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Abstract—The development of satellite remote sensing tech-
nology has made it easier to obtain satellite imagery. Compared
to imagery obtained from aerial photography, satellite imagery
has the advantages of wide coverage, high acquisition efficiency,
and periodic revisits. In photogrammetry, the 3D reconstruction
technology of satellite imagery often requires optimization and
adjustment of numerous RPC parameters, which to some extent
limits the speed and accuracy of 3D reconstruction. At the same
time, the progress in 3D reconstruction technology in the field
of computer vision has shown certain advantages in terms of
accuracy and speed. However, these methods are specifically de-
signed for pinhole imaging models and cannot be directly applied
to the 3D reconstruction of satellite imagery with row-sampled
central projection. The introduction of the equivalent pinhole
imaging model enables computer vision methods to perform
3D reconstruction on satellite imagery. This local approximation
introduces re-projection errors when the RPC model is equivalent
to the pinhole imaging model, thereby affecting the accuracy of
3D reconstruction.This paper investigates the causes and patterns
of re-projection errors in the equivalent pinhole imaging model
and proposes a method for generating pseudo-images through
iterative resampling, as well as a method for partitioning satellite
images to equivalently approximate the pinhole imaging model.
Test results on the MVS3D dataset show that both methods can
reduce re-projection errors, thereby improving the accuracy of
3D reconstruction of satellite images using the equivalent pinhole
imaging model.

Index Terms—Equivalent Pinhole Camera Models, RPC
Model, 3D Reconstruction.

I. INTRODUCTION

REMOTE sensing satellite imagery plays a crucial role
in target detection and tracking, terrain mapping and

analysis, map production and updating, 3D urban modeling,
and navigation. With the increase in the number of remote
sensing satellites and the advancement of sensors, satellites can
image the same geographic area within seconds, days, months,
or even years, generating a sufficient number of images for
3D reconstruction. In this context, there is a growing interest
among researchers in using satellite imagery for large-scale
3D reconstruction of the Earth’s surface [1].

Photogrammetry and Remote Sensing, as a discipline, are
intersecting and integrating with Computer Vision, with their
boundaries becoming increasingly blurred [2]. There is a
convergence and mutual borrowing of techniques and methods
between them [3]. However, there are still distinct differences
in the aspect of 3D reconstruction:

• In different fields, there are significant differences in
imaging models. Satellite cameras typically use ratio-
nal function models to characterize complex imaging
relationships, while computer vision use simple pinhole
camera models.

• In the field of remote sensing, integrating multiple stereo
reconstructions can produce better results, as seen in the
representative S2P satellite reconstruction process [4].
Due to the inherent revisit cycles of satellite imaging,
combined with factors such as cloudy weather, multi-view
satellite images of specific locations may span several
years. Changes in image features caused by variations in
lighting, seasons, and weather conditions make remote
sensing techniques more suitable for processing satellite
images with minor temporal changes and insignificant
terrain alterations. In the domain of computer vision,
multi-view stereo methods have long been explored by
researchers because of their advantages in dealing with
occlusions, repetitions, and temporal changes.

3D reconstruction methods in the field of computer vi-
sion have developed rapidly. Techniques such as Structure
from Motion (SfM) and Multi-view Stereo (MVS) have been
widely applied to the 3D reconstruction of drone imagery and
ground photographs, achieving good results. However, due
to differences in imaging modalities, SfM and MVS cannot
be directly applied to satellite imagery. Although researchers
have proposed equivalent pinhole camera models to establish
a connection between remote sensing and computer vision,
these models do not accurately approximate the Rational
Polynomial Coefficients (RPC) model of satellite images,
especially for large-scale images. This is because the equiv-
alent pinhole imaging model for satellite images introduces
significant reprojection errors, which affect the accuracy of
3D reconstruction from the images.

