. Integrating Digital Surface Models (DSM) can achieve high-
precision SS. But this often requires extensive computational
resources. It is essential to address the trade-off between ac-
curacy and computational cost and optimize the method for
deployment on edge devices. In this paper, we introduce an
efficient multimodal symmetric network (EMSNet) designed to
perform SS by leveraging both optical and DSM images. Unlike
other multimodal methods, EMSNet adopts a dual encoder-
decoder structure to build a direct connection between DSM
data and the final result, making full use of the advanced DSM.
Between branches, we propose a continuous feature interaction
to guide the DSM branch by RGB features. Within each branch,
multi-level feature fusion captures low spatial and high semantic
information, improving the model’s scene perception. Meanwhile,
knowledge distillation (KD) further improves the performance
and generalization of EMSNet. Experiments on the Potsdam and
Vaihingen datasets demonstrate the superiority of our method
over other baseline models. Ablation experiments validate the
effectiveness of each component. Besides, the KD strategy is
confirmed by comparing it with the Segment Anything Model
(SAM). It enables the proposed multimodal SS network to
match SAM’s performance with only one-fifth of the parameters,
computation, and latency.

Index Terms—Remote Sensing Image Interpretation, Semantic
Segmentation, Symmetric MultiModal, Segment Anything.

I. INTRODUCTION

ACCURATE target segmentation in high-resolution im-
ages (HRI) is essential for various remote sensing ap-

plications [1]–[3]. With massive large-scale images captured

Yejian Zhou, Yachen Wang, and Wenan Zhang are with College of Infor-
mation Engineering, Zhejiang University of Technology, Hangzhou, 310023,
P.R.China.

Jie Su and Zhenyu Wen are with Institute of Cyberspace Security, Zhejiang
University of Technology, Hangzhou 310023, P.R.China.

Puzhao Zhang is with Key Laboratory of Collaborative Intelligence Sys-
tems of Ministry of Education of China, Xidian University, Xi’an 710071,
P.R.China, and also with Department of Urban Planning and Environment,
Royal Institute of Technology KTH, Stockholm 100 44, Sweden;

This work was supported by the National Nature Science Foundation
of China under Grant 62471438, 62003251, and 62472387, the Zhejiang
Provincial Natural Science Foundation of China (Grant No. LY23F010012),
Zhejiang Provincial Natural Science Foundation of Major Program (Youth
Original Project) under Grant LDQ24F020001. (Corresponding author: Jie
Su, email: jieamsu@gmail.com;)

by spaceborne imaging sensors, deep learning techniques have
emerged as a prevalent approach to address this challenge. In
this context, urban scene segmentation has attracted extensive
attention due to its key role in land use, urban expansion
monitoring, and disaster management [4]–[6]. Compared with
natural scenes, urban scenes usually have more complex struc-
tures, diverse object categories, and higher occlusion, which
increases the difficulty of the segmentation task. Consequently,
there is a growing focus on devising deep neural networks
that strike a balance between segmentation accuracy and
computational efficiency, to adapt to these unique challenges,
making it a prominent area of research.

Recently, SS has undergone notable advancements driven
by convolutional neural networks (CNNs). CNNs excel in ex-
tracting intricate image features and accurately differentiating
objects based on size and spatial characteristics. Nonetheless,
accurately delineating the precise boundaries of targets using
CNNs remains a persisting challenge. After that, Unet [7] is
used to solve the segmentation task of medical images. It
combines encoder and decoder features into a ladder structure,
and has garnered attention for its remarkable performance
across diverse scenarios. Based on Unet, various studies have
proposed variant architectures to enhance the extraction per-
formance of buildings from RSI [8]–[10].

The development of remote sensing technology has brought
higher-resolution optical images, which present complex color
and texture details in significant background noise and vary-
ing target sizes. Moreover, the challenges of top-view-only
perspective and 2D space shadow interference further com-
plicate feature extraction. To tackle the issues, dual-stream
networks for segmentation have emerged. Existing research
has primarily concentrated on optical and DSM images [11]–
[13]. Xiu et al. [14] proposed MDAFNet, which utilizes
optical images to generate DSM and integrates optical and
DSM for segmentation. Fan et al. [15] proposed an informa-
tion exchange mechanism between optical features and DSM
features, enabling their interaction and representation in a
shared feature space. This approach facilitates the extraction of
complementary information from different modalities. Cui et
al. [16] introduced a multimodal gated segmentation network
based on frequency decomposition, where correlations were
established through low-frequency components, followed by a
gating mechanism to fuse modality-specific features.

However, the extended update cycle of DSM hinders its
ability to provide real-time change information. Some studies
have shifted focus to optical and SAR images [17]–[19].
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SAR systems operate independently of weather conditions,
guaranteeing consistent updates and providing abundant tex-
ture information. In addition, to achieve higher versatility and
accuracy, some researchers focus on large-scale models [20].
Du et al. [21] integrated the diffusion model with Mamba,
achieving promising results in the semantic segmentation of
optical and synthetic aperture radar (SAR) images. Kan et al.
[22] proposed MGFNet, a method for multimodal semantic
segmentation that leverages a gating mechanism for effective
feature integration. Liu et al. [23] combined the strengths
of convolutional neural networks (CNNs) and transformers,
proposing an internal self-attention mechanism to facilitate
multimodal information fusion for land cover classification.
Segment Anything Model (SAM) [24] has elevated SS to
unprecedented levels, demonstrating exemplary performance
across challenging scenarios.

Although the segmentation algorithms mentioned previously
have achieved notable advancements in performance, they
frequently demonstrate high complexity, often overlooking
considerations related to computational load and parameter
scale. As a result, these high-performance models tend to
feature numerous parameters and require substantial compu-
tational resources, leading to increased memory requirements
during deployment and reduced processing speed. Despite the
rapid progress in artificial intelligence, which facilitates the
integration of deep learning models with edge devices, such
as in-vehicle or spaceborne applications [25], [26], designing
lightweight models capable of achieving high-precision seg-
mentation within the constraints of limited hardware resources
remains a formidable challenge.

There is a pressing need for a novel architectural paradigm
to strike a balance between model complexity, computational
efficiency, and analytical capability. Therefore, we propose a
solution: the efficient multimodal symmetric network (EM-
SNet). EMSNet efficiently uses RGB images and DSM data,
achieving high performance and computational efficiency. EM-
SNet consists of two parallel networks, containing a sym-
metrical encoder-decoder. This design allows for obtaining
results of different attributes, which are then integrated into
a comprehensive segmentation map. Due to the limitations
of DSM data, the results of the DSM branch have more
errors. Therefore, we introduce the SAGate as the bridge to
facilitate continuous feature interaction, using RGB features
to guide the DSM branch in achieving accurate segmentation.
Within each branch, multi-level feature fusion enhances spatial
and semantic features and prevents information loss during
upsampling. Furthermore, inspired by the structures of SAM
and EMSNet, a knowledge distillation strategy is designed to
enable EMSNet to show superior performance in complex
SAR scenes. Extensive experiments on two DSM datasets
confirm that EMSNet significantly outperforms existing mod-
els, and results on the SAR dataset show that the distillation
strategy improves the generalization of EMSNet.

