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Abstract— Hyperspectral imaging (HSI) can capture a large 

amount of spectral information at various wavelengths, enabling 

detailed material classification and identification, making it a key 

tool in remote sensing, particularly for coastal area monitoring. In 

recent years, the CNN framework and transformer models have 

demonstrated strong performance in HSI classification, especially 

in applications requiring precise change detection and analysis. 

However, due to the high dimensionality of HSI data and the com-

plexity of spectral-spatial feature extraction, achieving accurate 

results in coastal areas remains challenging. This paper introduces 

a new hybrid model, CSTFNet, which combines an improved CNN 

module and dual-layer Swin Transformer (DLST) to tackle these 

challenges. CSTFNet integrates spectral and spatial processing ca-

pabilities, significantly reducing computational complexity while 

maintaining high classification accuracy. The improved CNN 

module employs one-dimensional convolutions to handle high-di-

mensional data, while the DLST module uses window-based multi-

head attention to capture both local and global dependencies. Ex-

periments conducted on four standard HSI datasets (Houston-

2013, Samson, KSC, and Botswana) demonstrate that CSTFNet 

outperforms traditional and state-of-the-art algorithms, achieving 

overall classification accuracy exceeding 99%. In particular, on 

the Houston-2013 dataset, the results for OA and AA are 1.00 and 

the kappa coefficient is 0. 976.The results highlight the robustness 

and efficiency of the proposed model in coastal area applications, 

where accurate and reliable spectral-spatial classification is cru-

cial for monitoring and environmental management. 
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I. INTRODUCTION 

YPERSPECTRAL imaging (HSI) is a versatile and effec-

tive remote sensing modality that records spectral in-

formation across multiple, very fine spectral bands be-

yond what could be distinguished under normal photo-

graphic methods. HSI plays a pivotal role in various climate and 

agriculture fields, providing precise spectral data that can detect 

subtle differences in earth observation, plant health, nutrient de-

ficiencies, and disease presence, which are often invisible with-

out monitoring. The technology has real-time monitoring and 

decision-making capabilities, thereby facilitating improve-

ments in resource management and sustainability in modern 

farming practices. 

HSI comprises hundreds of contiguous electromagnetic 

spectral bands, which are capable of capturing a wealth of in-

formation about the Earth's surface [1]. Each pixel in HSI con-

tains detailed spectral features that provide rich information 

about the material composition of the Earth's surface, enabling 

the accurate identification and classification of materials, ob-

jects and land cover types. Thus, HSI technology has been ex-

tensively employed in a multitude of disciplines, including ag-

riculture [2], environmental monitoring [3], mineral exploration 

[4], and earth sciences [5]. In order to fully exploit the potential 

of hyperspectral data (HSD), researchers have investigated a 

plethora of data processing methodologies, including data com-

pression [6], spectral unmixing [7], target detection [8], data re-

construction and recovery [9], and classification [10]. Among 

the numerous techniques available, classification plays a piv-

otal role in data interpretation and has garnered significant at-

tention from researchers. 

The past decades have seen tremendous breakthroughs in 

hyperspectral image classification (HSIC) [11,12]. Among 

them, traditional HSIC methods usually contain feature selec-

tion or feature extraction, and then the processed features are 

fed into a classifier. Commonly available classifiers are support 

vector machine (SVM) [13], k-nearest neighbor (K-NN) [14], 

random forest [15] and logistic regression [16]. However, tra-

ditional algorithms rely on artificially crafted features and can-

not fully utilize the inherent relationships in HSD, which may 

destroy the original spatial-spectral structure of the image and 

make it difficult to access the complex information in HSI, lead-

ing to unsatisfactory classification results [17]. In addition, tra-

ditional algorithms are often difficult to apply to different data, 

so choosing an appropriate feature extraction model has been a 

challenge [18,19]. 

H 
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Recently, the rapid development of deep learning has pro-

vided effective solutions for HSIC, including Capsule Net-

works (CapsNet) [20], Generative Adversarial Networks 

(GANs) [21], Graph Convolutional Networks (GCNs) [22], and 

Attention-Based Models [23] which mainly focused in improv-

ing the classification accuracy. Among them, convolutional 

neural networks (CNNs) have shown considerable promise in 

extracting spectral and spatial features [24-26]. CNN-based 

methods can usually be categorized into 1D, 2D and 3D CNNs, 

each capable of capturing different aspects of HSI. A 1D-CNN 

traverses the HSI using a 1D convolutional kernel to extract 

deep spectral features associated with each pixel [27]. 2D-CNN 

uses a 2D convolutional kernel to capture spatial information in 

different spectral bands [28]. 3D-CNN utilizes a 3D convolu-

tional kernel to process both spatial and spectral features [29]. 

Feature based processing methods have been added in ex-

isiting research to further improve the classification accuracy 

and reduce the classification time such as Hu et al. [30] applied 

1D-CNNs to HSI classification, successfully extracting deep 

spectral features but failing to capture spatial information. Roy 

et al. [31] proposed a hybrid spectral CNN (HybridSN) for 

HSIC, which combines a spectral-spatial 3D-CNN with a spa-

tial 2D-CNN. This architecture enables joint representation of 

spatial-spectral features from multiple spectral bands, effec-

tively reducing model complexity while delivering strong per-

formance across four public datasets. Gong et al. [32] devel-

oped a lightweight multi-scale squeeze-excitation pyramid 

pooling network that employs a multi-scale 3D CNN module 

alongside a pyramid pooling and squeeze-excitation module to 

enhance hierarchical spectral-spatial features, achieving high 

accuracy on benchmark datasets like Indian Pines, Salinas, and 

Pavia University. Despite many advancements in HSI classifi-

cation it still faces two primary challenges: 

1. The high dimensionality of HSD introduces significant 

computational complexity, increasing processing time.  

