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Remote Sensing Image Change Detection based on
Lightweight Transformer and Multi-scale Feature
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Abstract—As deep learning demonstrates excellent perfor-
mance in remote sensing image change detection (CD), early
methods that mostly used Convolutional Neural Networks (CNNs)
have limitations in the accuracy due to their insufficient global
feature representation, an inherent shortcoming of CNNs. The
lack of global feature can lead to notable issues, such as the
inability to detect small targets and loss of edge information.
In recent years, vision transformers (ViTs) have been employed
in CD owing to their powerful global feature representation
capabilities. However, pure transformer methods lack effective
local feature extraction, which also restricts the performance of
CD, while the original transformer models require a large amount
of computing resources. To address these issues and improve
CD performance, we propose a Lightweight Transformer-based
Multi-scale Feature Fusion network (LTMFFNet). By integrating
CNN structures both before and after the multi-head self-
attention in each layer of the main backbone, we enhance the
encoder’s local feature extraction ability and reduce the compu-
tational complexity through convolution and linear operations.
For the siamese encoding outputs at different scales, we design
two distinct fusion modules based on depth-wise convolution for
bitemporal information fusion in deep layers and shallow layers,
respectively. Our model employs a multi-layer cascaded structure
with a deep supervision strategy applied to multiple outputs.
Experiments on four public CD datasets demonstrate that our
network achieves better performance while maintaining relatively
smaller computational complexity compared to other state-of-the-
art methods for CD.

Index Terms—Remote sensing (RS), change detection (CD),
convolutional neural network (CNN), transformer.

I. INTRODUCTION

REMOTE sensing (RS) image change detection (CD) is a
methodology which monitors changes in the identical

location over various periods by processing dual temporal
images to obtain change maps. As shown in Fig. 1, the inputs
of the CD task are two RS images from different times and
the output is a change map where black denotes unchanged
position while white indicates regions that have undergone
changes. Change detection of RS images is widely used in
fields such as land use [1], [2], agricultural and forestry
monitoring [3], [4], urban and environmental planning [5], [6]
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and disaster assessment [7], [8]. It plays a crucial role in these
applications. Therefore, automated CD has received increasing
attention and research interest.

Machine learning technologies, particularly deep learning,
have been heavily applied to CD, achieving significant break-
throughs in recent years [9]. In general, the accuracy of edge
detection has always been a problem in CD tasks. Meanwhile,
smaller change areas are often missed, which is also a major
challenge in CD [10], [11]. So the focus of CD research is to
reduce such kinds of of error to improve the final accuracy. The
initial CD methods were mainly based on Convolutional Neu-
ral Networks (CNNs) [12], which demonstrated good perfor-
mance in numerous tasks of computer vision (CV), including
image segmentation, target recognition, and object detection.
Effective CNN-based methods for CD have been proposed,
such as the Full Convolutional Early Fusion Network (FC-
EF), the Full Convolutional Siamese Difference Network (FC-
Siam-Diff), and the Full Convolutional Siamese Concatenation
Network (FC-Siam-Conc) [13]. They use different fusion
methods based on simple convolutional residual networks
for CD tasks. However, due to the inherent shortcomings of
CNN in global feature extraction, the rich features contained
in dual temporal RS images have not been fully extracted
or utilized. Therefore, some methods have enhanced pure
CNN networks. For example, SNUNet [14] used dense skip
connections to extract information from different scale and
introducing improved attention of channels for multi-scale fea-
ture fusion. Similarly, STANet [15] introduced self-attention
to enhance the interactivity of dual temporal image encoding.
Yu et al. [16] introduced an interactive attention module and
a multi-dimensional convolutional frequency attention module
to construct a dual-branch encoding backbone. Although the
introduction of attention mechanisms enhances CNN’s recog-
nition ability, the global feature extraction remains insufficient.
In CD task, large areas of change require effective global
feature extraction and the capture of dependency relationships
between different positions, so the comprehensive performance
of CNN methods in the CD direction has certain limitations.

With the proposal of transformer, based on multi-head
self-attention (MHSA) [17], which shows strong performance
in the field of NLP, the CV field has also started using
transformer to solve related problems. The vision transformer
(ViT) [18], which divides the input image into small pieces and
converts each one into a fixed-length vector for transformer
blocks to process, was proposed for image classification tasks.
Its excellent performance in image classification tasks has
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Fig. 1. Diagram of the CD task, where T1 and T2 images are images from
different temporal.

demonstrated effectiveness of transformer in CV. As a result, it
has been widely adopted for other CV tasks. In CD, ViT and its
variants have been applied to several models, showing excel-
lent performance. Yan et al. [19] developed a pure transformer-
based CD network. Chen et al. [20] enhanced the feature
extraction ability of CNN backbone by incorporating ViT.
Bandara et al. [21] proposed ChangeFormer, which encodes
RS images with transformer module and generates the final
change map through MLP. Zhang et al. [22] proposed a CD
model composed entirely of swin transformer modules which
introduces a window-based mechanism.

The MHSA structure enables transformer to effectively
represent global features and capture dependency relationships
between different positions, which is lacking in pure CNN
methods. Moreover, transformer can process sequences in par-
allel, improving training speed. However, transformer lack the
ability to perceive local features, making it difficult to capture
precise positional information in remote sensing images. This
limitation reduces their effectiveness in detecting small targets
and edge details in changing areas. Additionally, due to global
modeling, the multi-head self-attention mechanism demands
significant computing resources, especially for high-resolution
images. As a result, although transformer benefits from faster
training speeds through parallel computation, it exhibits high
computational complexity and consume substantial memory.

To address the limitations of pure transformer methods, a
key research focus in the field of CV is the integration of
transformer with CNNs to balance their strengths and mitigate
their weaknesses. Chen et al. [20] used CNN-based encoding
to generate tokens, which were then fed into a transformer to
produce the change map. Li et al. [23] introduced transformer
layers following a CNN backbone for CD. These works di-
rectly combine independent CNN backbones with transformer
networks, leveraging the feature extraction capabilities of both.
However, they fail to fully utilize image information across
multiple scales. Guo et al. [24] proposed a hybrid network
named CMT, which integrates ViT with CNN. CMT introduces
low-computation depthwise convolution operations [25] before
and after multi-head self-attention in the transformer module,

enhancing the perception of local features while reducing
computational overhead through convolutional downsampling
in MHSA. At the same time, it incorporates convolutional
preprocessing layers into the overall structure. Yun et al. [26]
also proposed a transformer-based method with efficient oper-
ators, and it only uses a few tokens by random initialization to
resprensent global features for more efficient calculations. Li
et al. [27] developed a novel hybrid architecture by stacking
new types of convolutional and transformer blocks, effectively
integrating these modules at each stage of the encoder while
maintaining an optimal balance between them. Lu et al. [28]
proposed SBCFormer, which combines the attention mech-
anism of transformer with convolutional operations. SBC-
Former enhances the output of attention using standard CNN
components, and applies pointwise convolution operations to
all components, replacing traditional linear transformations for
query and key vectors. These methods demonstrate state-of-
the-art (SOTA) performance with reduced parameter counts
and computational complexity in image classification tasks,
proving the feasibility of combining transformer with con-
volutional structures in CV applications. Consequently, we
speculate that the hybrid approach of CNN and transformer
could also be effectively applied to CD.