In summary, our contributions are summarised as follows:
• The proposed EMSNet comprises two parallel networks,

linking RGB and DSM data to the final result and
fully utilizing advanced attributes of multimodal data. We
explore the optimal fusion strategy between RGB and

DSM, and continuous and multi-level feature interactions
guide the DSM stream with RGB features to prevent
performance degradation caused by lightweight. Exper-
iments show that EMSNet achieves SOTA performance
with minimal cost, ensuring real-time application of edge
devices.

• To enhance the generalization of EMSNet for diverse
scenes, we use a knowledge distillation (KD) strategy to
allow the model to utilize the advanced encoding and
decoding information provided by the SAM in complex
scenes. The strategy effectively improves the spatial un-
derstanding of the model and produces accurate segmen-
tation results. This approach combines KD strategy and
SAM and provides new insights and solutions for efficient
multimodal networks applicable in multiple scenes.

Organization. In Section II, we review the existing work on
semantic segmentation. We propose the details of EMSNet and
knowledge distillation strategy with SAM in Section III. The
discussion of experiments is given in Section IV. In Section
V, we conclude our paper.

II. RELATED WORK

Recently, semantic segmentation for remote sensing has
made rapid development. Depending on the input data, the re-
search can be divided into unimodal and multi-modal methods.
On one hand, unimodal networks often use specialized com-
ponents to enhance performance. Addressing downsampling
challenges in large-size images, Huynh et al. [27] proposed
Magnet, a progressive semantic segmentation framework.
Magnet processes refined segmentation outputs in multiple
stages, preserving crucial details during the downsampling.
Lee et al. [28] devised a semi-supervised learning framework.
They leverage targeted data augmentation and a well-designed
objective function to enable the model to excel in recognizing
small and complex-shaped buildings. For agricultural applica-
tions, Zhang et al. [29] introduced the Fine Pyramid Scene
Parsing Network (PSPNet), designed for PoISAR images.
Meanwhile, the transformer has gradually gained attention
in unimodal methods and has been widely used in building
extraction tasks [30], [31].

On the other hand, with the advancement of satellite image
resolution and recognition of complex remote sensing scenes,
unimodal algorithms fall short, paving the way for multimodal
models that harness the strengths of diverse data sources to
achieve enhanced performance. For RGB and DSM images,
Liu et al. [32] introduced AFNet, employing a multi-layer
architecture featuring a scale feature attention module. AFNet
effectively enhanced small object features. Ma et al. [33]
proposed a multimodal method, MSFNet, which leverages
cross-attention for fine-resolution segmentation. Zhou et al.
[12] used DSM data to achieve unsupervised segmentation
of remote sensing optical images. Iyer et al. [34] integrated
information similarity from two modalities based on graph
networks and created a fusion graph to achieve segmenta-
tion. Wang et al. [35] proposed a multimodal feature self-
attention fusion module that applies to various data types,
including DSM images. For RGB and SAR images, Wu et
al. [36] devised a cross-fusion module to blend optical and
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SAR features and proposed multimodal aggregation to achieve
specialized high-level feature fusion. Li et al. [18] proposed a
progressive fusion framework to extract buildings and optimize
the edge details of buildings. Xiao et al. [37] proposed a modal
intrinsic noise suppression module that effectively eliminated
noise in SAR images. Yao et al. [38] proposed a general
multimodal framework, ExViT, to address the land cover clas-
sification problem. ExViT integrates separable convolutions
with a visual transformer to process multimodal images in
parallel and introduces a cross-modal attention mechanism to
facilitate the exchange of information across heterogeneous
modalities. Hong et al. [39] introduced a new multimodal
dataset comprising hyperspectral, multispectral, and SAR im-
ages. Additionally, they developed a high-resolution domain
adaptation network and a novel loss function for solving the
class imbalance problem.

Significant progress has been made in remote sensing
segmentation, but it is difficult for these networks to break
through hardware bottlenecks, thus the necessity of designing
lightweight models. More importantly, lightweight achieved
with simplified structures will inevitably cause a loss of
accuracy, which needs to be targeted and efficiently improved
to enhance the expressive power of the model.

III. METHOD

In this section, we first introduce the overall framework of
the proposed method. Subsequently, we integrate the architec-
ture of EMSNet to analyze its feasibility in DSM scenarios.
Finally, we expound on the SAM-based distillation strategy
for complex SAR scenarios, ensuring that EMSNet maintains
its exemplary performance.

A. Overview

The overall operating framework of the proposed method
is illustrated in Figure 1. In Stage 1, the EMSNet serves
as a segmentation network designed for low computational
complexity and few parameters. For simple DSM scenes,
the outputs from the RGB and DSM branches complement
each other, enabling EMSNet to achieve optimal performance.
However, while the use of simple CNNs effectively reduces
parameters and computational demands, it often compromises
the quality of feature representation. In complex SAR scenar-
ios, radar characteristics such as scattering and interference
pose challenges for EMSNet, making it difficult to extract
accurate features, resulting in suboptimal performance and
hindering the generalization. Therefore, in stage 2, we propose
a SAM-based distillation strategy to improve EMSNet’s per-
formance in SAR scenarios. SAM is the first large-scale model
with excellent performance in visual segmentation, which has
powerful feature extraction and zero-shot capabilities. This
strategy enables EMSNet to approximate the performance of
SAM in the SAR scenario but with much fewer parameters,
computations, and delays.

B. EMSNet Details

The easy accessibility of RGB images enables real-time
monitoring of targets, capturing local details within the area.

Conversely, DSM has a long acquisition period and provides
a macro view of the integrated status and changes, reflecting
the overall characteristics and long-term trends of the area. To
leverage the advantages of both modalities and achieve modal
complementarity, we propose the dual-stream network EM-
SNet, which uses RGB and DSM images for urban resource
segmentation.

EMSNet (Stu)

RGB DSM

RGB SAR

Stu Best

KD

SAM (Tea)
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1

2

2

Suboptimal

Fig. 1. The overall operating framework of proposed method.

Unlike traditional multimodal networks, EMSNet employs
an encoder-decoder structure in both independent streams, as
illustrated in Figure 2. This independent structure captures
different features and unique information from RGB and DSM
data, enabling each modality’s advantages to be reflected in the
final result. The encoder uses symmetric feature extraction
to generate feature maps with matching dimensions from
RGB and DSM images, denoted as 𝐹𝑃𝑅1−5 and 𝐹𝑃𝐷1−5.
The decoder mirrors the encoder, with 𝐹𝑃𝑅5 and 𝐹𝑃𝐷5
as the inputs. The outputs of the two decoding streams
are refined through trans-convolution blocks and multi-level
feature fusion. Given the challenges of generating a complete
segmentation map from the DSM image, we employ SAGate
as a bridge to continuously introduce RGB features into the
DSM stream for guidance. The RGB stream results focus
on intra-class segmentation, subdividing each target locally.
In contrast, the DSM stream results emphasize inter-class
segmentation, using height information to distinguish edges
of categories effectively. The integration of the two branch
results amplifies the role of DSM data, fully leveraging the
advantages of multimodal data.