The challenges faced in using computer vision methods
for 3D reconstruction of satellite imagery include: (1) For
Structure from Motion (SfM): The main difficulty stems from
the RPC parameters widely used in satellite imagery, which
cannot be directly employed as camera pose parameters in
vision-based reconstruction [5]. Methods that locally approxi-
mate the RPC model to a pinhole camera model enable us to
utilize computer vision SfM methods for bundle adjustment of
camera parameters [6]. (2) For Multi-View Stereo (MVS): Due
to the vast distance between the satellite and the Earth, depth
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Fig. 1: Technical Flowchart

will be concentrated far from the sensor plane, leading to a
large mean depth distribution with low variance. Consequently,
the computation of depth values suffers from a lack of numer-
ical precision. Depth can be reparameterized using a reference
plane, ensuring the numerical precision of operations.

In this paper, we analyze the equivalent transformation
methods between different imaging models. To address the
projection errors introduced by approximating the RPC model
locally to a pinhole imaging model, we propose an iterative
resampling method to generate pseudo-images and a block-
based reconstruction scheme. We have demonstrated that these
two methods can reduce the reprojection errors caused by
the equivalent model, thereby improving the accuracy of
3D reconstruction. We apply the 3D reconstruction module
of COLMAP, a computer vision 3D reconstruction pipeline.
COLMAP performs Structure from Motion (SfM) and Multi-
view Stereo (MVS) for 3D reconstruction.

To enhance the precision of 3D reconstruction of satellite
images using equivalent pinhole imaging models, we have
designed the technical workflow as depicted in Fig. 1. The
input data consists of three parts: satellite image files, Rational
Polynomial Coefficients (RPC) parameters, and the area of
interest extent. During the construction of the equivalent pin-
hole model, we reduce the reprojection error of the equivalent
model by locally approximating the RPC model and generat-
ing pseudo-images through iterative resampling. Subsequently,
skew correction is applied to eliminate the skew parameters in
the projection matrix P of the equivalent pinhole model. This
allows us to handle the pseudo-images with standard proce-
dures for pinhole camera models, including bundle adjustment
and depth estimation, among other steps. We used two methods
to generate point clouds and Digital Surface Model(hereinafter
referred to as DSM). The first method involves creating DSM
based on the depth maps of each camera, then fusing these
DSMs to produce the final DSM product, and subsequently
extracting pseudo-3D point clouds from the merged DSM.
The second method utilizes the COLMAP Stereo fusion tool
to convert depth maps into 3D point clouds, which are then
projected onto a geographic grid to derive the DSM. Finally,
the DSMs from each segment are stitched together according
to the partitioning scheme, and the accuracy is assessed based
on the reference true value DSM obtained from LiDAR data.

In the MVS3D dataset, an experimental area of 500 meters
by 500 meters was selected for the experiment. The median
error of the DSM reconstructed using the equivalent pinhole
camera model proposed by Zhang et al [7]. is 0.51 meters.
After two rounds of image resampling and reconstruction, the
median error of the DSM is 0.38 meters. The median error of
the DSM obtained by reconstructing the entire experimental
area is 0.23 meters. The median error of the DSM obtained
by dividing the experimental area into a 4 by 4 grid and
reconstructing in blocks is 0.09 meters.These experimental
results indicate that the iterative resampling strategy and
block-based reconstruction strategy proposed in this study can
reduce reprojection errors, thereby improving the accuracy of
3D reconstruction from satellite images using the equivalent
model.

II. RELATED WORKS

A. Research on RPC Model

In the realms of photogrammetry and remote sensing, the
Rational Polynomial Coefficients (RPC) model, introduced by
B. J. Nelson in the 1980s, assumes a pivotal role. The standard
RPC model consists of 78 coefficients and 10 normalization
constants [8]. This model precisely describes the spatial rela-
tionship between ground points and their corresponding points
in the image, and can be represented as follows:

u = µu + σu · g
(
x− µx

σx
,
y − µy

σy
,
z − µz

σz

)
(1)

v = µv + σv · h
(
x− µx

σx
,
y − µy

σy
,
z − µz

σz

)
, (2)