Inspired by above observations, we propose a Lightweight
Transformer-based Multi-scale Feature Fusion network
(LTMFFNet). It consists a siamese encoder, four fusion
modules, and a decoder. The encoder is mainly composed of
lightweight transformer (LWT) blocks which integrates with
convolutional structure, compensating for the shortcomings
of pure transformer models and reducing a certain number of
parameters and computational complexity. In each branch of
the encoder, remote sensing image is first fed into multi-layer
convolution preprocessing for initial feature extraction. The
preprocessed image will be processed through four LWT
layers with patch embedding modules to generate multi-scale
feature maps. The patch embedding module is located before
the LWT block, which will convert the image into tokens
and perform downsampling. The encoder’s shallow and
deep layers generate feature maps containing coarse-grained
spatial information and fine-grained semantic information,
respectively. So we input the generated multi-scale dual-time
domain features into two different fusion modules based on
depthwise convolution: the Convolutional Fusion Module
(CFM) and the Convolutional Differentiation Module (CDM),
to extract different levels of disparate features. The decoder
similarly uses four LWT layers to process the fused multi-
scale feature map, where each LWT layer has an upsampling
module after the LWT blocks and combines convolution
operations to gradually restore the original size of the image
and integrate features of different scales by skip connections.
Finally, we use an output module that combines multi-layer
convolution and linear upsampling to generate change maps.
To further enhance the utilization of feature information at
different scales during training, we introduce an auxiliary
branch in the third layer of the decoder. This branch generates
auxiliary feature maps for deep supervision, improving
training efficiency and accuracy.The main contributions of
our paper can be summarized as follows:

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2025.3529529

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

1) We propose a cascaded twin U-shaped network based on
LWT block for the CD task. Combining convolutional
operations with the transformer backbone enhances local
perception and therefore improves overall performance
while the computational complexity is reduced.

2) We designed two kinds of convolutional fusion modules
named CFM and CDM in different layer of our model to
fuse dual temporal features for processing the differential
information at different levels in a targeted manner.

3) We designed an output module in decoder with a stem
module in encoder to enhance the utilization of local
information in LWT and use a strategy of deep super-
vision in the last two layers of the decoder, achieving
full utilization of multi-level feature extraction.

4) We conduct experiments on four public datasets for
change detection in which the results shows our model
exceeds other SOTA methods on four mainstream CD
datasets and reduces params and computation compared
to pure transformer networks.

The remaining part of this paper is organized as follows. In
Section II, we describe the relevant work of CD. In Section
III, we elaborate on the overall framework and various parts of
LTMFFNet. In section IV, we record the relevant experiment
with analysis. Finally, in section V, we will have a final
discussion and summary.

II. RELATED WORK

In this section, we will review CNN-based and transformer-
based CD approaches in these years, respectively..

A. CNN Methods for CD

As deep learning becomes more and more powerful and
popular, more and more deep learning methods are introduced
into CD, and many early CD methods were based on CNN.
Through the powerful image feature extraction capabilities of
convolutional networks such as Fully Convolutional Neural
Networks (FCN) [29], Unet [30], and Residual Networks
(Resnet) [31], feature of bitemporal RS images can be fully
extracted for generating differential features. The CNN-based
CD method is usually a siamese structure [32], which can
enhance the semantic representation and feature differentiation
of RS images by modifying the encoder or decoder, modifying
the way fusion is performed, and combining attention mecha-
nisms, while achieve better training results by optimizing the
loss function.

In the direction of CD, Zhan et al. [33] first applied siamese
convolutional networks to change detection task, processing
input dual temporal RS images simultaneously through a dual
branch network structure. Most of the subsequent CD methods
are then based on the siamese network structure. Daudt et al.
[13] designed three change detection architectures based on
fully connected neural networks, which directly connect dual
temporal images or process them through siamese structures.
Varghese et al. [34] used resnet backbone to extract informa-
tion from different levels and integrated it through FCN. Chen
et al. [35] proposed a siamese convolutional network for CD
based on resnet, which has stronger feature extraction ability

when combined with dual attention. Fang et al. [14] proposed
a dense connected sparse network (SNUNet) which combines
Unet++ [36] and extracts multi-scale information through
multi-level decoding combined with dense skip connections,
and finally fuses through an ensemble channel attention mod-
ule. It simultaneously uses a mixed loss function combining
bce and dice loss for optimization. To reduce the number of
parameters, Xing et al. [37] proposed a lightweight network
which utilizes early fusion through a deep supervised fusion
module to achieve good performance with few parameters.

The traditional CNN methods can effectively extract local
features of RS images and detect changing regions using
positional information [38] with a relatively small number of
parameters. However, convolutional operation has an inherent
flaw of insufficient attention to global information, so pure
CNN networks cannot make full use of long-term global infor-
mation, thereby significantly limiting the performance of CD
networks. Therefore, some CD methods introduce attention
mechanisms into CNN networks, such as the ensemble channel
attention proposed by Fang et al. [14] to fuse multi-scale
convolutional outputs, and Chen et al. [15] ’s pyramid attention
model for acquiring features with different scales. Chen et
al. [35] and Liu et al. [39] also introduced dual attention
mechanisms [40] into change detection tasks. The attention
mechanism has shown corresponding performance in CD tasks
and enhances the feature representation of CNN. Furthermore,
with the application of transformer based on multi-head self-
attention in CV field with its powerful performance, trans-
former has also been introduced in CD tasks.

B. Transformer Methods for CD

With the popularity of ViT in the field of CV in 2020 due
to its powerful modeling ability for global image features, the
CD methods have also begun to use ViT and its variants.
Chen et al. [20] firstly introduced transformer into the CD
field and proposed bitemporal image transformer (BiT). It
extracts the semantics of bitemporal RS images through CNN
and converts them into tokens, which are then input into
transformer for encoding and decoding operations. Li et al.
[23] also introduced transformer to extract global features for
supplementing after the CNN-based encoder.

The above methods supplement CNN with transformer, and
there are also CD methods mainly using transformer. Bandara
et al. [21] proposed a siamese network architecture based on
transformer, which designs a dual-branch transformer for fea-
ture extraction and downsampling operations, extracts multi-
scale features, and then fuses multi-scale differential features
through an MLP decoder to generate the final prediction map.
Zhang et al. [22] proposed a Unet structure CD model called
SwinSUNet based on swin transformer [41] which is a ViT
variant based on sliding window mechanism, which is the
first fully transformer-based method used for CD. The main
backbone is totally based on the swin transformer block. Yan et
al. [19] proposed a completely swin transformer based change
detection network, which combines multi-level features from
the swin transformer based on a feature pyramid and performs
deep supervision through multiple sets of outputs.
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Fig. 2. Architecture of proposed LTMFFNet. It mainly consists of a dual branch encoder, fusion modules, and a decoder. The dual temporal RS image is
input into the encoder, which extracts features and downsamples through four layers of LWT modules. The outputs of the first two layers and the last two
layers are integrated through different fusion modules and input into a decoder composed of four layers of LWT modules for upsampling. The outputs of the
last two layers are then subjected to depth supervision to generate the final change map.

Compared to pure convolutional networks, transformer has a
strong global perception field that can model long-distance de-
pendencies with a constant number of layers, and can perform
parallel operations [42]. A major problem that exists and needs
to be solved in these CD models using transformer is the lack
of detection for small targets and edge detection, which is also
a major challenge in the current direction of change detection.
Due to the transformer’s self- attention focusing more on
global feature capture, there is a lack of effective extraction
of local features in the image, and there are small change
regions and irregular edge information in change detection,
which is difficult for pure transformer method to pay attention
to. A fixed size transformer is also not conducive to CD
tasks that require multi-scale feature extraction. What’s more,
multi-layer stacked transformer often has mass parameters
and computation, which affect the training efficiency and
deployment of the model.

In response to problems in transformer, Guo et al. [24]
uses a transformer architecture that combines CNN and hi-
erarchical structure, which performs fine-grained feature ex-
traction through convolution operations and multi-level feature
extraction while reducing computational consumption, in order
to reduce computation while enhancing model performance.
Taking inspiration from this, we introduce a multi-scale CNN
and transformer combined model into the change detection
task and designed a model with siamese U-Net structure.

III. METHODOLOGY

Given two optical RS images, representing the observation
of the same area before and after changes, the task of CD is to

generate the predicted change map, which includes estimated
actual change areas and unchanged areas. In this part, we offer
an detailed description of LTMFFNet. In Section III-A, we
provide an general introduction for the overall framework of
LTMFFNet. In section III-B to III-E, we respectively introduce
the LWT block we used in our network, encoder and decoder,
fusion module, prediction part and loss function calculation.