1) Dual-branch Feature Extraction: In designing the en-
coder for EMSNet, we prioritized lightweight architecture,
employing a simplified residual structure as shown in Figure
2. The encoder achieves a computational cost of 5.8𝐺 and a
parameter count of 8.6𝑀 , significantly lower than ResNet34,
which requires 9.2𝐺 and 21.8𝑀 respectively. The input 𝑋
is processed through three convolutional layers to produce
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𝑌
′
, a feature map with reduced channels and dimensions.

On the residual side, a 1 × 1 convolution is used for a
skip connection, generating 𝑋

′
. The final output features are

obtained by combining 𝑋
′

and 𝑌
′
. Mathematically, it can be

expressed as

𝑶𝒖𝒕 = RE𝐿𝑈 (𝐶𝑜𝑛𝑣∗3 (𝒙) + 𝐷𝑆(𝒙)) (1)

where 𝐶𝑜𝑛𝑣∗3 denotes three convolution layers, DS denotes
down-sample of residual side.

The RGB and DSM branches consist of five-layer residual
structures. In the DSM branch, the initial convolutional chan-
nel is set to 1, and each layer comprises two residual blocks,
ensuring the extraction of DSM features. The dimensions of
the input RGB and DSM images are denoted as (𝐻,𝑊).

Following the five-layer residual, the feature maps 𝐹𝑃𝑅1−5
and 𝐹𝑃𝐷1−5 exhibit dimensions of (𝐻/2,𝑊/2), (𝐻/4,𝑊/4),
(𝐻/8,𝑊/8), (𝐻/16,𝑊/16), and (𝐻/32,𝑊/32).

Given the limited contextual information available in DSM
images, we incorporate RGB features at each layer of the
DSM branch to guide its processing. RGB features convey
rich visual information, such as color and texture, while
DSM features capture height-related data. The integration of
these two modalities enhances the DSM branch’s capability
to interpret object shapes and structures, enabling a more
holistic understanding of the scene. At each layer, the RGB
features are fused with DSM features to form the input for the
subsequent layer in the DSM branch. This fusion process can
be mathematically represented as follows:

𝑭𝑷𝑫𝒊 = 𝑆𝐴𝐺 (𝑭𝑷𝑹𝒊−1, 𝑅𝐸𝑆
×2 (𝑭𝑷𝑫𝒊−1)) (2)

where 𝑅𝐸𝑆×2 denotes the two residual blocks at each layer
of the DSM branch, and SAG represents the SAGate feature
fusion module.

2) Feature Reconstruction: The decoder reconstructs the
high features aiming to match the dimensions of the original
input. This process involves upsampling and convolution, as
commonly employed in prior research. Initially, upsampling
involves bilinear interpolation, though parameter-free, result-
ing in a significantly increased computational load per sub-
sequent convolution. Additionally, reducing channels through
convolution before employing upsampling to recover the size
can introduce inaccuracies in the final results. When the gen-
erated pixels exhibit excessive sameness, potentially leading
to the loss of target edges.

Therefore, we introduced restore blocks within the five
layers of the decoder, depicted in Figure 2. Initially, a con-
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volutional layer is employed to reduce the channels of high
features, followed by applying a trans-convolutional layer to
restore the dimension of the features before output. This ef-
fectively addresses the above problem with minimal parameter
costs. The restore block enhances the representation of EM-
SNet, yielding superior results, particularly given the complex
structure of RSI. Meanwhile, To improve the perception of
details, we propose applying multi-level feature fusion within
the two branches. This involves passing low-level fine-grained
features and high-level abstract semantics from the encoder to
the decoder, thereby enriching the spatial detail information.
Meanwhile, the decoder mirrors the structure of the encoder,
with the DSM branch continuously guided by RGB features
to enhance feature recovery. Therefore, the RGB and DSM
decoded stream can be represented as follows:

𝑹𝑺𝑹𝒊 = 𝑅𝑆(𝐶𝑎𝑡 (𝑹𝑺𝑹𝒊+1, 𝑭𝑷𝑹𝒊)) (3)

𝑹𝑺𝑫𝒊 = 𝑅𝑆(𝐶𝑎𝑡 (𝑹𝑺𝑫𝒊+1, 𝑆𝐴𝐺 (𝑹𝑺𝑹𝒊+1, 𝑭𝑷𝑫𝒊))) (4)

where 𝑅𝑆 stands for restore block, and 𝐶𝑎𝑡 represents the
concatenation operation.

The final output can be expressed as:

𝑶𝒖𝒕 = 𝑆𝑖𝑔(𝐶𝑜𝑛𝑣×2
𝐶 (𝑆𝐴𝐺 (𝑹𝑺𝑹1, 𝑹𝑺𝑫1))) (5)

where 𝑆𝑖𝑔 represents the 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 function, while 𝐶𝑜𝑛𝑣×2

denotes two convolution layers and 𝐶 is the output channel,
which is 6 in this paper.

3) Separation-and-Aggregation Gate Module: To promote
the integration of features across two modalities, we employ
the SAG [40] for feature fusion, delineated in Figure 4. The
SAG contains two operations: Feature Separation (FS) and
Feature Aggregation (FA).

The FS is applied to calibrate input feature maps denoted
as 𝑅𝐺𝐵𝑖𝑛 and 𝐷𝑆𝑀𝑖𝑛. First, the primary objective is to attain
less noisy filter maps, achieved through global pooling and
MLP operations. 𝑅𝐺𝐵𝑖𝑛 and 𝐷𝑆𝑀𝑖𝑛 are cascaded and pooled,
yielding the cross-modality attention vector 𝐼 = (𝐼1...𝐼2𝐶 ).
This vector serves as the global descriptor for the entire input.
Subsequently, the cross-modality gates 𝑊𝑟𝑔𝑏 and 𝑊𝑑𝑠𝑚 are
derived from vector 𝐼 using an MLP network. Finally, filtered
maps 𝑅𝐺𝐵 𝑓 𝑖𝑙𝑡𝑒𝑟 and 𝐷𝑆𝑀 𝑓 𝑖𝑙𝑡𝑒𝑟 result from the multiplication
of inputs with the cross-modality gates. Through an addition
operation, accurate feature maps 𝑅𝐺𝐵𝑟𝑒𝑐 and 𝐷𝑆𝑀𝑟𝑒𝑐 are
obtained from the filter maps and inputs. The concept is to
leverage visual data from the RGB feature to reduce noise in
DSM and utilize height information from the DSM feature
to calibrate the texture of RGB. This calibration ensures the
robustness of fused feature maps by integrating favorable
information from the inputs.