2. HSI contains both spectral information and spatial con-

text, making it challenging to achieve an effective and balanced 

fusion of these two aspects for accurate classification. 

To address these limitations, Hinton et al. [33] introduced 

Capsule Networks (CapsNet), which use capsules (groups of 

neurons) to describe the pose and existence probability of enti-

ties. Unlike scalar neurons in CNNs, capsules contain richer in-

formation, improving the network's ability to capture spatial 

and spectral features while reducing computational complexity. 

Similarly, Zhang et al. [34] proposed 1D-ConvCapsNet to ex-

tract spectral-spatial features, thus reducing overfitting and 

computational cost. Not only that, in order to solve the sequen-

tial problem of spectral data more effectively, Transformer was 

also applied to HSI classification, and Hong et al. [35] proposed 

a cross-layer hopping model for adaptively fusing the infor-

mation of each layer. Graph Convolutional Networks (GCNs) 

have also been introduced to model non-local dependencies by 

representing HSDs as graphs. Mou et al. [36] proposed a non-

local GCN for semi-supervised learning of HSI classification, 

achieving competitive results and high-quality classification 

graphs. In addition, Swin Transformers (ST), originally devel-

oped for visual tasks, were also used for HSI. Huang et al. [37] 

introduced a 3D version of ST to take advantage of the spatial 

and spectral properties of HSI. This model addresses the limi-

tations of traditional CNNs by employing multi-scale semantic 

representations and achieves excellent performance in HSI clas-

sification by reducing complexity. Ayas et al. [54] proposed a 

new spectral-swin transformer model for HSI classification. 

The modified model can process spatial and spectral features 

simultaneously and achieve good results. Long et al. [55] used 

ST to extract global and local spatial features and learned spec-

tral sequence information from adjacent bands of HSI, achiev-

ing good classification results. 

However, CNN network also faces challenges of not being 

able to capture long range dependencies as well as the global 

environment owing to the local features it employs. While ST 

has the ability of capturing the hierarchical features, but they 

face challenge in fully learning the spatial dependencies of the 

pixels. On the other hand, GCNs are good at modelling the spa-

tial relations however they are restricted by insufficient capa-

bility of processing spectrally high dimensional feature maps 

and therefore the interaction between the spectral and spatial 

domains can hardly be modelled sufficiently by merely using 

GCNs. In summary, the limitations of HSI classification mainly 

include the following aspects: 

1. Traditional machine learning methods, such as support 

vector machines (SVM) and k-nearest neighbors (KNN), are of-

ten limited by their inability to capture the complex spatial-

spectral relationships inherent in HSI data. 

2. Deep learning models, especially convolutional neural 

networks (CNNs), often have difficulties in capturing long-

range dependencies and are computationally expensive when 

processing high-dimensional HSI data. 

3. Transformer model approaches in HSI classification 

face challenges such as high computational requirements and 

limited integration with spectral information. 

To solve the above problems, we develop a hybrid model 

which consists of improved CNN and dual Swin-Transformer 

based Fusion network (CSTFNet) which offers solutions to the 

problem of dealing with high dimensional data with enhanced 

feature fusion and strong classification capability. CSTFNet 

also focuses on the problem of effectively integrating spectral 

and spatial information in HSI by combining the CNN net-

work's spectral processing with SwinTransformer's ability to 

capture global context. Our customized CNN module involved 

multiple convolutions and while transformers modules include 

Dual Layer-Swin Transformer (DLST) blocks, which can effec-

tively extract spectral and spatial information, and apply the 

model to HSI. The main contributions of this paper are as fol-

lows: 

1. In order to address the dimensionality and spectral noise 

issue associated with HSD, we use multilayer CNN module 

with one dimensional GlobalAveragePooling after convolution 

layers. It is an efficient step of percipient dimensionality reduc-

tion by summing up spectral feature vectors of the image across 

all the bands. This method helps the model to handle high-di-

mensional HSD with low computational cost and reduce the 

risk of being trapped in local optima or overfitting on spectral 

noise. 

2. To model both local and global spatial dependencies 

within the HSI, a window-based multi-head attention (WMHA) 

module within the DLST blocks is applied. This approach al-

lows for accumulation of detail in specific localized regions and 

progressive merging of these regions into deeper layers allow-

ing for both detailed capturing and overall context preservation. 
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The mechanism makes the computation to be faster by first re-

ducing attention on that region before widening the span of fo-

cus. 

3. The method we use here GELU (Gaussian Error Linear 

Unit) in the MLP block of the DLST in place of ReLU because 

it provides smoother non-linearity. This choice allows for better 

gradients flowing during multi classing and specially with HSD. 

Moreover, the integration dropout regularization contributes to 

enhancing the general and stable model by reducing model 

over-fit problems, particularly when training sample sizes are 

relatively small. 

The rest of this paper is organized as follows. Section 2 

introduces the basic principles of the proposed model, Section 

3 presents the experimental results, and Section 4 concludes. 