A. Framework Overview

The structure of LTMFFNet is displayed in Fig. 2. As we
can see, LTMFFNet consists of an encoder network, two kinds
of fusion block and a decoder network. The decoder network
uses two different kinds of prediction head to generate two
change maps, one of which is used in deep supervise while
the other one is the final result.

The inputs of LTMFFNet are a pair of bitemporal images,
and the outputs are predicted maps of CD. The encoder
network is a siamese structure and each branch contains
four layers, each of which is the combination of a patch-
embed module and several LWT blocks. Before the four
layers, there is a convolution stem block to firstly extract
fine-grained feature of the input picture. Then, each layer
will convert the image into image tokens by patch-embed
module and extract its feature by LWT blocks which combine
convolutional operations with Multi-head Self-Attention.

The outputs of a branch are four feature maps of different
scale from corresponding layer. For the third and fourth layers,
we design a fusion block to integrate the deep feature of
each branch. As for the First two layer, we use a feature
differentiation module to extract the change information of
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Fig. 3. Structure of a LWT block. It consists of LPM, LW-MHSA and IRFFN
from top to bottom.

bitemporal feature maps. Next, we input them into the decoder
which similarly consists of four levels. Every layer is a stack of
several LWT blocks and a upsample module with convolution.
The final output of encoder after fusion firstly enters the
decoder and sequencely restore the change information and
change its size to fuse feature maps of other scale. Finally, we
use a output module to gain the ultimate change map. And
we also generate a auxiliary Change map by upsample and
convolution operation for deep supervision.

B. LWT Block

In our LTMFFNet, We use the LWT block which enhances
local feature extraction capabilities while reducing compu-
tational complexity and params. As shown in Fig. 3, this
block contains a local perception module (LPM), a lightweight
multi-head self-attention (LW-MHSA) module and an inverted
residual feed-forward network (IRFFN).

(1) LPM: To keep the translation-invariance in data aug-
mentation and focus on local correlations and the structure
information, this block inserts a LPM before the multi-head
attention. It uses a depth-wise convolution with a residual con-
nection to firstly extract the input image’s local information.

2) LW-MHSA: In previous MHSA module, the input X ∈
Rn×d is projected to query Q ∈ Rn× dk , key K ∈ Rn× dk

and value V ∈ Rn× dv by linear operation where n = H ×

W reflects the number of patches while the notation d, dk
and dv respectively denote the number of dimensions for X,
query (key) and value. The self-attention represented by SA
is calculated in this way:

SA(q, k, v) = Softmax(
QKT

√
dk

)× V (1)

To save computational costs, the LWT block uses a k ×
k depth-wise convolution with stride k which is denoted by
DwConv to reduce the size of K and V before the MHSA.
Moreover, We also reduce the dimensions of Q and K by
half in linear mapping from input to query and key so we get
Q ∈ Rn× dk

2 and key K ∈ Rn× dk
2 firstly in this block. In this

way, we can get K
′
= DwConv(K) ∈ Rn× dk

2 and V
′
=

DwConv(V ) ∈ R
n
k2 ×dv as lightweght key and value where

DwConv means depth-wise convolution. We use different k
which is the ratio of k and v reduction in different layer of
our model and we list them in Table I. So the Besides, the
LWT block also uses a relative position bias B which can be
learned on each SA module. Overall,the lightweight MHSA
which is abbreviated as LightSA is applied as:

LightSA(Q,K, V ) = Softmax(
QK

′T

√
dk

+B)V
′

(2)

where the bias B ∈ Rn× n
k3 is randomly initialized for each

LWT block. Combine with the learnt relative position bias, the
MHSA can better learn the local correlations of the image.In
the end, with heads’ number h, each head in MHSA outputs a
sequence with size n× d

h , and h sequence are connected into
the final sequence with size n× d.

3) IRFFN: In the ViT, the FFN contains two linear units
with a GELU layer in the middle. One extends the dimension
of map by a multiple of 4 while the other restore the origi-
nal dimension. To get better performance, lightweight block
changes the location of skip connection with convolutional
processing in IRFFN [43]:

F (x) = DwConv(x) + x (3)

IRFFN(x) = Conv(Act(F (Act(Conv(x))))) (4)

where Act(·) denotes the activation layer followed with a
batch normalization. The middle convolution is a depth-
wise convolution which can capture regional feature with
little expense. Besides, a shortcut is used between the first
1 × 1 convolution and the last 1 × 1 convolution to improve
propagation capabilities.

To summarize, the complete calculation process of LWT
block are shown in Algorithm 1.
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Algorithm 1 LWT
Input: Xi−1 (input of the i-th block), B (nitial bias)
Output: Xi (output of the i-th block)

1: // step1: preliminary feature extraction through LPM based
on deep convolution

2: Yi = DWCONV (Xi−1)
3: // step2: extraction of Multi-Head Self-Attention with

randomly initialized Bias
4: Zi = LW −MHSA(LN(Yi) +B)
5: Zi = Zi + Yi

6: // step3: output by IRFFN
7: Xi = IRFFN(LN(Zi))
8: Xi = Xi + Zi

Yi = LPM(Xi−1) (5)

Zi = LW −MHSA(LN(Yi)) + Yi (6)

Xi = IRFFN(LN(Zi)) + Zi (7)

where LN indicates the layer normalization. And Xi denotes
the input of the i-th block while Yi and Zi denote the the output
features of LPM and LW-MHSA module in corresponding
block. In each layer in our LTMFFNet, we use different
numbers of lightweight blocks in each layer of encoder and
decoder shown as Fig. 2.

C. Encoder and Decoder

In our LTMFFNet, before we use the LWT block to extract
the bitemporal images’ feature, there is a stem block in the
encoder to firstly extract the fine-grained feature. As shown
in Fig. 4(a), the stem block contains one 3 × 3 convolution
and two 3× 3 depth-wise convolutions with GELU activation
[44] and batch normalization. The first convolution changes
the input channel into a stem channel and do a down sampling
with a scale factor of 2. And we add two skip connections in
next convolutions. So the calculation of the stem block is given
as:

X1 = Act(DownConv(X)) (8)

X2 = Act(DwConv(X1)) +X1 (9)

Out = Act(DwConv(X2)) +X2 (10)

where Act(·) denotes GELU activation layer with batch nor-
malization and DownConv is the initial 3 × 3 convolution
for down-sampling while DwConv denotes depth-wise con-
volutions. X , X1, X2 and Out denote the input, the two
convolution layer‘s output and the final output, respectively.
The input channel is 3 for RGB image and we choose 16 as
stem channel here.

After stem convolution, the input image need to be trans-
formed into image tokens like ViT. For each layer in encoder,
there is a patch embedding block to convert the image into
several tokens and map each token’s channel number to a
embedding dimension C. In our model, each patch have a
size of 2×2 so that there are (H/2)× (W/2) patches and we

TABLE I
THE NUMBERS OF BLOCKS AND EMBEDDING DIMENSION IN EACH

LAYER OF LTMFFNET. E-LAYER AND D-LAYER INDIVIDUALLY
REPRESENT DIFFERENT LAYER IN ENCODER AND DECODER.

Layer Numbers of blocks Embedding
dimension

Ratio of k and
v reduction

E-Layer 1 LWT block x 2 46 8

E-Layer 2 LWT block x 2 92 4

E-Layer 3 LWT block x 10 184 2

E-Layer 4 LWT block x 2 368 1

D-Layer 1 LWT block x 2 368 1

D-Layer 2 LWT block x 10 184 2

D-Layer 3 LWT block x 2 92 4

D-Layer 4 LWT block x 2 46 8

can consider each patch as a token. Meanwhile, we change
the dimension into C. Then we get a feature map with size
of (H/2)× (W/2)× 2. We implement them by a convolution
with kernel size 2 and stride 2. By doing the convolution, we
flatten each patch to size of 1× 1 so each spatial point can be
seen as a token. It’s equivalent to doing a down sampling with
a scale factor of 2 for the input image. Finally we reshape each
token to 1-D tensor so that the output size of patch embedding
block is (H/2)× (W/2)× 2.