The FA is employed to combine features from distinct
modalities. The color and edge features from the RGB image
and the height feature from the DSM are harmonized at a suit-
able spatial location. 𝑅𝐺𝐵𝑟𝑒𝑐 and 𝐷𝑆𝑀𝑟𝑒𝑐 are concatenated,
yielding two spatial-wise gates, 𝐺𝑟𝑔𝑏 and 𝐺𝑑𝑠𝑚, derived from
the concatenated vector using two distinct mapping functions.

Following applicating the softmax function, the weights 𝐴𝑟𝑔𝑏
and 𝐴𝑑𝑠𝑚 are obtained.
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(6)

The final merged feature 𝐹𝑜𝑢𝑡 is obtained by multiplying
the inputs and the weights. The formula is expressed as

𝑭𝒐𝒖𝒕 = 𝑹𝑮𝑩𝒊𝒏 × 𝑨𝒓𝒈𝒃 + 𝑫𝑺𝑴𝒊𝒏 × 𝑨𝒅𝒔𝒎 (7)

C. Knowledge Distillation

1) Motivation for Knowledge Distillation: As mentioned
earlier, although DSM images provide stable and accurate
height data, they are updated infrequently and are unsuit-
able for dynamic monitoring. In addition, DSM images are
obtained through optical sensors or LiDAR, and clouds and
insufficient lighting can lead to incomplete data or reduced
quality. In contrast, SAR images are unaffected by weather
and lighting conditions and offer wide coverage, effectively
compensating for the limitations of DSM images. However,
SAR images present challenges due to complex scattering
mechanisms, resulting in reflections, shadows, and speckle
noise. EMSNet needs more complex architectures to achieve
generalization in SAR scenarios, which contradicts our goal of
maintaining lightweight. These challenges limit the practicality
of EMSNet. Improving the performance in SAR scenarios
while ensuring lightweight is another serious problem that this
paper urgently needs to solve. Knowledge distillation (KD) is
a trustworthy solution that can improve performance without
changing the structure of the model. Recent advancements,
such as large-scale models like the Segment Anything Model
(SAM), have significantly improved the effectiveness and
insight of KD techniques.

2) Fine-tuning the Teacher Model: As shown in Figure
5, in our implementation, we fine-tune the SAM using the
RSI to handle SAR images more effectively. A notable fine-
tuning technique is Low-Rank Adaptation (LoRA). Compared
with conventional methods that adjust all parameters in SAM,
LoRA allows SAM to update a small number of important
parameters during training. This approach not only preserves
SAM’s robust segmentation performance but also reduces
computational overhead. Specifically, we utilize pre-trained
weights and many parameters of the SAM encoder. Each
transformer block incorporates a LoRA bypass, allowing for
the targeted adjustment of specific parameters. Given the
significance of the attention mechanism in transformers, we
apply LoRA to the query, key, and value projections within this
mechanism. In our practice, we focus on applying LoRA to
the projection layers of both the value and query, which yields
impressive results. Furthermore, we utilize the default prompts
in the prompt encoder, as additional prompts necessitate more
extensive annotations. The LoRA process unfolds as follows:

Δ𝑊 = 𝐵 × 𝐴
𝑊 ′𝑥 = 𝑊𝑥 + Δ𝑊𝑥

(8)

where 𝑊 ∈ R𝑎×𝑏 is a pre-trained weight matrix, 𝐴 ∈ R𝑟×𝑏 and
𝐵 ∈ R𝑎×𝑟 are two trainable low-rank decomposition matrices,
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Fig. 5. Two fine-tuning strategies are explored for the Segment Anything Model (SAM). The left encoder remains frozen, and its parameters are not updated.
Strategy A and Strategy B represent two distinct methods for fine-tuning the decoder.

Δ𝑊 is the update part, 𝑊 ′ is the new weight matrix, and 𝑟 is
the rank of LoRA, which is set to 4 in our work.

In Figure 5, Strategies A and B represent two distinct
approaches for retraining the mask decoder. In strategy A,
the features from the two modalities are inputted to the mask
decoder. Subsequently, we employ SAGate to integrate the
two logit information streams, producing the final output. This
retraining of the decoder enables it to leverage multimodal
information, resulting in optimal performance effectively. Con-
versely, we seek to minimize SAM’s computational load by
fusing the features before inputting them into the decoder
in strategy B. However, this early fusion risks obscuring
the inherent information of each modality, which can impair
the decoder’s ability to fully comprehend each modality’s
characteristics, ultimately leading to suboptimal results.

3) Knowledge Transfer Process: To improve the efficiency
of EMSNet in SAR scenarios, we employ KD to extract
knowledge from SAM. Two prevalent distillation methods,

logit-based and feature-based, can be used for various tasks,
including segmentation. We dynamically combine these meth-
ods to achieve optimal results, as illustrated in Figure 6.

KD involves the simulation of the teacher model from
the student, emphasizing structural similarity. MGD [41] in-
troduces a new KD paradigm, generating teacher features
instead of mere simulation. First, a random mask selectively
covers the pixels of the student features, and then teacher
features are generated through a simple block. In our context,
we select the feature maps from SAM as teacher features,
denoted as 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑡𝑒𝑎. For the five-layer feature maps of
EMSNet, we choose the maps with the same dimensions as
𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑡𝑒𝑎 (though the number of channels differs), denoted
as 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑡𝑢. Using MGD, we perform feature-based KD
to generate teacher features. It is crucial to note that the pre-
trained encoder in SAM is not entirely stable for processing
RSI, as training data differs from remote sensing data. This
instability can cause SAM to generate error features, risking
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Fig. 6. Details of the knowledge distillation process. The right side offers a macroscopic overview of the entire process, while the left side provides a granular
depiction of feature learning. Here, the purple circle represents the parameter update status of the student model. The specifics of the key component, Masked
Generative Distillation (MGD), are shown in the pink box.

parameter update confusion in the student model, as depicted
in step 3 of Figure 6. To mitigate this risk, we also introduce
logit-based KD. Due to the mask decoder being fine-tuned
with remote sensing datasets, it can correct error features and
generate new logits. This approach helps constrain the stability
of the entire network’s parameter updates and reinforces
feature extraction.

In general, considering the EMSNet’s structure and the
training process of SAM, KD occurs in the four branches
of the encoder and decoder. However, because the frozen
encoder will produce error features and the simple mask
decoder cannot yield reliable logits, we use the loss of the
final result and the ground truth as a threshold. When the
distillation loss at the feature or logit stage exceeds a two-fold
threshold, these losses are excluded from backpropagation.
This dynamic integration of feature-based and logit-based KD
ensures a more efficient distillation.