II. PROPOSED METHOD 

In this section, we introduce the proposed CSTFNet model for 

HSI classification, which integrates the CNN and Swin-

Transformer modules. The detailed architecture is illustrated in 

Figure 1.  

 

 
Figure 1. CSTFNet model based on CNN and DLST

A. CNN 

A convolutional neural network captures spatial features 

through a local receptive field (LRF), reduces the number of 

parameters by utilising weight sharing, and builds a powerful 

feature extraction capability by combining a nonlinear activation 

function and a downsampling operation. In practice, by stacking 

multiple convolutional layers, pooling layers and fully connected 

layers, complex tasks such as image recognition, semantic 

segmentation and natural language understanding can be 

modelled. The basic implementation flow of a convolutional 

neural network is illustrated in Figure 2. 

 
Fig. 2 Basic convolution flow 

The convolutional layer represents the fundamental 

component of a convolutional neural network (CNN), 

responsible for the extraction of features from the input data 

through the application of a convolutional kernel. Let us consider 

an input feature map, X, and a convolution kernel, K. The output 

of the convolution is calculated according to the following 

equation: 

 

1 1 1

0 0 0

( , ) ( , , ) ( , , )
h wk k C

m n c

Y i j K m n c X i m j n c b
− − −

= = =

=  + + +  (1) 

where b is the bias and Y is the output feature. 

Activation functions facilitate the introduction of non-linear 

mappings, thereby enabling the network to discern and process 

complex features. The most commonly utilized activation 

functions are ReLU, Sigmoid and Tanh. The pooling layer is 

employed for down sampling, which entails a reduction in the 

resolution of the feature map and a concomitant reduction in the 

amount of computation, while ensuring the preservation of the 

principal features. To illustrate, the maximum pooling is 

calculated in accordance with the formula presented in Equation 

2. 

 
1 1

0 0
( , ) max max ( , )

h wp p

m n
Y i j X i m j n

− −

= =
= + +  (2) 

In this context, " hp  " and " wp  " represent the height and 

width of the pooling window, respectively. The fully connected 

layer performs the function of spreading the multidimensional 

features into one-dimensional vectors and of carrying out feature 

fusion by means of a weight matrix. The output can be expressed 

as follows. 

 y W x b=  +  (3) 

where W is the weight matrix, x is the input vector and b is the 

bias. 

B. Dual Layer-Swin Transformer 

To process the feature vector output by the CNN module, this 

paper introduces the DLST module for global feature extraction. 
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Unlike the traditional ST, the primary focus here is to capture 

long-range dependencies and global context in one-dimensional 

data, as illustrated in Figure 3. 

 
Figure 3 DLST flow chart. 

The input is first divided into non-overlapping windows of size 

W, where W=7 in your model Each window represents a local 

portion of the input sequence that will be processed separately by 

the WMHA mechanism. 

Secondly, the WMHSA mechanism, the core component of 

the DLST, is applied to windows of size W=7. Self-attention 

enables the model to dynamically assign weights to different 

parts of the input sequence, effectively capturing long-range 

dependencies. For each window, attention is computed 

independently. 

For each token 
ix  , within a window, attention scores are 

computed by projecting the input sequence into query (Q), key 

(K), and value (V) matrices，As shown in Equation 4. 

 

( )

( )

( )

Q

K

V

Q XW Query

K XW Key

V XW Value

=

=

=

 (4) 

Where , , kd d

Q K VW W W R


   are learnable weight matrices and 

kd   is the dimension of the keys and queries. 

The self-attention calculation for each pair of tokens i and j 

within the window is provided in Equation 5. 

 ( , , ) max( )
T

k

QK
Attention Q K V Soft V=

d
 (5) 

Where  
1

kd
 is a scaling factor to prevent the dot products from 

becoming too large. 

To capture multiple types of relationships simultaneously, 

WMHSA is used. The input is divided into multiple heads, each 

with its own set of projections for Q, and V. 

For each head h, the attention output is computed as shown in 

Equation 6. 

 ( , , )h Qh Kh Vhhead Attention XW XW XW=  (6) 

Where , , kd d

Qh Kh VhW W W R


 are the learned projection matrices 

for head h. 

The outputs from each head are then concatenated and linearly 

transformed, as shown in Equation 7. 

 1 2 3 4( ) ( , , , ) OMultiHead X Concat head head head head W=  (7) 

Where kHd d

OW R


   is the output projection matrix. 

In a standard window-based attention mechanism, the 

attention only captures dependencies within each window, which 

might limit the global understanding of the input sequence. The 

DLST addresses this by introducing shifted windows. This 

allows the model to capture cross-window dependencies without 

directly increasing computational complexity. 

After the attention mechanism, the output is passed through a 

Feed-Forward Network (FFN)consisting of two fully connected 

layers with a GELU activation function in between, as shown in 

Equation 8. 

 
1 1 2 2( ) ( )FFN X GELU XW b W b= + +  (8) 

Where GELU is a smooth non-linear activation function that 

helps improve the learning of complex patterns. 

Layer normalization, as shown in Equation 9, is applied 

between the attention layer and the feed-forward layer. This step 

not only stabilizes the learning process but also ensures smooth 

gradient flow, contributing to more effective training. 

 
2

ˆ X
X



 

−
=

+
 (9) 

Where   and  2  are the mean and variance of input, and     

is a small constant to prevent division by zero. 