where x, y, z represent latitude, longitude, and elevation,
respectively, and g, h denote the ratio of two cubic polyno-
mials represented by 39 coefficient parameters, µ{x,y,z,u,v}
and σ{x,y,z,u,v} are normalization constants. Although RPC
parameters do not have a direct geometric interpretation cor-
responding to camera attitudes, the RPC model has been suc-
cessfully applied to downstream photogrammetric tasks such
as orthoimage generation and DEM production.RPC model
has become the primary method for reflecting the relationship
between satellite image point coordinates and ground point
coordinates [8].
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Research on the Rational Polynomial Coefficients (RPC)
model is primarily divided into two domains: on one hand,
there is the study of RPC parameter estimation, bundle ad-
justment, and residual minimization algorithms [9]. However,
parameter estimation relies on specific information about the
physical sensor, which is typically conducted by satellite
image providers and is often not readily accessible to users.
On the other hand, numerous studies have been dedicated
to analyzing the errors inherent in the RPC model and have
introduced the concept of calibrating RPC model parameters
[10]. Some research has found that the bias in the RPC model
can be equated to translations of pixels in 2D image space, and
this bias can be corrected using artificially measured ground
control points [11]. Compensating for and correcting pixel
coordinates in 2D image space to enhance the accuracy of
the RPC model is essentially a process of re-sampling images
and re-arranging pixel positions. This concept of correction in
image space can also be applied to correct the bias between
the equivalent pinhole model and the RPC model, which is the
method proposed in this paper of generating pseudo-images
through iterative resampling.

B. Research on 3D Reconstruction of Satellite Imagery in
Remote Sensing

In the field of remote sensing, research and application
of 3D reconstruction algorithms based on the RPC model
are continuously making new progress. The RPC model,
introduced by B. J. Nelson in the 1980s, has become a key
tool in this field because it can accurately describe the spatial
relationship between ground points and corresponding points
in the image [12] [13].

Currently, reconstruction algorithms based on the RPC
model, represented by S2P, follow this approach: first, com-
plete stereo reconstruction, and then achieve multi-view recon-
struction through DSM fusion algorithms. The reconstruction
process mainly includes three key steps: obtaining dense
correspondence between images using parallax(D’Angelo and
Reinartz, 2012 [14]; Kuschk, 2013 [15]; Rupnik et al. 2017
[16]) or optical flow method; optimizing the RPC model
estimation residuals of optical satellite images through bundle
adjustment; and performing triangulation based on the RPC
model to recover the 3D structure of the scene corresponding
to the images.For example, Bosch et al. (2017) optimized the
RPC model through bundle adjustment to achieve maximum
consistency between models, and used the RPC model for
triangulation to recover the 3D structure of the ground scene.
De Franchis et al. (2014) [17] used an RPC model elevation
iteration method, correcting the pointing error between two
views, avoiding complex nonlinear bundle adjustment, and
achieving the 3D reconstruction process of optical remote
sensing images.

In addition, Facciolo et al. (2017) [18] analyzed the main
factors affecting the accuracy of stereo reconstruction, sorted
the image pairs in the dataset based on these factors, and ulti-
mately selectively fused the independent stereo reconstruction
results. These studies demonstrate the potential of RPC-based
satellite image 3D reconstruction methods in improving recon-

struction accuracy. It is worth noting that although the accu-
racy and speed of RPC-based satellite image 3D reconstruction
methods are continuously improving, these methods cannot
avoid solving the complex cubic polynomials of the RPC
model. The parameter estimation of the RPC model requires at
least 39 sets of ground control points and corresponding image
point relationships, which to some extent limits the speed and
accuracy of 3D reconstruction.