D. Loss Function

The loss function is composed of two components: LossM
and LossD. LossM, a cross-entropy function, quantifies the
discrepancy between the prediction and the ground truth.
Given the inherent imbalance in datasets across various cate-
gories, we assigned weights to these categories. On the other
hand, LossD is formulated as the mean squared error (MSE)
function, signifying the distillation loss. The expressions for
LossM and LossD are presented below

𝐿𝑜𝑠𝑠𝑀 ( 𝒑, 𝒈) = −
∑︁
𝑖, 𝑗

𝒈(𝒊, 𝒋 ) × 𝑙𝑜𝑔 𝒑 (𝒊, 𝒋 ) (9)

where 𝑝 represents the prediction, and 𝑔 represents the ground
truth.

𝐿𝑜𝑠𝑠𝐷 (𝒔, 𝒕) = 1
𝑤 × ℎ

𝑤∑︁
𝑖=0

ℎ∑︁
𝑗=0

(𝒔(𝒊, 𝒋 ) − 𝒕 (𝒊, 𝒋 ) )2 (10)

where 𝑠 is student features, 𝑡 is teacher features, 𝑤 and ℎ

represent width and height. Total loss can be expressed as

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝑀 + (𝐿𝑜𝑠𝑠𝐷1 + ... + 𝐿𝑜𝑠𝑠𝐷4)/4 (11)

where 𝐿𝑜𝑠𝑠𝐷𝑖 represents the distillation errors of the four
features.

IV. EXPERIMENT

In this section, we first evaluate the feasibility of EMSNet
in segmentation tasks by comparing it with seven other classic
two-stream networks on the Potsdam and Vaihingen datasets.
Second, to validate the effectiveness of the distillation strategy,
we conduct experiments on the Potsdam dataset. Third, facing
complex SAR images and a broader range of scene categories,
we compare the proposed method with other methods on the
WHU and DFC datasets to assess the generalization of our
approach. Subsequently, we perform ablation experiments to
ascertain the importance of each key component. Finally, we
calculate the computation, parameters, and latency of EMSNet
and compare them with other methods.

A. Execution Details and Datasets

Training Details. The proposed method is developed using
the PyTorch framework, which is publicly accessible. The
maximum epoch of training iterations is 60 to achieve conver-
gence. The initial learning rate is 1.0×10−3 and is decayed by
a factor of 0.1 every 20 epochs. To improve the computational
efficiency, all experiments are conducted on the GPU and
utilize a dual-core parallel network. We optimized the network
parameters using the Adam optimizer.

Metrics. We employ three recognized metrics for model
evaluation: Overall Accuracy (OA), Kappa coefficient, and
Intersection-over-Union (IoU). OA quantifies the ratio of
accurately predicted pixels in the ground truth. The Kappa
coefficient as a reliable measure for segmentation results,
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Fig. 7. Segmentation visual results with other multi-modal models on the Potsdam dataset. A: Optical images. B: DSM images. C: Ground Truth. D: EMSNet
(Ours) results. E: MCANet results. F: ESANet results. G: RedNet results. H: ACNet results. I: CMGFNet results. The black box shows the difference in local
details.

is derived from the confusion matrix. It ensures recall for
a smaller percentage of categories when OA is high. IoU,
commonly utilized in segmentation tasks, measures the dis-
similarity between the outcome and the ground truth.

𝑂𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (12)

𝐾𝑎𝑝𝑝𝑎 =
(𝑃0 − 𝑃𝑒)

1 − 𝑃𝑒

(13)

𝐼𝑜𝑈 =
𝑃𝑟𝑒 ∩ 𝐺𝑡
𝑃𝑟𝑒 ∪ 𝐺𝑡 (14)

where the 𝑇𝑃, 𝑇𝑁 , 𝐹𝑃, and 𝐹𝑁 correspond to True-
Positive, True-Negative, False-Positive, and False-Negative,
respectively. 𝑃0 denotes the ratio of the sum of diagonal
elements to the sum of all elements in the matrix, and 𝑃𝑒

signifies the ratio of the sum of elements in the same row and
column to the square of all the elements. Here, 𝑃𝑟𝑒 and 𝐺𝑡
represent the predicted result and ground truth, respectively.

𝑚𝐼𝑜𝑈 =
1
𝐶

∑︁𝐶

1
𝐼𝑜𝑈𝑖 (15)

where 𝐶 is the total number of classes.
Comparative Baselines. In this paper, we compare our

proposed method with several typical multi-modal algorithms.
Among them, RedNet, ACNet, and ESANet are suitable for
segmenting cars, pedestrians, low vegetation, etc. CMGFNet
and BuildFormer are designed to extract buildings. MCANet
is used for land cover segmentation in urban areas.

• RedNet [42]: One method utilizes a skip connection struc-
ture to establish spatial links between the encoder and
decoder. Agent blocks are employed to reduce encoding
channels, with RGB and depth maps as input.

• ACNet [43]: ACNet proposes a three-parallel branch
architecture, inserting an attention auxiliary module into
each encoder layer. This design balances feature distribu-
tion, enabling the network to focus more on the effective
area of the image. Segmentation is conducted using RGB
and depth maps.

• TFNet [44]: A two-stream image fusion network pro-
cesses multispectral and panchromatic images. TFNet
aims to fuse these features and reconstruct a pan-
sharpened image from the fused feature map.
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Fig. 8. Segmentation visual results with other multi-modal models on the Vaihingen dataset. A: Optical images. B: DSM images. C: Ground Truth. D:
EMSNet (Ours) results. E: MCANet results. F: ESANet results. G: RedNet results. H: ACNet results. I: CMGFNet results. The black box shows the difference
in local details.

• ESANet [45]: ESANet introduces a unique learnable
upsampling technique, distinct from bilinear upsampling.
The decoder integrates the Unet structure to perform
segmentation on RGB and depth maps.

• CMGFNet [46]: Designed for building extraction us-
ing RGB and DSM images. The two encoders gener-
ate modality-specific features, achieving high-precision
extraction through feature fusion. The encoder utilizes
residual depth-separable convolution for upsampling, im-
proving computational efficiency.

• MCANet [47]: An approach incorporates a cross-modal
attention mechanism and a multi-level feature fusion
module for land use segmentation using optical and SAR
images.

• PACSCNet [48]: A progressive symmetric cascade net-
work with a dual-pyramid decoder is used to extract and
merge similarities in cross-modal features.

• FTransUnet [13]: A multi-level multimodal method pro-
vides a robust and effective multimodal fusion backbone
for semantic segmentation by integrating CNN and Vit
into a unified fusion framework.

Datasets. We employ the Potsdam, Vaihingen, WHU-Opt-
Sar, and DFC2023 datasets for method evaluation. The Pots-
dam and Vaihingen encompass RGB and DSM images. In
contrast, the WHU-Opt-Sar and DFC2023 contain RGB and
SAR images.

• Potsdam Dataset: The dataset comprises 38 IR-RGB
and DSM images, each with a resolution of 5 cm and
dimensions of 6000×6000 pixels. It is categorized into
six classes: impervious surface, building, low vegetation,
tree, car, and background.