Finally, residual connections are added between the attention 

and feed-forward layers to simplify optimization and enhance 

model convergence. These connections help preserve the original 

information while allowing the model to refine its predictions 

through the learned transformations, improving both training 

efficiency and performance. 

C. Fusion Layer for CNN with Swin 

The spectral features and spatial features are efficiently 

integrated, and the specific expression is shown in Equations10. 

 

1

1
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max( )

n
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i
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i i

spatial i

k
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F S
n

QW KW
F Soft VW

d

F F F

=

=


=

= 



 (10) 

Where iS is the spectral feature map after the i-th convolutional 

layer, n is the number of spectral bands, and  spectralF  is the 

reduced spectral feature representation. Q, K, and V are the query, 

key, and value matrices derived from the reshaped spectral 

features, 
iW represents the window of attention, 

kd   is the 

dimensionality of the key, and spatialF  is the reduced spatial 

feature representation. fusedF represents the fusion feature. And 

 represents a fusion operation, which is implicitly performed 

by passing the reshaped spectral features through ST, allowing 

the model to combine spectral and spatial features in a 

hierarchical manner. 

This paper enhances the CNN block by incorporating 1D 

convolution in the CNN module to capture local features and 

identify short-term dependencies within the sequence, while the 

DLST is employed to capture long-range dependencies and 

understand the global context. Furthermore, the global average 

aggregation applied in the CNN block reduces the dimensionality 

of the output feature map, thereby facilitating more effective data 

management for the DLST module. This guarantees that the 

model can successfully process global dependencies without 

being overloaded by the input size. The window-based attention 

mechanism in the DLST permits the model to process larger 

input sequences without the quadratic complexity that is typically 

associated with full attention. When combined with the 
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dimensionality reduction from the CNN block, this enables the 

model to efficiently scale to handle large datasets. 

III. EXPERIMENTAL RESULTS 

This section focus on the experimental settings and 

description of characteristic of four data-sets. It concludes with 

an analysis of the experimental results. 

A. Data Description 

The experiment employed four standard hyperspectral datasets. 

The datasets used were Houston-2013, Samson, KSC, and 

Botswana. The Houston-2013 dataset comprises 144 bands 

spanning the wavelength range of 380–1050 nm, with an image 

size of 349 x 1905 pixels. The dataset encompasses both urban 

and rural areas of Houston-2013 and offers 15 distinct categories 

of ground object labels. It is an appropriate means of assessing 

the resilience of HSI classification models. Figure 4 (a) shows the 

true color map and ground truth. The Samson dataset contains 

156 bands (401–889 nm) and a resolution of 952 x 952 pixels. It 

captures soil, vegetation, and water scenes and is suitable for 

HSIC and spectral decomposition. Figure 4 (b) shows the true 

color map and ground truth. The Botswana dataset is also 

collected by AVIRIS, covering the Okavango Delta, containing 

242 bands (400–2500 nm), a resolution of 30 m/pixel, an image 

size of 1476 x 256 pixels, and 14 types of land objects, suitable 

for environmental monitoring and land classification. Figure 4 (c) 

shows the true color map and ground truth. The KSC dataset was 

collected by NASA's AVIRIS sensor and contains 176 bands 

with a resolution of 18 meters/pixel and an image size of 512 x 

614 pixels. It covers 13 types of ground objects, including 

vegetation, wetlands, and water bodies. Figure 4 (d) shows the 

true color map and ground truth. 

 
Figure 4. True color maps and ground truth for different 

datasets. (a)Houston-2013 dataset. (b) Samson dataset. (c) 

Botswana dataset. (d) KSC dataset. 

B. Experimental Setting 

The proposed algorithm is implemented using Python 3.8.5 

and PyTorch 1.7.0. The hardware setup for training consists of an 

i7-10700K CPU and an NVIDIA GeForce RTX 3090 GPU.  

To clearly demonstrate the performance comparison of 

different algorithms, this paper employs three commonly used 

evaluation metrics in HSI classification: overall accuracy (OA), 

average accuracy (AA), and the kappa coefficient. OA is used to 

evaluate the classification accuracy of the model across the entire 

dataset, and its calculation is presented in Formula 11. 

 1

n

i

i

TP

OA
N

==


 (11) 

Where 
iTP  is the number of correctly classified samples of the i-

th class, N is the total number of samples, and n is the total 

number of classes. 

AA calculates the classification accuracy for each category 

and then takes the average value to assess the consistency of the 

model's performance across all categories. The calculation 

formula is presented in Equation 12. 

 
1

1 n
i

i i

TP
AA

n T=

=   (12) 

Where 
iT  is the total number of true samples of the i-th class. 

The kappa coefficient is used to comprehensively evaluate the 

stability and consistency of the classification results. Its 

calculation formula is provided in Equation 13. 

 
1

OA PE
kappa

PE

−
=

−
 (13) 

Where PE represents the expected accuracy, which indicates 

the probability of the model correctly classifying samples under 

random classification. The calculation formula is provided in 

Equation 19. 

 
2

1

( )n
i i

i

T P
PE

N=


=  (14) 

Where 
iP   is the number of samples predicted by the model to 

be of class i. 

In addition, we use training time as another metric to evaluate 

the model's performance and further validate the effectiveness of 

the proposed algorithm by varying the ratio of different training 

samples. This study also compares the proposed algorithm with 

several state-of-the-art HSI classification methods, including 

CNN, KNN, LSTM, RNN, and GTFN. Ablation experiments are 

conducted on the proposed algorithm to further assess its 

effectiveness. For a fair comparison, all experiments are 

performed in the same environment, using the hyperparameters 

and recommended sample sizes as specified in the original papers. 