C. Research on 3D Reconstruction of Satellite Imagery in
Computer Vision.

In the field of computer vision, significant progress has
been made in 3D scene reconstruction methods based on
optical images(Govindu, 2004 [19]; Snavely et al. 2008 [20];
Wilson and Snavely, 2014 [21]; Schonberger and Frahm, 2016
[22]; Yu, Y. et al. 2019 [23]; Xue, J. S. et al. 2020 [24]).
These methods are typically suitable for processing images
captured by area-array cameras, but they are not applicable
to images obtained from push-broom linear array cameras
mounted on satellites. Consequently, researchers have been
exploring how to apply these reconstruction algorithms to
remote sensing images. Fraser et al. (2014) [25] directly
fitted an affine camera model using the true correspondences
between ground control points and image points, achieving
affine reconstruction of optical remote sensing images through
the fitted affine camera model. However, this method operates
on the entire optical remote sensing image, resulting in lower
reconstruction accuracy.

Wang et al. proposed an incremental optical satellite image
reconstruction method based on the affine imaging model,
which no longer relies on the RPC model and only requires
at least four ground control points for scene reconstruction
[26]. Additionally, Chen et al. introduced a method for fast 3D
reconstruction of satellite images using a global affine model
[27]. This method first crops multi-view satellite images into
a set of local image patches and calculates the corresponding
3D affine point clouds for each local scene. It then employs a
global affine motion matrix estimation method based on local
point clouds to compute the affine motion matrix for each
viewpoint, utilizing a few ground control points to recover the
Geometric structure of the scene.

Zhang et al.(2019) [7] fitted a weak perspective projection
model using the known RPC model and introduced a depth
reparameterization method based on COLMAP to achieve
3D reconstruction of optical remote sensing images within a
computer vision reconstruction pipeline. They also designed a
conversion method between the RPC model and the pinhole
imaging model, constructing an equivalent pinhole imaging
model for satellite images, and successfully performed 3D
reconstruction using Structure from Motion (SfM) and Multi-
view Stereo (MVS), achieving satisfactory results in their
experiments.

The processes developed in the field of computer vision
utilize the easily interpretable pinhole camera model instead of
the RPC model. The parameters of the pinhole camera model
correspond to the camera’s position and orientation, having
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clear physical significance. The pinhole camera model can be
expressed in the following form:

[u; v; 1] = K[R|t][x; y; z; 1] (3)

The implication matrix K ∈ R3×3 takes the form
[fx, s, cx; 0, fy, cy; 0, 0, 1], while the outer matrix consists of
camera rotations R ∈ SO(3) and translations t ∈ R3 . In
many cases, zero skew (s = 0), unit aspect ratio (fx = fy)
and centered principal points ( cx, cy = 0.5 in normalized
image coordinates) can be assumed.Most computer vision
reconstruction processes include Structure from Motion (SfM)
and Multi-View Stereo (MVS) stages. The goal of SfM is
to obtain accurate camera parameters by iteratively optimiz-
ing the intrinsic and extrinsic parameters of the projection
matrices, as well as triangulating sparse point clouds. Given
a set of images and their corresponding camera parameters,
MVS reconstructs a dense point cloud or mesh. Key issues
of MVS include view selection based on camera baselines,
determination of overlapping areas, and robustly recovering
dense depth maps [28].

D. Research on Equivalent Pinhole Imaging Model

The main difference between photogrammetric satellite im-
age 3D reconstruction and computer vision reconstruction
methods lies in the camera model (RPC model and pinhole
imaging model). Zhang et al. tried to bridge this gap by
locally approximating the RPC model to a pinhole model [7].
After this approximation, SfM processes such as VisualSFM
[29] and COLMAP SfM [6] can be used to adjust camera
parameters.

To tailor satellite imagery for Structure from Motion (SfM),
Zhang et al. have conducted systematic work, which can be
encapsulated in six main aspects [7]:

• They defined SfM coordinate systems adapted for satellite
imagery, encompassing the geodetic coordinate system,
the tangent plane coordinate system, and the local Uni-
versal Transverse Mercator (UTM) projection coordinate
system.

• They devised a scheme for cropping satellite images
within the UTM projection framework.

• They employed Gamma correction to rectify the long-tail
distribution of the original satellite images.