• Vaihingen Dataset: The Vaihingen consists of 33 image
pairs, featuring a resolution of 9 cm and dimensions of
2000×2500 pixels. Each RGB image is accompanied by
corresponding DSM data, and the categories align with
the Potsdam dataset.

• WHU-Opt-Sar Dataset: The WHU dataset encompasses
an extensive area of approximately 50, 000𝑘𝑚2 in Hubei
Province, China. This dataset comprises 100 NIR-RGB
and SAR images, each with dimensions of 5556×3704
pixels. A total of seven classes: farmland, city, village,
impervious surface, forest, road, and other.
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TABLE I
QUANTITATIVE COMPARISON RESULTS WITH OTHER DUAL-STREAM BASELINES ON THE POTSDAM DATASET.

Method OA ↑ Kappa ↑ mIoU ↑ Accuracy/IoU
imp surface building low vege tree car

MCANet 91.0 87.5 78.1 90.9 85.6 99.3 88.5 94.6 88.1 61.0 56.5 96.1 71.8
ESANet 91.9 88.8 81.0 91.9 87.7 98.8 92.3 93.8 88.0 76.3 55.0 98.0 82.1
RedNet 91.1 87.6 80.5 91.2 88.6 97.6 84.7 93.4 86.6 72.8 59.4 98.9 83.2
ACNet 92.2 89.3 82.6 91.1 87.6 97.4 92.5 94.2 88.3 92.8 66.1 98.3 78.4
CMGFNet 92.8 90.0 82.0 91.5 88.8 99.4 92.9 95.7 90.1 81.9 66.0 98.7 72.4
PACSCNet 92.0 88.9 82.5 93.2 90.1 96.4 90.4 92.1 87.0 91.7 59.1 97.9 85.8
FTransUnet 91.5 88.4 81.8 89.8 87.3 97.4 90.2 93.5 87.0 91.3 62.1 98.9 82.2
Ours 93.1 90.4 82.7 91.7 90.1 98.2 92.0 96.4 90.4 87.7 72.6 98.0 68.7

TABLE II
QUANTITATIVE COMPARISON RESULTS WITH OTHER DUAL-STREAM BASELINES ON THE VAIHINGEN DATASET.

Method OA ↑ Kappa ↑ mIoU ↑ Accuracy/IoU
imp surface building low vege tree car

MCANet 93.6 84.3 56.9 97.6 93.0 92.1 88.4 12.9 12.1 94.5 85.9 99.5 05.1
ESANet 94.6 86.7 67.2 97.4 93.8 95.2 89.3 22.1 19.3 99.2 81.5 95.7 52.0
RedNet 94.7 87.1 62.3 97.6 93.9 93.5 90.4 33.8 28.1 98.1 84.2 96.8 14.7
ACNet 94.8 87.1 64.5 97.8 93.9 94.8 89.8 21.6 19.5 98.9 84.3 97.9 35.1
CMGFNet 93.9 84.6 62.9 98.6 93.3 91.3 89.2 06.7 05.3 90.1 79.5 75.5 47.1
PACSCNet 86.0 80.8 65.5 83.9 72.0 88.5 83.7 70.7 51.6 90.7 84.5 98.0 35.5
FTransUnet 85.8 80.2 66.5 86.2 75.8 93.8 85.6 39.7 33.2 93.8 80.4 98.3 57.5
Ours 94.9 87.4 70.2 97.7 93.8 95.3 89.4 32.1 27.8 93.1 88.2 73.4 51.8

TABLE III
QUANTITATIVE ANALYSIS OF DIFFERENT SAM TRAINING STRATEGIES ON THE POTSDAM DATASET.

Method OA ↑ Kappa ↑ mIoU ↑ Accuracy/IoU
imp surface building low vege tree car

A 94.6 92.0 88.9 89.6 88.2 99.2 92.4 92.7 84.3 96.9 92.3 97.9 87.5
B 93.5 90.4 87.5 88.1 85.7 97.7 90.3 92.2 83.7 98.3 92.3 98.7 85.5

TABLE IV
QUANTITATIVE ANALYSIS OF SAM-BASED DISTILLATION STRATEGIES ON THE POTSDAM DATASET.

Method OA ↑ Kappa ↑ mIoU ↑ Accuracy/IoU
imp surface building low vege tree car

Original 93.1 90.4 82.7 91.7 90.1 98.2 92.0 96.4 90.4 87.7 72.6 98.0 68.7
Kd-A-e 92.9 89.3 83.3 90.6 85.6 99.2 91.3 84.8 79.4 73.8 73.0 97.3 87.5
Kd-A-d 91.6 87.6 81.1 84.1 82.2 99.6 92.4 93.4 66.2 80.3 78.1 97.6 86.6
Kd-B-ed 93.1 89.8 85.9 88.3 84.7 97.4 91.0 93.3 81.1 91.4 88.3 98.2 84.1
Kd-A-ed 94.1 91.2 87.6 88.8 87.4 99.2 92.1 89.8 79.3 97.6 91.5 98.0 87.9

• DFC2023 Dataset: The DFC2023 dataset provides satel-
lite images, digital surface models, and semantic labels
of buildings in 17 cities from six continents. The dataset
contains 1773 images, each sized at 512×512 pixels, with
accurately annotated semantic labels.

In experiments, each image in all datasets is segmented into
multiple 256×256 images, subsequently partitioned in a 7:1:2
ratio for the training, validation, and test sets, respectively.

B. Performance Evaluation

In this section, we compare the proposed EMSNet with
seven other multi-modal networks on the DSM dataset men-
tioned in Section IV-A.

The quantitative comparisons for the Potsdam and Vai-
hingen datasets are detailed in Table I and Tabel II. We

evaluated seven dual-stream segmentation networks, which are
MCANet, ESANet, RedNet, ACNet, CMGFNet, PACSCNet
and FTransUnet. Notably, in all experiments, we excluded the
background without impacting the training process or statis-
tical measures. The results demonstrate EMSNet’s superiority
across all metrics, surpassing other methods in Overall Accu-
racy (OA), Kappa, and mIoU. MCANet designed for RGB and
SAR images, doesn’t perform optimally on these datasets. In
the loss function, we use the weight matrix according to the
percentage of each category. This strategy resulted in improved
performance for the car with the lowest percentage. However,
this emphasis may have adversely affected the results of
other smaller percentage categories, such as trees in Potsdam
and low vegetation in Faihingen. Consequently, future efforts
should concentrate on optimizing performance for unbalanced
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TABLE V
QUANTITATIVE COMPARISON RESULTS OF DIFFERENT METHODS ON THE WHU-OPT-SAR DATASET.