C. Comparative Experimental Analysis 

This section compares the performance of eight classic 

classification algorithms (CNN [31], CNN Encoder [44], SVM 

[13], KNN [14], LSTM [45], RNN [46], GTFN [47], and 

CSTFNet) on four hyperspectral datasets: Botswana, Samson, 

KSC, and Houston-2013. Tables 2 to 5 summarize the 

classification accuracy, overall accuracy (OA), average accuracy 

(AA), and Kappa coefficient of each algorithm in each category. 

The comparison of these indicators clearly shows that deep 

learning-based models generally outperform traditional machine 

learning algorithms, especially on more complex datasets. 

As shown in Table 3, the performance of traditional machine 

learning algorithms such as SVM and KNN is relatively poor. In 

categories 1, 2, 6, 7, and 13, the accuracy of SVM is 0, while 

KNN performs equally poorly, with an accuracy of 0 in 

categories 7 and 13. In particular, on category 13, the 

performance of KNN is extremely limited, with an accuracy of 

only 6.45% and 4.35%, respectively. In contrast, deep learning 

models performed well in most categories, with CNN Encoder 

and GTFN achieving high classification accuracy in multiple 

categories. The CSTFNet model proposed in this study 

performed particularly well in 7 and 13 categories, achieving 

Background
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Parking-lot-1

Grass-healthy

Residential

Parking-lot-2

Grass-stressed

Commercial
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Grass-synthetic
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Water
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Tree
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Swap
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(c) (d)

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2025.3530935

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



4 

 

accuracies of 51.61% and 47.83% respectively, significantly 

outperforming other algorithms. 

Table 2 shows that the overall accuracy (OA) of the CSTFNet 

model is 97.01%, the average accuracy (AA) is 97.3%, and the 

Kappa coefficient is 95.5%. In the water category, CSTFNet 

achieved an accuracy of 99.36%, which is close to perfect; in the 

tree category, the accuracy reached 99.55%, which is 

significantly better than other comparison methods. On the more 

challenging KSC dataset, as shown in Table 4, traditional 

algorithms (SVM, KNN) performed poorly in multiple categories, 

while CSTFNet performed well in category 12, with an accuracy 

of 64.25%, far exceeding other algorithms. In addition, the 

CSTFNet model also showed better performance in categories 5 

and 9, highlighting its stability and adaptability. 

As shown in Table 5, the classification performance of the 

CSTFNet model is close to the best, with an accuracy of 1.000 in 

categories 2, 3, 4, and 6, which is significantly better than other 

models, proving its efficiency in processing spectral and spatial 

information of HSI. The classification accuracy of the CSTFNet 

model remains high in all categories, with an OA of 99.6%, an 

AA of 99.61%, and a Kappa coefficient of 99.54%. These 

findings demonstrate that the CSTFNet model is capable of 

maintaining a high level of classification accuracy when 

processing more complex spectral data. 

In conclusion, the CSTFNet model presented in this study 

demonstrates superior performance compared to traditional 

machine learning algorithms and other deep learning models on 

four hyperspectral datasets. In particular, it demonstrates 

enhanced robustness and generalization ability in the context of 

more complex datasets, such as Botswana and KSC. The 

CSTFNet model is able to effectively extract both spectral and 

spatial features in complex scenes by leveraging the combined 

advantages of CNN and DLST, thereby significantly improving 

classification accuracy. Compared with traditional methods, 

CSTFNet shows obvious advantages and wide applicability in 

HSIC tasks, further verifying its effectiveness.

 

Table 2. Quantitative comparison of the Samson dataset (Best in bold) 

Class No. CNN CNN Encoder SVM KNN LSTM RNN GTFN Proposed 

Soil 0.965 0.990 0.966 0.984 0.345 0.924 0.976 0.928 

Tree 0.990 0.990 0.966 0.984 0.345 0.924 0.982 0.996 

Water 0.985 0.990 0.966 0.984 0.345 0.924 0.994 0.994 

OA(%) 98.01 99.28 96.57 98.39 34.46 92.35 98.28 97.01 

AA(%) 98.15 99.24 96.79 98.50 33.33 92.93 98.39 97.30 

Kappa×100 96.97 98.91 94.79 97.56 00.00 88.37 97.39 95.46 

 

Table 3. Quantitative comparison of the Botswana dataset (Best in bold) 

Class No. CNN CNN Encoder SVM KNN LSTM RNN GTFN Proposed 

0 0.278 0.500 0.685 0.389 0.500 0.519 0.241 0.482 

1 0.316 0.526 0.000 0.211 0.053 0.000 0.474 0.474 

2 0.517 0.667 0.000 0.483 0.567 0.400 0.267 0.483 

3 0.405 0.487 0.027 0.189 0.378 0.351 0.432 0.297 

4 0.357 0.571 0.107 0.339 0.071 0.036 0.304 0.429 

5 0.528 0.500 0.778 0.472 0.278 0.361 0.611 0.639 

6 0.353 0.471 0.000 0.196 0.039 0.177 0.314 0.431 

7 0.226 0.419 0.000 0.065 0.032 0.000 0.226 0.516 

8 0.571 0.651 0.635 0.286 0.635 0.397 0.587 0.492 

9 0.130 0.544 0.152 0.304 0.109 0.152 0.152 0.391 

10 0.435 0.261 0.101 0.087 0.015 0.015 0.290 0.290 

11 0.717 0.587 0.587 0.326 0.500 0.435 0.609 0.652 

12 0.780 0.407 0.644 0.339 0.695 0.509 0.339 0.610 

13 0.391 0.217 0.000 0.044 0.000 0.000 0.391 0.478 

OA(%) 44.77 49.54 29.38 28.15 31.23 26.46 36.46 47.08 

AA(%) 42.89 48.62 26.55 26.64 27.65 20.19 37.40 47.60 

Kappa×100 40.02 45.26 23.34 21.97 25.00 23.93 31.17 42.62 

 