After patch embedding in each layer, the image tokens are
processed through stacked LWT blocks. After each layer in
encoder, we merge the patch by reshaping so that we can get
a image with embedding dimension and half the size. Table I
lists the quantity of LWT blocks with embedding dimension
in each layer of the encoder. It also lists the reduction ratio of
k and v in each layer.

Each branch of encoder outputs four feature maps from four
layers. After we fuse bitemporal feature maps from the same
layer in siamese encoder by fusion module, we get four fusion
feature maps. Then we can use decoder for multi-scale feature
aggregation and generating change graph.

The decoder of LTMFFNet similarly consists of four lay-
ers. Each layer has the same numbers of LWT blocks and
embedding dimensions as the encoder has in reverse order,
just like Table I displays. We put the fourth fusion feature
map into the first layer of decoder firstly, and combine third
to first feature maps sequentially. In each layer, we firstly
restore the size of input into 3-D data as it used to be in
encoder so that we can pred change information with LWT
blocks. After LWT blocks process the corresponding feature
map, it is sent into a patch merging module, containing a linear
upsampling that doubles the size and a convolution that halves
the number of channels. Then it adds with the fusion feature
map which has the same size and dimensions. In this way,
we can extract multi-scale change information for generation
of final change map. Finally, we use a output block based on
convolution similarly to get the output which is the remote
sensing change map. In the output block, we also use a depth-
wise convolution and a residual connection in the middle to
enhance the restoration of local features as Fig. 4(b) shows.
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Fig. 4. Structure of stem block and ouput block in LTMFFNet. is the stem
block used in encoder of LTMFFNet. (b) is the output block used in decoder
of LTMFFNet.

D. Fusion Module

In our LTMFFNet, we use two kinds of fusion module
which are CDM and CFM. Both of them can be seen in Fig. 5.
For the outputs of third layer and fourth layer in the siamese
encoder, we use CFM to fuse the semantic feature from double
branch. It concatenates the outputs of the corresponding layers
from two branches and uses a 3× 3 convolution with stride 1
to reduce the dimension by half. Then there is a RELU layer
for activating with a batch normalization to do. Next there
is a 3 × 3 depth-wise convolution which outputs the same
dimention, and use a residual connection to add the output
from initial convolution which has the same dimension. Finally
we get the fusion output after a RELU activation.

As for the first two layers of the encoder with fine-grained
positional information, we use CDM to highlight the differ-
ential features. In the CDM, two feature maps corresponding
to bitemporal images are performed an absolute value subtrac-
tion. Similarly, we put the new matrix into a 3×3 convolution
but it doesn’t change the channels. The remain operations are
the same as CFM and we also add a shortcut between the
second convolution and the result of subtracting two images.
For both CDM and CFM, the map’s resolution keep the same
while the dimension after fusion equals to each map input into
fusion module.

E. Output and Deep Supervision

To make the final prediction after four layers of decoder
in LTMFFNet, we design a output block for more efficient
utilization of the change information extracted by decoder.
As Fig. 4(b) depicts, it consist of two 3 × 3 depth-wise
convolutions and a 3 × 3 convolution which changes the
dimension to 2 with a upsampling module by interpolation
and GELU layer. The first convolution reduces the dimension
by half, then the next one changes the numbers of channel
to 2. Finally we expand image size four times through linear
interpolation. After GELU activation and batch normalization,

Fig. 5. Structure of two fusion modules in LTMFFNet. (a) is CFM. (b) is
CDM. C, H and W signify channel numbers, height and width of each input
image.

we obtain the final predicted map with the same size as original
dual temporal images.

To better train deep networks and fully utilize features
of different scale, we disign an auxiliary branch after third
layer of decoder to generate another change map for deep
supervision. As shown in Fig. 2, the auxiliary branch is simply
consists of a linear interpolation to upsample by a quarter with
a convolution operation which changes the channel numbers
to 2. In this way, a auxiliary change map is generated which
has identical size with the final change map. We use both of
them to calculate the loss with the same ground truth and add
them up after each training epoch.

The loss funciton we use in LTMFFNet is the hybrid
function which is mixture of weighted cross-entropy (WCE)
loss [45] and dice loss [46]. It can be defined as:

L = λ · Lwce + (1− λ) · Ldice (11)

Where λ is the weight parameter while Lwce and Ldice denote
WCE loss and dice loss respectively, which can be expressed
as follows:

Lwce =
1

H ×W

H×W∑
k=1

w[c] · log exp(ŷ[k][c])
1∑

l=0

exp(ŷ[k][l])
(12)

Ldice = 1− 2 · Y · sm(Ŷ )

Y + sm(Ŷ )
(13)

where w represents weight, ŷ indicates a point in the generated
change map which is the k-th point and c means its class
where class 0 represents the unchanged and 1 denotes changed
pixels in ground truth map, respectively. l denotes two kinds
of classes. Y denotes the ground truth and Ŷ denotes the
predicted map output from LTMFFNet where height and width
are H and W . sm(·) means softmax operation. Lwce uses dif-
ferent weight for each class to resolve category disequilibrium
problem while Ldice evaluates images for similarity through
softmax function. We calculate hybrid loss for both of two
change maps and add them up in training process.
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Fig. 6. Experimental results on CDD dataset. S1-S4 are four samples selected from CDD test set. (a) T1 image. (b) T2 image. (c) Ground truth. (d) LTMFFNet
(ours). (e) FC-EF. (f) FC-Siam-Conc. (g) FC-Siam-Diff. (h) SNUNet/32. (i) SNUNet/48. (j) BIT. (k) ChangeFormer. (l) SwinSUNet. (m) ChangeViT. (n)
FTAN. (o) DMINet. (p) SEIFNet.

IV. EXPERIMENT RESULTS

A. Datasets

We choose four public CD datasets in our experiment: CDD
dataset, LEVIR-CD dataset, SYSU-CD dataset and GZ-CD
dataset.

The CDD dataset [47] is one of the most commonly used
evaluation sets in CD. It includes 11 pairs of bitemporal RGB
images from different seasons taken by Google Earth. This
dataset covers three types of data: composite images without
relative object motion, composite images with minor object
movement, and real RS images with seasonal variations. These
images have a spatial resolution of 3cm/px to 100cm/px. We
crop these images to a size of 256 × 256 so that we get 16
000 pairs of images finally. 10 000 pairs of them are used as
training set while 3000 pairs are utilized for validation. The
remaining 3000 pairs are regarded as testing set.

The LEVIR-CD dataset [15] is a enormous CD dataset
mainly in building area. It consists of 637 couples of RS
images taken by Google Earth with a length and width of
1024. LEVIR-CD comprises varied kinds of structures, such
as tall buildings, motorhomes, sea view room and warehouses.
We crop them into 13,072 patches of size 256 × 256 while
7120 couples of them are training dataset, 1024 couples are
validation dataset and 2048 couples are left for testing dataset.

The SYSU-CD dataset [48] contains 20 000 couples of
photographs captured from the air with size 256× 256. All of
the images are captured on two different years in Hong Kong, a
international port city located in the southern China. It mainly
contains several change types, such as new urban buildings,
suburban extensions, pre-construction groundwork and so on.
We use 12 000 couples of photoes as training set, 4000 couples
for validation and 4000 couples left for evaluation.

The GZ-CD dataset [49] is taken by the Google Earth
service of BIGEMAP software whicn covers the suburbs of
Guangzhou in China. It collects 19 seasonally changing image
pairs with a length and width of 1006 × 1168 pixels to
4936× 5224. We crop them into 256× 256 size and use 2504
images to be training set and 313 images for testing and sets
validation respectively.