Method OA ↑ Kappa ↑ mIoU ↑ Accuracy/IoU
farmland city village water forest road others

SAM 81.7 74.2 50.7 68.4 62.1 58.1 34.1 83.0 50.8 88.0 76.6 90.8 83.2 91.0 24.3 58.7 23.7
MCANet 79.0 70.4 47.1 70.1 59.9 57.4 25.0 65.3 44.1 85.0 71.8 87.9 81.4 51.9 34.5 47.9 13.2
BuildFormer 80.0 71.8 48.1 65.9 59.0 56.9 30.3 75.6 49.2 87.6 71.8 90.4 82.1 66.9 23.9 58.9 20.6
TFNet 80.2 72.1 49.8 68.2 60.2 74.8 43.4 75.4 51.3 85.9 69.5 88.5 81.7 69.7 20.6 66.5 22.4
Ours 78.4 69.7 46.2 61.9 56.4 58.3 24.6 65.8 40.7 86.4 70.8 91.2 82.7 68.1 30.4 64.4 17.8
Ours-kd 81.2 73.3 49.1 70.2 63.5 57.5 26.5 68.2 44.8 85.0 73.6 91.8 82.5 72.3 26.9 61.5 26.1

TABLE VI
QUANTITATIVE COMPARISON RESULTS OF DIFFERENT METHODS ON THE

DFC2023 DATASET.

Method OA ↑ Kappa ↑ mIoU ↑ Accuracy/IoU
background building

SAM 92.8 80.0 82.3 95.1 91.0 85.3 73.5
BuildFormer 90.0 71.4 75.8 94.3 87.8 75.8 63.8
MCANet 89.9 70.6 75.2 95.2 87.9 72.5 62.6
TFNet 89.8 71.3 75.7 93.6 87.6 77.2 63.8
Ours 89.6 69.1 74.2 95.7 87.6 69.4 60.8
Ours-kd 90.7 73.2 77.1 95.0 88.6 76.5 65.6

categories.
Figure 7 and Figure 8 depict the visual comparison results

between our method and other baselines. In Figure 7, the first
four rows show that all baselines exhibit more instances of
misrecognition and underrecognition for the low vege and
tree categories. While our method shares a similar bias, it
effectively mitigates these errors, aligning with the findings
from the quantitative comparison. The fifth row in Figure
7 highlights that our method delivers superior visuals in
scenarios where different categories are interleaved. The uti-
lization of a linear interpolation upsampling method by other
baselines introduces errors in complex, alternating, multi-
category images, which might be related to our inference in
Section III-B2. The final row illustrates that the algorithms
yield commendable recognition results for images with dis-
tinct target contours, with some baselines displaying minimal
misrecognized regions.

C. Knowledge Distillation Results

In this part of the experiment, we evaluated the impact of
two training strategies on SAM and assessed the feasibility of
different distillation techniques using the Potsdam dataset.

The training results of SAM on the Potsdam dataset are in
Table III. A and B correspond to the strategies depicted in Fig-
ure 5 strategy A and B, respectively. The result validates that
empowering the decoder to assimilate information from RGB
and DSM features leads to enhanced accuracy. In strategy A,
SAM effectively learns the distribution of optical and DSM
data, thereby improving its interpretation of the entire scene.
This finding corroborates our hypothesis in Section III-C2 and
introduces further insights for subsequent knowledge transfer.

Table IV displays the quantitative results of EMSNet fol-
lowing knowledge distillation on the Potsdam dataset. With e
and d representing knowledge transfer for encoding features

and decoding logits, Kd-A and Kd-B denote distillation using
Strategy A and Strategy B. As previously discussed, relying
just on feature distillation results in poorer performance.
In addition, SAM’s decoder is a simplified version of the
transformer structure and has undergone fine-tuning, but it
is difficult to generate reliable logits entirely. Consequently,
employing distillation for logits weakens the functionality of
EMSNet, yielding subpar results. The final findings indicate
that optimal performance of the entire distillation strategy is
attained only when both aspects complement each other. The
analysis reveals a substantial improvement in all three metrics:
OA, Kappa, and mIoU increased by 1%, 0.8%, and 5.1%,
respectively. Compared to other baselines, it outperformed by
1.3%, 1.2%, and 5.2%, respectively. This noteworthy enhance-
ment validates the effectiveness of our ultimate knowledge
distillation strategy. In Figure 9, visualization results post-
distillation depict significant improvement in EMSNet’s recog-
nition of categories like trees, cars, etc., leading to a reduction
in visual errors.

D. Complex Scenario Assessment

In this section, to verify the generalization of the proposed
KD method, we conducted further experiments using the WHU
and DFC2023 datasets, which contain RGB and SAR images.
The former contains more categories, and the latter is used for
building extraction.

Tables V and VI show the qualitative comparison results
on the two datasets, and Figure 10 shows the visualization
results of the WHU dataset. Due to the complexity of SAR
images, EMSNet performs poorly on the WHU and DFC2023,
which is expected and acceptable. To keep the lightweight of
EMSNet, we avoid convolution layer stacking and complex
structures like transformer and attention mechanisms, which
pose challenges for feature extraction from SAR images.
Nevertheless, by integrating SAM, EMSNet still outperforms
other advanced methods, underscoring the effectiveness of our
distillation strategy. It is important to note that the WHU
dataset contains more categories, and presents a significant
challenge for segmentation, resulting in EMSNet performing
substantially below other baselines. Consequently, the effect
of KD is more pronounced. In contrast, the building is the
only foreground in the DFC2023 dataset, leading to a smaller
performance gap between EMSNet and other baselines.

These results demonstrate the effectiveness of the proposed
KD algorithm in SAR scenarios. The lightweight design of
EMSNet reduces computing resource requirements, which is
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Fig. 9. The knowledge distillation visual results on the Potsdam Dataset. From top to bottom are Optical images, Ground Truth, SAM results, EMSNet
results, EMSNet-kd results. The kd represents knowledge distillation. The black boxes highlight detail improvements.

crucial for practical applications. The proposed distillation
strategy optimizes EMSNet’s performance while maintaining
its simplicity. These advantages make EMSNet an attractive
choice in resource-constrained and enhance the practical ap-
plication of multimodal algorithms.

E. Ablation Experiment

We conducted ablation experiments on the Potsdam dataset,
dividing this section into two parts. One is to explore the con-
tributions of RGB and DSM images to segmentation results,
and the other is to examine the impact of different levels of
guidance in the DSM branch on the outcomes.

Table VII displays the results of the ablation study. In
this context, D and R indicate the provision of DSM and
RGB images to EMSNet, respectively. In multi-category tasks,
leveraging visual information such as color and texture usu-
ally yields better results. DSM images contain only height
information and lack sufficient contextual details. As a result,
RGB images with visual features significantly show better
performance compared to DSM images. The 𝑒𝑖 and 𝑑𝑖 indicate
guidance from RGB features at the 𝑖𝑡ℎ layer of the encoder
and decoder in the DSM stream. We select the second and
fifth layers to fusion features, representing low-level and
high-level features, respectively, as these are used in other

works commonly. The results show that feature fusion at
different layers has a certain impact on the DSM branch,
but feature guidance at each level is necessary to harness
fully the potential of RGB data. Most existing works employ
early and mid-fusion strategies. However, RGB and DSM
data exhibit substantial attribute differences, making early
fusion inadequate for fully leveraging the diverse information
sources. In addition, mid-fusion leads to insufficient interaction
between cross-modal data at specific stages. This results in
DSM information being inconsistently rich, compressed, or
even lost, thereby confusing parameter updates and potentially
degrading performance. Consequently, these fusion strategies
are unsuitable for the proposed two-stream parallel network.