• They mathematically demonstrated the local approxima-
tion of the RPC camera to a perspective camera and
provided numerical methods for estimating camera pa-
rameters.

• While keeping other intrinsic and extrinsic parameters
constant, they performed bundle adjustment by adjusting
the camera’s principal point and added regularization
terms to the coordinates of sparse 3D points to ensure
they do not deviate significantly from their original co-
ordinates during the bundle adjustment process.

• They designed a simple and effective skew correction
step, which involves decomposing the intrinsic parameter
matrix into the product of a transformation matrix and
an intrinsic parameter matrix with zero skew, using the
transformation matrix to resample the original image to

obtain a new image. After the aforementioned transfor-
mation, the intrinsic parameter matrix with zero skew can
be considered as the intrinsic parameter matrix of the new
image.

To adapt Multi-View Stereo (MVS) for satellite imagery,
Zhang et al. have implemented the following strategies [7]:

• They introduced a depth reinitialization step during the
MVS phase, effectively addressing the issues of numer-
ical precision and GPU consumption caused by the sig-
nificant difference in height between the satellite camera
and ground elevatio.

• They Derived a method for directly computing the ho-
mography matrix from the projection matrix, resolving
the issue of numerical instability in the homography
matrix calculated in single precision.

Hong et al. have analyzed the conditions for establishing
an equivalent pinhole model, theoretically deducing that the
reprojection error of the equivalent pinhole model may be
related to the undulations of the ground elevation [30]. They
have also derived and validated that the reprojection error
at the edges of satellite images is greater than that at the
image center. Additionally, they conducted 3D reconstruction
experiments using ZY-3 and GF-7 satellite data, comparing
the accuracy and efficiency of the equivalent pinhole model
reconstruction method with existing satellite image 3D re-
construction methods across various satellite datasets. The
quantitative evaluation results on the WHU-TLC dataset are
shown in TABLE I (the best results are indicated in bold. ↓
indicates that the lower the value, the better; ↑ indicates that
the higher the value, the better). The DSM generated from the
improved equivalent pinhole camera model (PREM) has the
highest RMSE accuracy, validating the feasibility of this idea.

III. MATERIALS AND METHODS

Satellite image 3D reconstruction based on the equivalent
pinhole model has been proven feasible in both theory and
practice, offering certain advantages in terms of accuracy
and speed [7] [30]. However, the equivalent pinhole imag-
ing model inevitably introduces reprojection errors for the
following reasons: Satellite images are captured using linear
array push-broom imaging, with a projection method based
on line-center projection. While individual lines in the image
conform to rigorous imaging models, the entire satellite image
involves multiple projection centers and complex imaging
relationships, which cannot be accurately modeled using strict
models. As a result, researchers have proposed using complex
RPC (Rational Polynomial Coefficient) models to describe
the intricate imaging relationships of satellite imagery. The
rigorous imaging model typically uses 12 parameters (such as
those in a projection matrix), while the RPC model consists
of 78 parameters. Therefore, a 12-parameter model cannot
adequately capture the complexity of a 78-parameter model.

On this basis, this paper studies the factors affecting the
reprojection error of the equivalent pinhole model and designs
two methods to reduce the reprojection error to improve the
accuracy of 3D reconstruction: First, during the construction
of the equivalent pinhole camera model, this paper generates
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TABLE I: Quantitative evaluation of the DSM calculation on the WHU-TLC test set.

Methods MAE(m)↓ RMSE(m)↓ Comp2.5(%)↑ Comp5.0(%)↑ Time(min)↓

CATALYSTa(Catalyst,2023) 3.454 7.939 52.310 82.520 3.800
Metashapea(Agisoft,2023) 2.693 13.047 56.590 75.460 24.510
SDRDISa(Sdrdis,2016) 4.496 15.012 47.580 73.570 9.410
Sat-MVSFa(Gao et al.,2023) 1.895 3.654 64.820 80.050 5.870
S2P(Gao et al.,2023) 1.692 8.710 66.738 94.652 7.487
LPS(Leica, 2023) 3.581 13.934 62.242 91.729 8.062
PCAM(Zhang et al., 2019) 1.766 3.334 73.926 97.428 7.171
RPEM(Hong et al.,2024) 1.666 3.150 75.826 97.308 7.317

pseudo-images that better conform to the imaging charac-
teristics of the pinhole camera through iterative resampling;
Second, this paper segments the original image into blocks
for separate reconstruction, and then mosaics and stitches the
reconstructed DSM.