B. Evaluation Metrics

To quantitatively analysis our LTMFFNet, we choose five
common indicators: Precision (Pre), Recall (Rec), F1-score
(F1), intersection over union (IoU ) and the overall accuracy
(OA). Pre is the correct proportion of the generated positive
pixels from model, Rec is the percentage of correct predictions
from model in all the pixels that are actually positive of the
dataset. F1 is the arithmetic-geometric mean of them and IoU
is the proportion of correct positive pixels to the sum of correct
positive pixels and incorrect pixels from the method while OA
is the correct proportion of both true and false samples. They
are defined as:

Pre =
TP

TP + FP
(14)

Rec =
TP

TP + FN
(15)

F1 =
2× Rec× Pr e

Rec+ Pr e
(16)

IoU =
TP

TP + FP + FN
(17)

OA =
TP + TN

TP + FP + TN + FN
(18)

where TP , FP and FN respectively denote the quantity of
true positive pixels, false positive pixels, and false negative
pixels. Generally, F1 can generally reflect performance of a
model so that a higner F1 shows a better accuracy of model in
CD task. And IoU usually reflects the resemblance between
the generated map and the real picture. So we consider
F1 and IoU as main quantitative evaluation metrics in our
experiments.

C. Implementation Details

Our LTMFFNet is deployed by the PyTorch framework in
our experiment. We train the model in NVIDIA Tesla T4
GPU for 200 epochs. We use AdamW algorithm [50] as
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Fig. 7. Experimental results on LEVIR-CD dataset. S1-S4 are four samples selected from LEVIR-CD test set. (a) T1 image. (b) T2 image. (c) Ground
truth. (d) LTMFFNet (ours). (e) FC-EF. (f) FC-Siam-Conc. (g) FC-Siam-Diff. (h) SNUNet/32. (i) SNUNet/48. (j) BIT. (k) ChangeFormer. (l) SwinSUNet.
(m) ChangeViT. (n) FTAN. (o) DMINet. (p) SEIFNet.

our Optimization algorithm. The weight decay is set to 0.01
and the initial learning rate is 0.0001. We apply Kaiming
initialization [51] to weights of each layer and train with batch
size of 5 from scratch. For the loss function, we set λ in
Eq.(11) to 0.5 in our experiment.

For each epoch in the training process, we calculate the F1-
score of trained model on validation set. We refer to the F1
to choose the best one and use it to evaluate in the test set.
The result is used for comparison.

D. Comparison With SOTA Methods

We choose different excellent CD models with deep learn-
ing for comparison which cover pure CNN methods, pure
transformer methods and methods based on both of CNN
and transformer, including FC-EF, FC-Siam-Diff, FC-Siam-
Conc [13], SNUNet [14], bitemporal image transformer (BIT)
[20], ChangeFormer [40], SwinSUNet [22], ChangeViT [52],
Frequency-Temporal Attention Network (FTAN) [16], dual-
branch multilevel intertemporal network (DMINet) [53] and
Spatiotemporal Enhancement and Interlevel Fusion Network
(SEIFNet) [54].

FC-EF is a U-shaped CD simply based on CNN. It con-
catenates bitemporal images as the inputs firstly and use a a
single fully Convolutional Networks(FCN) with residual layers
to process it.

FC-Siam-Conc uses a dual-branch encoder to simultaneous
processing images from different temporal and concatenates
outputs from each branch.

FC-Siam-Diff similarly uses a siamese structure but uses a
absolute substraction to fuse features from different branchs.

SNUNet combines UNet++ with siamese network. It uses a
densely connected CNN-based network with dual branchs to
extract features of bitemporal images. The Ensemble Channel
Attention Module(ECAM) proposed by it is used for refining
the most useful semantic features from different scale to
generate the eventual change map. Since SNUNet has different
initial number of channels with different performance, we
choose SNUNet with 32 and 48 channels (SNUNet/32 and
SNUNet/48) to compare.

BIT uses two branchs of resne to initially capture features of
inputs and encode outputs into semantic tokens. Next, it uses a
transformer structure to enhance features and predicts through
two transformer decoder. The final result is generated by
absolute substraction and convolution operation after decoder,
which is a late fusion strategy.

ChangeFormer which doesn’t use CNN-based encoder, di-
rectly extracts bitemporal features through siamese hierarchi-
cal transformer and gets difference feature by four differenti-
ation modules based on convolution operation. Finally, it uses
a lightweight MLP decoder to aggregate multi-scale features
and predict the CD mask.

SwinSUNet is a pure transformer network which uses
stacked swin transformer blocks and corresponding down-
sampling or upsampling modules as encoders and decoders
to extract dual temporal image features and fuse them by
swin transformer block similarly. It doesn’t use convolutional
module and shows the high ability of transformer in CD task.

ChangeViT is a framework that improves the performance
of large-scale changes by using a common ViT backbone.
The network is supplemented by a detail capture module that
generates detailed spatial features and a feature injector that
efficiently integrates fine-grained spatial information into high-
level semantic learning.

FTAN introduces multi-dimensional convolutional fre-
quency attention module and interactive attention module as a
dual temporal encoder, and generates the final change map
through an MLP decoder. It aggregates different scales of
remote sensing image features based on multi-dimensional
convolution and handles cross-attention information from dif-
ferent time stages through interactive attention.

DMINet presents a inter-temporal joint-attention(JointAtt)
block which unifies SA and cross-attention to achieve in-
terplay between dual-temporal images and better extraction
of differential information. It uses siamese resnet as encoder
and encodes intralevel bitemporal features in each stage by
JointAtt module. The coupled multilevel bitemporal features
are processed in different ways base on CNN to gain the
change map.
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TABLE II
EVALUATION ON CDD DATASET (%).

Method Pre Rec F1 IoU OA
FC-EF 71.83 66.46 69.04 52.72 92.97

FC-Siam-Conc 79.74 72.76 76.09 61.41 94.61
FC-Siam-Diff 86.03 64.99 74.04 58.79 94.63
SNUNet/32 95.14 94.34 94.76 89.91 98.77
SNUNet/48 96.82 97.00 96.91 93.92 99.27

BIT 97.10 89.26 93.01 86.94 98.42
ChangeFormer 95.50 93.02 94.25 89.11 98.66

SwinSUNet 94.72 93.12 93.91 88.30 98.51
ChangeViT 95.28 94.70 94.99 90.46 98.71

FTAN 95.05 95.06 95.06 90.58 98.83
DMINet 96.88 96.45 96.67 93.55 99.22
SEIFNet 96.65 95.86 96.25 92.78 99.12

LTMFFNet(ours) 98.36 98.34 98.35 96.75 99.47

SEIFNet uses a temporal-spatial difference enhancement
module based on multi-layer convolution and coordinated
attention to highlight the difference information between the
same location at different time, and combines it with an
element-wise addition and multiplication adaptive context fu-
sion module based on convolution operation to form a progres-
sive decoder, integrating inter-layer features under different
semantic guidance to generate the final change map.

We conducted comparative experiments between our model
and the selected SOTA methods on four datasets. The exper-
imental results will be presented for quantitative analysis in
the following paragraphs.

1) Results on CDD dataset: We display the results of all
methods on CDD test set in Table II which shows Pre, Rec and
F1-score of them. The numerical results reflect that the overall
performance of LTMFFNet on CDD dataset is obviously
stronger than others for comparison. Particularly, the F1-
score of LTMFFNet on CDD set is 98.35% that outperforms
SNUNet/48 by 1.44% and the IoU of our method is 96.75%
that outperforms SNUNet/48 by 2.83%. And our method also
performs best in other indicators among these models.

To enhance the performance comparison between different
methods, we choose four pairs of images from CDD test set
and obtain change maps through the above methods. They
are shown in Fig. 6 in visual form with ground truth and
we use different colour to mark areas for incorrect detections
including error and missed change area. Fig. 6(a) and Fig.
6(b) concludes changes caused by roads and infrastructures,
Fig. 6(b) and Fig. 6(c) mainly have changes caused by plants.