It is worth noting that impervious surfaces lack significant
color variations in RGB images. The height information from
the DSM images can effectively distinguish between them,
leading to improved results. For buildings with shadow noise,
the DSM features help to reduce the noise, which enhances the
results significantly for this category. Cars and low vegetation
have similar heights in the DSM image, so a higher percentage
of pixels for low vegetation leads to poorer car results.
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Fig. 10. The images from WHU-OPT-SAR dataset and the visual results produced by different models. From top to bottom are Optical images, Ground
Truth, MCANet results, TFNet results, EMSNet (Ours) results, EMSNet-kd results. The kd represents knowledge distillation.

F. The Efficiency of Networks

In practical applications, the latency of algorithms holds
significant importance, particularly in large-scale remote sens-
ing data processing. Meanwhile, the number of parameters and
computations determine the feasibility of deploying algorithms
on mobile platforms with constrained resources. Therefore, in
this experiment, we assessed these metrics.

Table VIII illustrates the computation, parameters, and
latency of the above methods, all assessed on the RTX3090Ti.
Latency tests involved 1958 images with a batch size of 2,
mirroring real-world conditions closely. MCANet and SAM
adopt complex attention structures, while RedNet, ACNet,
and CMGFNet utilize deep residual structures in the encoder.
Consequently, these baselines do not possess any advantage in
terms of network efficiency. ESANet initially employs max-
pooling to diminish the dimensionality of the input image,
significantly reducing the computation of the entire network.
However, this operation selectively retains only the most
dominant features of the target, leading to the loss of other
relevant information, which is detrimental to the segmentation
task. Contrarily, EMSNet achieves a minimal parameter and
reduces computational complexity through simplified feature
extraction and reconstruction modules, lowering hardware

requirements. Moreover, its utilization of multiple cross-modal
feature fusion techniques ensures accuracy, leading to optimal
segmentation performance. Additionally, its low latency en-
sures real-time effectiveness in practical applications.

G. Experiment Discussion

All the experiments presented above fully demonstrate the
feasibility, effectiveness, and generalization of the proposed
EMSNet. Additionally, EMSNet exhibits advantages over
other methods in terms of computation, parameter, and latency,
thus affirming its capability to achieve a superior balance
between accuracy and efficiency in segmentation tasks. Al-
though we have made progress in our study, it is important
to note certain challenges in the experiment. In dealing with
intricate remote sensing scenarios, leveraging multimodal data
proves advantageous for enhancing performance. However, a
notable issue arises from the imbalance in the proportion of
multi-category pixels within existing datasets. This imbalance
adversely affects the performance of categories with smaller
proportions, presenting a common challenge for all networks.
Although prior studies have attempted to address this issue
by devising specialized loss functions, a complete resolution
remains elusive. Future works should prioritize devising solu-
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TABLE VII
EVALUATION METRICS SCORE OF ABLATION EXPERIMENT ON THE POTSDAM DATASET. EXPERIMENTS WERE CONDUCTED ON MULTI-MODAL DATA AND

FEATURE FUSION STRATEGIES RESPECTIVELY.

Method OA ↑ Kappa ↑ mIoU ↑ Accuracy/IoU
imp surface building low vege tree car

D 51.1 34.8 35.2 56.8 40.4 99.8 55.8 16.7 13.8 05.6 02.2 99.3 63.7
R 87.4 82.5 78.2 91.0 78.4 81.3 70.7 92.1 86.4 84.3 70.6 98.6 85.0
D+R 90.1 86.3 78.8 90.8 88.0 98.9 83.4 89.0 84.0 79.3 58.4 97.6 80.1
D+R+𝑒2,5 87.0 81.8 76.7 91.3 76.9 75.1 66.0 95.4 89.6 78.2 67.7 98.6 84.1
D+R+𝑑2,5 88.2 83.4 75.0 90.3 82.1 87.7 73.6 96.0 88.1 50.2 44.9 98.3 86.5
D+R+𝑒1−5 92.0 89.0 79.7 91.3 88.4 98.4 93.4 93.7 88.1 84.7 64.0 98.5 64.6
D+R+𝑑1−5 90.9 87.4 78.4 90.1 88.8 98.9 89.6 91.2 85.5 84.2 54.6 98.0 73.3
D+R+𝑒1−5+𝑑2,5 92.5 89.7 81.6 90.3 89.0 97.3 91.3 97.0 89,6 85.7 71.8 98.3 66.3
D+R+𝑒2,5+𝑑1−5 92.7 89.9 82.0 90.7 89.1 96.8 91.3 97.2 90.3 87.3 72.6 98.7 66.6
Ours 93.1 90.4 82.7 91.7 90.1 98.2 92.0 96.4 90.4 87.7 72.6 98.0 68.7

TABLE VIII
QUANTITATIVE COMPARISON RESULTS OF NETWORK EFFICIENCY.

CONSIDERING THREE ASPECTS: COMPUTATION (GFLOP), PARAMETERS
(PARAMS), AND LATENCY.

Method GFLOPs ↓ Params/M ↓ Latency/s ↓
SAM 64.76 90.91 31.58
MCANet 88.63 72.03 19.31
ESANet 11.52 54.41 9.35
RedNet 21.21 81.94 12.11
ACNet 26.47 116.6 14.83
CMGFNet 38.83 85.22 9.25
Ours 14.34 15.26 7.61

tions for the sample imbalance problem. This could involve
designing plug-and-play modules applicable to all models or
refining existing datasets to achieve balanced distributions.
Such efforts will help advance the effectiveness of remote
sensing algorithms in handling diverse scenarios.

V. CONCLUSION

This paper presents EMSNet, an efficient segmentation
model integrating high-resolution RGB and DSM images
through dual-branch networks. To address accuracy loss due to
the lightweight, we introduce RGB-guided continuous feature
fusion, optimizing the outputs of the DSM branch. Concur-
rently, multi-level fusion effectively combines low-spatial and
high-semantic information, yielding fine-grained segmentation
maps. Moreover, we pioneer the application of a knowledge
distillation strategy based on SAM, significantly enhancing
EMSNet’s performance and generalization. Experimental eval-
uations on the Potsdam and Vaihingen datasets demonstrate
EMSNet’s superior accuracy and efficiency compared to ex-
isting models. Furthermore, results from the WHU-OPT-SAR
and DFC2023 datasets underscore the distillation strategy’s
potential to extend EMSNet’s applicability to complex sce-
narios. In the future, we will focus on addressing the uneven
distribution of categories and improving the performance of
small sample sizes.
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