Table 4. Quantitative comparison of the KSC dataset (Best in bold) 

Class No. CNN CNN Encoder SVM KNN LSTM RNN GTFN Proposed 

0 0.344 0.240 0.038 0.414 0.150 0.038 0.248 0.280 

1 0.051 0.240 0.000 0.051 0.000 0.000 0.051 0.026 

2 0.000 0.240 0.000 0.195 0.000 0.000 0.049 0.024 

3 0.000 0.240 0.000 0.038 0.000 0.000 0.094 0.000 

4 0.000 0.240 0.000 0.091 0.000 0.000 0.152 0.000 

5 0.229 0.240 0.000 0.167 0.000 0.000 0.167 0.375 
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6 0.000 0.240 0.000 0.080 0.000 0.000 0.080 0.000 

7 0.287 0.240 0.000 0.230 0.000 0.000 0.276 0.161 

8 0.198 0.240 0.000 0.229 0.000 0.000 0.177 0.146 

9 0.105 0.240 0.012 0.186 0.000 0.000 0.198 0.256 

10 0.189 0.240 0.000 0.203 0.000 0.135 0.176 0.108 

11 0.135 0.240 0.153 0.135 0.000 0.180 0.207 0.198 

12 0.560 0.240 0.855 0.347 0.000 0.845 0.611 0.643 

OA(%) 24.64 23.97 18.12 23.49 15.05 19.08 26.37 25.70 

AA(%) 16.14 18.50 08.14 18.20 07.69 02.63 19.12 17.05 

Kappa×100 13.12 14.51 00.86 13.76 00.00 09.22 15.91 14.28 

Table 5. Quantitative comparison of the Houston-2013 dataset (Best in bold) 

Class No. CNN CNN Encoder SVM KNN LSTM RNN GTFN Proposed 

0 1.000 1.000 0.955 0.980 0.970 0.928 1.000 0.984 

1 0.909 0.805 0.948 0.980 0.961 0.973 0.948 0.974 

2 1.000 0.845 1.000 0.980 0.973 1.000 1.000 1.000 

3 0.986 0.928 0.986 0.980 0.971 0.970 0.971 1.000 

4 1.000 0.983 1.000 0.980 0.967 0.894 1.000 1.000 

5 0.890 0.817 0.805 0.980 0.915 0.973 0.890 0.976 

6 0.952 0.952 1.000 0.980 0.988 0.954 1.000 1.000 

7 95.85 89.92 95.85 98.02 97.23 95.65 97.04 99.60 

8 96.24 90.43 96.26 98.21 97.40 95.88 97.28 99.61 

9 95.15 88.24 95.15 97.69 96.77 94.92 96.54 99.54 

10 1.000 1.000 0.955 0.980 0.970 0.928 1.000 0.984 

11 0.909 0.805 0.948 0.980 0.961 0.973 0.948 0.974 

12 1.000 0.845 1.000 0.980 0.973 1.000 1.000 1.000 

OA(%) 0.986 0.928 0.986 0.980 0.971 0.970 0.971 1.000 

AA(%) 1.000 0.983 1.000 0.980 0.967 0.894 1.000 1.000 

Kappa×100 0.890 0.817 0.805 0.980 0.915 0.973 0.890 0.976 

 

Table 6. Comparison of OA and Kappa values of different algorithms on Houston-2013 dataset (Best in bold) 

 SSFTT GAHT DCTN morphFormer HiT SS-TMNet Proposed 

OA(%) 98.91 98.05 98.17 97.82 93.45 95.92 99.60 

Kappa×100 98.39 98.81 98.31 97.98 93.94 96.22 99.54 
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This paper not only compares the above classic classification 

algorithms, but also compares 6 latest classification algorithms, 

including innovative methods based on Transformer such as 

SSFTT [48], DCTN [49] and SS-TMNet [50], and methods based 

on multi-scale transformation such as GAHT [51] and HiT [52]. 

In addition, we also compare with the customized latest model 

morphFormer [53], as shown in Table 5, showing the OA and 

Kappa values of the Houston-2013 dataset. The results show that 

MCST2CNNoutperforms the latest algorithms [48-53]. 

Additionally, the F1-Score of different algorithms across the 

four datasets was calculated, as shown in Fig. 5. The results 

indicate that the CSTFNet model consistently outperforms other 

comparative methods in most categories, demonstrating high 

classification accuracy and robustness. Overall, CSTFNet 

achieves near-optimal classification results on the Houston-2013 

and Samson datasets, particularly in several categories where the 

F1-Scores approach 1, underscoring its strong feature extraction 

capabilities. On the more complex datasets, such as Botswana 

and KSC, CSTFNet also exhibits superior stability. Although its 

F1-Score in certain categories is slightly lower than that of the 

GTFN model, it still maintains leading classification accuracy 

overall. 