We can see our LTMFFNet achieves better result which
is more similar to ground truth. LTMFFNet can significantly
catch the changes caused by roads which can’t be recognized
by other methods and make a balance of large regions and
small targets according to these comparative images.

2) Results on LEVIR Dataset: Similarly, we show the
outcomes of all the models on LEVIR test set in Table III
from which we can see LTMFFNet get the best F1-score over
these comparative models and outperforms DMINet which has
best performance in comparative models by 0.85% while our
IoU is also best that outperforms DMINet by 1.3%. By the

TABLE III
EVALUATION ON LEVIR-CD DATASET (%).

Method Pre Rec F1 IoU OA
FC-EF 83.95 83.74 83.84 72.19 98.36

FC-Siam-Conc 87.48 83.97 85.69 74.96 98.57
FC-Siam-Diff 89.05 81.90 85.32 74.41 98.57
SNUNet/32 90.14 87.38 88.74 79.74 98.87
SNUNet/48 91.25 89.18 90.21 82.14 99.01

BIT 92.09 87.95 89.98 81.78 99.00
ChangeFormer 91.55 88.61 90.06 81.91 99.00

SwinSUNet 90.89 88.78 89.82 80.00 98.82
ChangeViT 92.03 89.90 90.90 83.32 99.08

FTAN 89.77 88.89 89.33 80.72 98.92
DMINet 92.99 88.06 90.45 82.50 99.05
SEIFNet 91.48 87.92 89.66 81.26 98.97

LTMFFNet(ours) 92.40 90.23 91.30 83.80 99.53

way, our model also has the highest Rec and OA among these
methods.

The visualization are displayed in Fig. 6. We also choose
four groups of bitemporal images and labels from LEVIR-
CD dataset, and generate the change map with different
methods. By analyzing these images, we can see that there
is a problem of imbalanced samples on this dataset, while
other models lack the ability to detect small change regions on
this dataset. Comparing with these methods, we conclude that
our LTMFFNet has the ability to catch both small and large
change regions with excellent edge. These changes are mainly
the result of buildings some of which can’t be recognized by
other methods while our model can catch them.

3) Results on SYSU Dataset: The results of our experiment
on SYSU test set are present in Table IV. In such a big set,
our LTMFFNet get best performance compared with other
methods as the table shows. Fig. 7 displays the results of
comparative experiments on SYSU dataset and it obviously
shows that our LTMFFNet can better capture changes in
large areas with more accurate edges than others mainly by
comparing F1 and IoU .

4) Results on GZ-CD Dataset: GZ-CD is the smallest dataset
in four datasets and it is usually hard to obtain satisfactory
results on its test set. As shown in Table V, our model has
best F1-score and IoU among all comparison methods. The
visualization results on GZ-CD test set are put in fig. 8. It’s
challenging to catch some boundary and fine-grained features
through training in limited set and our method has smaller
deviation than others by comparing these results.

5) Analysis of parameters and computation: We compare
efficiency of different models in Table VI by calculating
the parameter quantity (Params) and floating point operations
per second (FLOPs) which reflects computational speed. By
analyzing these data, we can conclude that LTMFFNet has
fewer Params than SwinSUNet and ChangeFormer which are
mainly based on transformer. And the Params of our method
is also less than SNUNet/48 which is a CNN-based method.

As for computation, our method has small FLOPs which is
only larger than FC-EF and FC-Siam-Diff. The computational
complexity of LTMFFNet is lower than all transformer meth-
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Fig. 8. Experimental results on SYSU-CD dataset. S1-S4 are four samples selected from SYSU-CD test set. (a) T1 image. (b) T2 image. (c) Ground truth.
(d) LTMFFNet (ours). (e) FC-EF. (f) FC-Siam-Conc. (g) FC-Siam-Diff. (h) SNUNet/32. (i) SNUNet/48. (j) BIT. (k) ChangeFormer. (l) SwinSUNet. (m)
ChangeViT. (n) FTAN. (o) DMINet. (p) SEIFNet.

Fig. 9. Experimental results on GZ-CD dataset. S1-S4 are four samples selected from GZ-CD test set. (a) T1 image. (b) T2 image. (c) Ground truth.
(d) LTMFFNet (ours). (e) FC-EF. (f) FC-Siam-Conc. (g) FC-Siam-Diff. (h) SNUNet/32. (i) SNUNet/48. (j) BIT. (k) ChangeFormer. (l) SwinSUNet. (m)
ChangeViT. (n) FTAN. (o) DMINet. (p) SEIFNet.

TABLE IV
EVALUATION ON SYSU-CD DATASET (%).

Method Pre Rec F1 IoU OA
FC-EF 76.50 77.96 77.22 62.90 89.16

FC-Siam-Conc 79.28 78.13 78.70 64.78 89.88
FC-Siam-Diff 88.42 62.52 73.25 57.80 89.23
SNUNet/32 81.53 71.63 76.26 62.15 89.54
SNUNet/48 81.52 75.34 78.31 64.35 90.52

BIT 76.84 73.42 75.09 60.12 88.51
ChangeFormer 80.69 75.19 77.84 63.72 89.91

SwinSUNet 80.61 74.83 77.61 63.56 89.56
ChangeViT 80.93 81.45 81.19 68.34 91.10

FTAN 81.66 72.21 76.64 62.13 89.62
DMINet 87.04 76.53 81.45 68.29 91.39
SEIFNet 85.11 77.10 80.91 67.94 91.42

LTMFFNet(ours) 89.28 80.56 84.70 73.78 91.43

ods and several methods based on CNN in our experiments. It
proves the efficiency of LWT block in LTMFFNet for reducing
model complexity compared with pure transformer methods
and some complex CNN-based methods while improve perfor-
mance in CD task. By using efficient convolution operations

TABLE V
EVALUATION ON GZ-CD DATASET (%).

Method Pre Rec F1 IoU OA
FC-EF 82.50 75.69 78.93 65.20 95.84

FC-Siam-Conc 77.29 75.71 76.49 61.94 95.20
FC-Siam-Diff 76.91 70.86 73.76 58.11 94.83
SNUNet/32 86.83 82.99 84.86 73.72 96.95
SNUNet/48 88.07 86.13 87.09 77.13 97.37

BIT 86.18 74.76 80.06 73.20 97.02
ChangeFormer 86.18 74.76 80.06 66.75 96.16

SwinSUNet 88.70 85.60 87.12 76.11 97.48
ChangeViT 88.70 85.80 87.22 77.34 97.41

FTAN 91.10 81.45 86.00 75.44 97.27
DMINet 89.54 86.56 88.02 78.61 97.57
SEIFNet 89.07 84.85 86.91 76.85 97.37

LTMFFNet(ours) 88.25 92.22 90.19 84.22 97.74

and simplifying the calculation of self attention, our method
effectively reduces redundant calculation of transformer for
CD.

(6) Analysis of training process: We draw the line chart
generated during training process of LTMFFNet in Fig. 9. We
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Fig. 10. Line chart of different indicators on validation set. (a) is the process on CDD dataset. (b) is the process on LEVIR-CD dataset

TABLE VI
THE PARAMS (M) AND FLOPS (G) OF EACH MODEL.

Method Params Flops
FC-EF 1.35 3.58

FC-Siam-Diff 1.35 4.73
FC-Siam-Conc 1.55 5.33

BIT 3.50 10.63
DMINet 6.24 14.55

SNUNet/32 12.03 54.83
SNUNet/48 27.07 123.14

SEIFNet 27.91 8.37
ChangeViT 32.14 38.81

ChangeFormer 41.03 202.79
FTAN 42.27 211.06

SwinSUNet 42.94 15.71
LTMFFNet(ours) 17.64 5.24

choose CDD and LEVIR-CD dataset as example and show the
growth process of indicators on their validation set. As we can
see from the curves, our model converges in a set number of
epochs and tends to be relative stable. After too many epochs,
there may be undulation but no significant changes. So we
choose 200 epochs in our experiments and choose the best
result on test set.