In contrast, traditional machine learning methods, such as 

SVM and KNN, perform poorly across multiple datasets, 

particularly on Botswana and KSC, where lower F1-Scores 

suggest their difficulty in effectively handling the complex 

features of HSI. While deep learning methods (e.g., CNN, GTFN) 

perform better in most scenarios, they are still unable to surpass 

the overall performance of the CSTFNet model, particularly in 

tasks that require the integration of spectral and spatial 

information. 

  
(a) (b) 

  
(c) (d) 

Fig. 5 Corresponding F1-Scores of different algorithms on 

different datasets. (a) Samson dataset; (b) KSC dataset; (c) 

Houston-2013 dataset; (d) Botswana dataset. 

D. Training Samples Analysis 

To further verify the effectiveness and robustness of the 

CSTFNet algorithm, this section calculates the overall accuracy 

(OA) and compares the performance of the eight algorithms 

mentioned earlier using different training sample ratios, as 

illustrated in Fig. 6. The ratios of training samples to the total 

dataset size for the four datasets are set at 0.1, 0.2, 0.7, 0.8, and 

0.9. The experimental results demonstrate that the overall 

accuracy of all models improves as the proportion of training 

samples increases. However, traditional machine learning 

models, such as SVM and KNN, exhibit less stability with 

smaller training sample proportions, showing significant 

performance fluctuations, particularly on smaller-scale datasets. 

In contrast, deep learning models, including RNN, CNN, and the 

proposed CSTFNet model, display greater robustness, with 

classification accuracy markedly improving as the size of the 

training set increases. 

Among these models, the proposed CSTFNet model achieves 

excellent classification performance across all datasets and 

training ratios, particularly excelling at higher training sample 

proportions, where its overall accuracy significantly surpasses 

that of the other models. These results validate the proposed 

model’s ability to maintain high classification accuracy across 

various datasets, further demonstrating its effectiveness and 

broad applicability in HSIC tasks. 

  
(a) (b) 

  
(c) (d) 

Fig. 7 OA of different proportions of training samples on 

four datasets.(a) Houston-2013; (b) Samson; (c) Botswana; 

(d) KSC. 

E. Time Comparison 

This section discusses the comparison of training time across 

the Houston-2013, Samson, KSC, and Botswana datasets, using 

an 80:20 training-to-testing ratio. As shown in Table 7, the 

training times of traditional machine learning models (SVM and 

KNN) are significantly shorter compared to deep learning-based 

models, particularly on smaller datasets such as Samson and 

Botswana. For instance, KNN requires only 0.0041 seconds on 

the Houston-2013 dataset and 0.01 seconds on the Samson 

dataset. 
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In contrast, deep learning models require substantially more 

time, especially on larger datasets. For example, LSTM takes 

808.95 seconds to train on the KSC dataset. The proposed 

method demonstrates a balanced performance, with training 

times significantly lower than those of RNN and LSTM, but 

slightly higher than CNN on most datasets. For instance, on the 

Houston-2013 dataset, the proposed model takes 112.3 seconds, 

which is higher than CNN’s 56.56 seconds, but considerably 

lower than RNN’s 130.45 seconds. This demonstrates that the 

proposed method strikes an effective balance between 

computational efficiency and classification accuracy, making it 

suitable for practical applications where both performance and 

efficiency are critical. 

Table 7. Training time for different algorithms on 4 datasets, 

training test ratio 80-20 

Model 
Houston-

2013 
Samson KSC Botswana 

RNN 130.45s 449.92s 817.29s 391.02s 

SVM 0.3074s 2.56s 18.43s 2.83s 

KNN 0.0041s 0.01s 0.008s 0.02s 

LSTM 120.83s 604.9s 808.95s 395.7s 

CNN 56.56s 113.35s 75.56s 64.79s 

CNN 

Encoder 
73.05s 2.96s 115.32s 33.26s 

GTFN 66.9s 135.59s 102.25s 71.9s 

Proposed 112.3s 207.06s 152.29s 110.09s 

F. Visual Analysis of Classification Results 

This paper presents a visual representation of the classification 

effects of various classification methods, accompanied by a 

qualitative analysis. As illustrated in Figures 7-10, the 

classification effects on the KSC, Botswana, Houston-2013, and 

Samson datasets are presented. From the figures, it is evident that 

the algorithm proposed in this paper exhibits superior 

performance on the four datasets in comparison to other 

algorithms. It demonstrates a more comprehensive ability to 

maintain the clarity and integrity of the region boundaries. 

It is evident that traditional algorithms, such as KNN and SVM, 

are unable to effectively suppress noise and are susceptible to 

misclassified scatter. In contrast, deep learning-based methods 

demonstrate superior performance, illustrating the robust feature 

extraction capacity of convolutional neural networks. However, 

deep modelling algorithms, such as RNN and LSTM, exhibit 

suboptimal capability in capturing intricate features and 

boundary regions, and remain unable to attain enhanced 

classification outcomes. By integrating CNN and ST, this 

algorithm effectively minimizes classification noise and extracts 

comprehensive features and edge features, showcasing robust 

classification performance

 

         
(a) (b) (c) (d) (e) (f) (g) (h) (i) 

Fig.8 Prediction map on KSC dataset. (a) Ground truth. (b) KNN. (c) SVM. (d)  RNN. (e) LSTM. (f) CNN. (g) CNN En-

coder. (h) GTFN. (i) Proposed 

 

         
(a) (b) (c) (d) (e) (f) (g) (h) (i) 
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Fig.9 Prediction map on Botswana dataset. (a) Ground truth. (b) KNN. (c) SVM. (d)  RNN. (e) LSTM. (f) CNN. (g) CNN 

Encoder. (h) GTFN. (i) Proposed 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Fig.10 Prediction map on Houston-2013 dataset. (a) Ground truth. (b) KNN. (c) SVM. (d)  RNN. (e) LSTM. (f) CNN. (g) 

CNN Encoder. (h) GTFN. (i) Proposed 

 

         
(a) (b) (c) (d) (e) (f) (g) (h) (i) 

Fig.11 Prediction map on Samson dataset. (a) Ground truth. (b) KNN. (c) SVM. (d)  RNN. (e) LSTM. (f) CNN. (g) CNN 

Encoder. (h) GTFN. (i) Proposed

G. Ablation Experiment 

In order to further validate the effectiveness of the CSTFNet 

model, this section conducts ablation experiments using the 

Houston-2013 dataset as an example. The aim of these 

experiments is to systematically evaluate the contribution of 

different components in the proposed model by removing 

individual or combined modules. The results are presented in 

Table 8, which demonstrates the classification performance of 

four distinct model configurations with varying training-testing 

ratios. The proposed CSTFNet model demonstrates consistent 

accuracy across all training-testing ratios, with a notable decline 

in performance when any module is removed. In particular, the 

AA value of CSTFNet is 0.993, the OA value is 0.992, and the 

Kappa coefficient is 0.991 at a ratio of 90:10, which evinces the 

superiority of the full model when a larger proportion of training 

data is available. 

As evidenced in Table 8, the removal of the CNN module 

results in a notable decline in model performance. Specifically, 

at a training-test ratio of 10:90, both OA and AA drop from 0.996 

to 0.969, and the kappa coefficient drops from 0.995 to 0.964. 

Similarly, the removal of the ST module also results in a decline 

in performance, although the outcomes are marginally superior 

in comparison to the model that lacks the CNN module. 

Specifically, at a training-test ratio of 10:90, AA decreased from 

0.996 to 0.968, OA decreased from 0.996 to 0.967, and the kappa 

coefficient decreased from 0.995 to 0.962. The removal of both 

the CNN module and the Transformer module resulted in the 

lowest performance, underscoring the pivotal role these 

components play in attaining optimal classification accuracy. 

Specifically, at a training-test ratio of 10:90, both OA and AA 

decreased from 0.996 to 0.965, and the kappa coefficient 

decreased from 0.995 to 0.959. These findings corroborate the 

efficacy and resilience of the integrated model architecture in 

HSIC. 

Table 8. Results of ablation experiments on the Houston-2013 

dataset 

Ablation Settings AA 

CNN ST 10:90 20:80 70:30 80:20 90:10 

  0.965 0.973 0.973 0.960 0.948 

  0.968 0.969 0.961 0.962 0.975 

  0.969 0.976 0.975 0.959 0.974 

  0.996 0.996 0.990 0.991 0.993 

  OA 

  0.965 0.971 0.971 0.957 0.945 

  0.967 0.965 0.958 0.959 0.972 

  0.969 0.974 0.972 0.955 0.972 

  0.996 0.996 0.990 0.990 0.992 

  Kappa 

  0.959 0.966 0.966 0.949 0.935 

  0.962 0.960 0.951 0.952 0.968 

  0.964 0.969 0.968 0.947 0.968 

  0.995 0.995 0.988 0.988 0.991 

IV. CONCLUSION 

In order to make full use of the spatial-spectral information of 

HSI, we proposed the CSTFNet model, which is mainly 

composed of CNN blocks and DLST blocks. In order to solve the 

dimensionality problem of HSI, one-dimensional convolution is 

introduced into the CNN block, and the spectral features of HSI 

are fully extracted. Since the spatial information of HSI is very 

rich, they are processed by two ST blocks, and their window-

based attention mechanism is fully utilized for hierarchical 

learning, which effectively captures the spatial information of 

HSI. The combination of CNN and ST realizes the effective 

fusion of spectral-spatial features and demonstrates higher 
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classification accuracy than existing algorithms. The 

classification accuracy of CSTFNet on Houston-2013, Samson, 

KSC and Botswana datasets is 99.6%, 97.8%, 63.3% and 35.9% 

respectively. 

CSTFNet demonstrates a powerful capability for spectral-

spatial feature extraction and holds significant promise for appli-

cations in the field of HSIC. However, certain limitations must 

be acknowledged. The relatively low accuracy on datasets such 

as KSC and Botswana highlights potential challenges in handling 

datasets with high spectral complexity or limited training samples. 

Additionally, the computational cost of integrating CNN and 

transformer-based architectures, especially for large datasets, re-

quires further exploration and optimization. In future work, we 

aim to address these limitations by investigating advanced tech-

niques to enhance generalization on complex datasets and reduce 

computational overhead. Further integration of cutting-edge ad-

vancements in CNNs, transformers, and hybrid architectures will 

be explored to achieve even greater classification performance 

and broader applicability in hyperspectral image analysis. 
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