V. DISCUSSION

In general, there are numbers of factors can affect results
of the model. To confirm the contributions of different parts
in our method, we design several ablation experiments on
benchmark dataset and analyze their effectiveness. We will
also discuss the limitations of the model and the directions
for future development of CD in this section.

A. Effects of Different Modules

1) Effect of Fusion Module: We use two kinds of fusion
module separately in shallow and deep layers of LTMFFNet
to combine deep syntactic feature and superficial positional
information separately. To verify the effectiveness of two
fusion module which are CFM and CDM, we do experiments
about fusion module on CDD dataset and analysis results as
listed in Table VII shows. We do the experiments by removing
CFM or CDM in corresponding layer individually and replace
with simple concatenation as second line and third line of
Table VII. And we also remove both of them and similarly
do experiments in CDD dataset. The results show that both
of CFM and CDM has its effectiveness in our model, and
each of the fusion module can improve overall performance
of LTMFFNet.

2) Effect of Deep Supervision: In our LTMFFNet, we use
a auxiliary branch in the third layer for deep supervision. We
calculate loss of it and adds with the loss of final output so that
we can fully utilize information at different scales from LWT
blocks. To verify the effect of deep supervision, we do ablation
experiment on CDD dataset by training without the auxiliary
branch. The result can be seen in the first line of Table VIII
and it shows that the effectiveness of auxiliary branch in
the training process of LTMFFNet where the F1-score of
LTMFFNet with deep supervision is 1.52% higner than the
model without auxiliary branch. Thus the deep supervision is
important for the training of LTMFFNet.

3) Effect of Stem and Output Block: In LTMFFNet, we use
a stem block to preliminarily process the input image in each
branch of encoder and use a output block in the end of decoder
for gaining the result. In order to prove its effectiveness, we
replace stem block with a 1× 1 convolution which decreases
the dimensions of input image while reduce its size by half
and substitute output block for a simple 1 × 1 convolution
and linear upsample to restore its original size. We run the
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TABLE VII
EFFECT OF FUSION MODULES IN LTMFFNET ON CDD DATASET.

Method Pre Rec F1 IoU OA
LTMFFNet (without CDM and
CFM)

97.40 98.08 97.74 95.58 99.27

LTMFFNet (without CDM) 97.85 98.09 97.96 96.02 99.35
LTMFFNet (without CFM) 97.84 98.05 97.94 95.98 99.34
LTMFFNet 97.88 98.52 98.20 96.47 99.42

TABLE VIII
EFFECT OF AUXILIARY BRANCH, STEM BLOCK AND OUTPUT BLOCK IN

LTMFFNET ON CDD DATASET.

Method Pre Rec F1 IoU OA
LTMFFNet (without auxiliary
branch)

96.24 97.11 96.68 93.71 99.07

LTMFFNet (without stem block
and uutput block)

98.82 95.18 96.95 93.94 99.18

LTMFFNet 97.84 98.05 97.94 95.98 99.34

TABLE IX
EFFECT OF MODEL DEPTH.

Depth Pre Rec F1 IoU OA
(2, 2, 2, 2) 97.77 98.39 98.08 96.23 99.38

(2, 2, 10, 2) 98.36 98.34 98.35 96.75 99.47
(2, 2, 12, 2) 98.27 98.54 98.40 96.85 99.49

experiments on CDD set similarly and consequential data is
displayed as the second row of Table VIII. Comparative data
clearly indicate that the stem and output block is useful for
the performance of LTMFFNet.

B. Effect of Model Depth

In general, the model depth will affect the performance. We
use three configurations of encoder depths in our experiment
which are (2, 2, 2, 2), (2, 2, 10, 2) and (2, 2, 12, 2). The values
are the numbers of LWT blocks in each layer of encoder and
the values in decoder is the same in opposite order which
are (2, 2, 2, 2), (2, 10, 10, 2) and (2, 12, 12, 2). We list
results at different depths in Tabel 9 and it obviously shows
the performance of model with various numbers of blocks.
Obviously, the performance of model gradually enhances as
the quantity of LWT blocks grows. What’s more, the growth
rate of the performance becomes less and less as the depth
increases. When the depth exceeds a certain number, the
performance increase is limited while the computation become
larger. Considering about both performance and computational
complexity, we choose (2, 2, 10, 2) as our model depth in our
paper.

C. Limitations and Future Work

There are still limitations for the performance of our model:
The situation where small targets are missed and the edges of
the changed areas are inaccurate still exists. What’s more, how
to further reduce the params of model which based on trans-
former combined with CNN is a issue to be studied. Future
work need to focus more on efficient integration of CNN and

transformer to achieve model performance improvements with
less computation and parameters.

VI. CONCLUSION

With the aim of enhancing the local sensing ability of
transformer in CD to better capture change areas of different
scales and get better change region edges while reducing com-
putational complexity, we propose a siamese U-shape network
LTMFFNet based on modules which combines the advantages
of CNN and transformer for CD. It uses LWT block which
integrates CNN structure with MHSA as the basic module
in our network. Compared to traditional transformer-based
methods which mainly focus on global information, LWT
block enhances local perception ability for input images while
reduces computational complexity. Therefore, LTMFFNet can
effectively balance both global and local features from RS
images and capture more precise change information than
pure transformer methods with less computation as a result.
We conduct experiments on four public CD datasets and
compare with other methods. The experimental result shows
that LTMFFNet achieve better comprehensive performance
relative to other SOTA methodologies which cover CNN-
based model and transformer-based model while our model
has small computational complexity especially compared with
these transformer methods.

REFERENCES

[1] O. Abd El-Kawy, J. Rød, H. Ismail, and A. Suliman, “Land use and land
cover change detection in the western nile delta of egypt using remote
sensing data,” Applied Geography, vol. 31, pp. 483–494, 2011.

[2] A. Alqurashi and L. Kumar, “Investigating the use of remote sensing
and gis techniques to detect land use and land cover change: A review,”
Advances in Remote Sensing, 2013.

[3] S. Kumar, M. Anouncia, S. Johnson, A. Agarwal, and P. Dwivedi,
“Agriculture change detection model using remote sensing images and
gis: Study area vellore,” in 2012 International Conference on Radar,
Communication and Computing (ICRCC). IEEE, 2012, pp. 54–57.

[4] V. Agone and S. Bhamare, “Change detection of vegetation cover using
remote sensing and gis,” Journal of research and development, vol. 2,
no. 4, 2012.

[5] R. K. Gupta, “Change detection techniques for monitoring spatial urban
growth of jaipur city,” Inst Town Planners India J, vol. 8, no. 3, pp.
88–104, 2011.

[6] I. R. Hegazy and M. R. Kaloop, “Monitoring urban growth and land
use change detection with gis and remote sensing techniques in daqahlia
governorate egypt,” International Journal of Sustainable Built Environ-
ment, vol. 4, no. 1, pp. 117–124, 2015.

[7] Z. Zheng, Y. Zhong, J. Wang, A. Ma, and L. Zhang, “Building
damage assessment for rapid disaster response with a deep object-based
semantic change detection framework: From natural disasters to man-
made disasters,” Remote Sensing of Environment, vol. 265, p. 112636,
2021.

[8] Y. Ma, F. Chen, J. Liu, Y. He, J. Duan, and X. Li, “An automatic
procedure for early disaster change mapping based on optical remote
sensing,” Remote Sensing, vol. 8, no. 4, p. 272, 2016.

[9] L. Khelifi and M. Mignotte, “Deep learning for change detection in
remote sensing images: Comprehensive review and meta-analysis,” Ieee
Access, vol. 8, pp. 126 385–126 400, 2020.

[10] W. Shi, M. Zhang, R. Zhang, S. Chen, and Z. Zhan, “Change detection
based on artificial intelligence: State-of-the-art and challenges,” Remote
Sensing, vol. 12, no. 10, p. 1688, 2020.

[11] S. Liu, D. Marinelli, L. Bruzzone, and F. Bovolo, “A review of change
detection in multitemporal hyperspectral images: Current techniques,
applications, and challenges,” IEEE Geoscience and Remote Sensing
Magazine, vol. 7, no. 2, pp. 140–158, 2019.

[12] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2025.3529529

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

[13] R. C. Daudt, B. Le Saux, and A. Boulch, “Fully convolutional siamese
networks for change detection,” in 2018 25th IEEE International Con-
ference on Image Processing (ICIP). IEEE, 2018, pp. 4063–4067.

[14] S. Fang, K. Li, J. Shao, and Z. Li, “Snunet-cd: A densely connected
siamese network for change detection of vhr images,” IEEE Geoscience
and Remote Sensing Letters, vol. 19, pp. 1–5, 2021.

[15] H. Chen and Z. Shi, “A spatial-temporal attention-based method and
a new dataset for remote sensing image change detection,” Remote
Sensing, vol. 12, no. 10, p. 1662, 2020.

[16] C. Yu, H. Li, Y. Hu, Q. Zhang, M. Song, and Y. Wang, “Frequency-
temporal attention network for remote sensing imagery change detec-
tion,” IEEE Geoscience and Remote Sensing Letters, 2024.

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[18] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[19] T. Yan, Z. Wan, and P. Zhang, “Fully transformer network for change
detection of remote sensing images,” in Proceedings of the Asian
Conference on Computer Vision, 2022, pp. 1691–1708.

[20] H. Chen, Z. Qi, and Z. Shi, “Remote sensing image change detection
with transformers,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 60, pp. 1–14, 2021.

[21] W. G. C. Bandara and V. M. Patel, “A transformer-based siamese net-
work for change detection,” in IGARSS 2022-2022 IEEE International
Geoscience and Remote Sensing Symposium. IEEE, 2022, pp. 207–210.

[22] C. Zhang, L. Wang, S. Cheng, and Y. Li, “Swinsunet: Pure transformer
network for remote sensing image change detection,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 60, pp. 1–13, 2022.

[23] Q. Li, R. Zhong, X. Du, and Y. Du, “Transunetcd: A hybrid transformer
network for change detection in optical remote-sensing images,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–19,
2022.

[24] J. Guo, K. Han, H. Wu, Y. Tang, X. Chen, Y. Wang, and C. Xu,
“Cmt: Convolutional neural networks meet vision transformers,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 12 175–12 185.

[25] Y. Guo, Y. Li, L. Wang, and T. Rosing, “Depthwise convolution is all
you need for learning multiple visual domains,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 33, no. 01, 2019, pp.
8368–8375.

[26] S. Yun and Y. Ro, “Dynamic mobile-former: Strengthening dynamic
convolution with attention and residual connection in kernel space,”
arXiv preprint arXiv:2304.07254, 2023.

[27] J. Li, X. Xia, W. Li, H. Li, X. Wang, X. Xiao, R. Wang, M. Zheng,
and X. Pan, “Next-vit: Next generation vision transformer for ef-
ficient deployment in realistic industrial scenarios,” arXiv preprint
arXiv:2207.05501, 2022.

[28] X. Lu, M. Suganuma, and T. Okatani, “Sbcformer: Lightweight network
capable of full-size imagenet classification at 1 fps on single board
computers,” in Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, 2024, pp. 1123–1133.

[29] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3431–3440.

[30] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Medical Image Computing
and Computer-Assisted Intervention–MICCAI 2015: 18th International
Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III
18. Springer, 2015, pp. 234–241.

[31] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[32] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric
discriminatively, with application to face verification,” in 2005 IEEE
computer society conference on computer vision and pattern recognition
(CVPR’05), vol. 1. IEEE, 2005, pp. 539–546.

[33] Y. Zhan, K. Fu, M. Yan, X. Sun, H. Wang, and X. Qiu, “Change
detection based on deep siamese convolutional network for optical aerial
images,” IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 10,
pp. 1845–1849, 2017.

[34] A. Varghese, J. Gubbi, A. Ramaswamy, and P. Balamuralidhar,
“Changenet: A deep learning architecture for visual change detection,”
in Proceedings of the European conference on computer vision (ECCV)
workshops, 2018, pp. 0–0.

[35] J. Chen, Z. Yuan, J. Peng, L. Chen, H. Huang, J. Zhu, Y. Liu, and H. Li,
“Dasnet: Dual attentive fully convolutional siamese networks for change
detection in high-resolution satellite images,” IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp.
1194–1206, 2020.

[36] Z. Zhou, M. M. Rahman Siddiquee, N. Tajbakhsh, and J. Liang,
“Unet++: A nested u-net architecture for medical image segmenta-
tion,” in Deep Learning in Medical Image Analysis and Multimodal
Learning for Clinical Decision Support: 4th International Workshop,
DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in
Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018,
Proceedings 4. Springer, 2018, pp. 3–11.

[37] Y. Xing, J. Jiang, J. Xiang, E. Yan, Y. Song, and D. Mo, “Lightcdnet:
Lightweight change detection network based on vhr images,” IEEE
Geoscience and Remote Sensing Letters, 2023.

[38] M. A. Islam, S. Jia, and N. D. Bruce, “How much position in-
formation do convolutional neural networks encode?” arXiv preprint
arXiv:2001.08248, 2020.

[39] Y. Liu, C. Pang, Z. Zhan, X. Zhang, and X. Yang, “Building change
detection for remote sensing images using a dual-task constrained deep
siamese convolutional network model,” IEEE Geoscience and Remote
Sensing Letters, vol. 18, no. 5, pp. 811–815, 2020.

[40] J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, and H. Lu, “Dual attention
network for scene segmentation,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2019, pp. 3146–
3154.

[41] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using shifted
windows,” in Proceedings of the IEEE/CVF international conference on
computer vision, 2021, pp. 10 012–10 022.

[42] T. Lin, Y. Wang, X. Liu, and X. Qiu, “A survey of transformers,” AI
Open, 2022.

[43] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 4510–4520.

[44] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” arXiv
preprint arXiv:1606.08415, 2016.

[45] S. Xie and Z. Tu, “Holistically-nested edge detection,” in Proceedings of
the IEEE international conference on computer vision, 2015, pp. 1395–
1403.

[46] F. Milletari, N. Navab, and S.-A. Ahmadi, “V-net: Fully convolutional
neural networks for volumetric medical image segmentation,” in 2016
fourth international conference on 3D vision (3DV). Ieee, 2016, pp.
565–571.

[47] M. Lebedev, Y. V. Vizilter, O. Vygolov, V. A. Knyaz, and A. Y. Rubis,
“Change detection in remote sensing images using conditional adver-
sarial networks,” The International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, vol. 42, pp. 565–571,
2018.

[48] M. Liu and Q. Shi, “Dsamnet: A deeply supervised attention metric
based network for change detection of high-resolution images,” in
2021 IEEE International Geoscience and Remote Sensing Symposium
IGARSS. IEEE, 2021, pp. 6159–6162.

[49] D. Peng, L. Bruzzone, Y. Zhang, H. Guan, H. Ding, and X. Huang,
“Semicdnet: A semisupervised convolutional neural network for change
detection in high resolution remote-sensing images,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 59, no. 7, pp. 5891–5906, 2020.

[50] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
arXiv preprint arXiv:1711.05101, 2017.

[51] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE international conference on computer vision,
2015, pp. 1026–1034.

[52] D. Zhu, X. Huang, H. Huang, Z. Shao, and Q. Cheng, “Changevit: Un-
leashing plain vision transformers for change detection,” arXiv preprint
arXiv:2406.12847, 2024.

[53] Y. Feng, J. Jiang, H. Xu, and J. Zheng, “Change detection on remote
sensing images using dual-branch multilevel intertemporal network,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp.
1–15, 2023.

[54] Y. Huang, X. Li, Z. Du, and H. Shen, “Spatiotemporal enhancement and
interlevel fusion network for remote sensing images change detection,”
IEEE Transactions on Geoscience and Remote Sensing, 2024.

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2025.3529529

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