A. Equivalent pinhole camera model

In order to further enhance the accuracy of the equivalent
pinhole model, this paper proposes an iterative resampling
scheme. By performing multiple resamplings of the satellite
imagery, the images are made to more closely align with the
imaging relationship of a pinhole camera, thereby enabling us
to obtain pseudo-satellite images that are nearly identical in
imaging characteristics to those of a pinhole camera.

For satellite images, the depth value of each ground point
is much larger than the differences in depth values between
different ground points. Under such circumstances, we have
demonstrated that both perspective cameras and linear push-
broom cameras can be accurately approximated by what is
known as a weak perspective camera, thus allowing us to
approximately convert a linear push-broom camera into a per-
spective camera. The first step is the model approximation of
the perspective camera. Due to the minimal changes in scene
depth and the very large average scene depth, the perspective
camera is simplified to a weak perspective camera using the
following form: u ≈ fx

Z X + s
ZY + cx, v ≈ fy

Z Y + cy ,Where
(X,Y, Z) is a point in the camera coordinate system. Under
the same conditions, a linear push-broom camera can also
be approximated as a weak perspective camera. The imaging
model of the linear push-broom camera can be modeled
as:u = a1x + b1y + c1z + d1, v = a2x+b2y+c2z+d2

a3x+b3y+c3z+d3
,where

(x, y, z) is a point in the scene coordinate system. The satellite
image exhibits linearity along the row axis u and a weak
perspective effect along the column axis v [7]. Assuming
f, c̃x, c̃y,R, t are the intrinsic and extrinsic parameters of the
perspective camera along the column axis (with zero skew
and a unit aspect ratio), we then use R.t to transform the
scene coordinates (x, y, z) into camera coordinates (X,Y, Z),
and rewrite the linear push-broom camera model. Through
approximation, the result is still a weak perspective camera
[7]:

u = â1X + b̂1Y + ĉ1Z + d̂1

= â1X + b̂1Y + ĉ1Z̄ ·
(
1 +

Z − Z̄

Z̄

)
+ d̂1

≈ â1X + b̂1Y + ĉ1Z̄ + d̂1 (4)

v = f
Y

Z
+ c̃y (5)

Comparing the two weak perspective camera models ob-
tained from approximation yields the following equation:â1 =
fx
Z , b̂1 = s

Z̄
, ĉ1Z̄ + d̂1 = cx, f = fy, c̃y = cy . By solving for

fx, fy, s, cx, cy as well as R, t, we obtain approximate values
for the parameters of the perspective camera model, which is
referred to as the equivalent pinhole imaging model in other
sections of this paper.

The above derivation only establishes the feasibility of a
perspective approximation for the satellite camera within a
local area. To actually solve for the approximate perspective
camera model, three steps need to be carried out: placing vir-
tual control points using the RPC model, fitting the projection
matrix, and decomposing the projection matrix.

First, We generate a set of virtual control points from the
RPC model (correspondences between 3D points in space
and 2D points in the image plane), a process that can be
referred to as constructing a virtual control grid in the field
of remote sensing (also known as terrain-independent control
points).Specifically, by evenly dividing the x, y, and z axes
into M , M , and N sampling positions respectively, we dis-
cretize the ENU (East, North, Up) 3D bounding cube into a
finite grid. Within this grid, M ×M ×N grid sample points
are generated with coordinates (x, y, z). These grid sample
points are then converted from ENU coordinates to (latitude,
longitude, elevation) coordinates and projected onto pixel co-
ordinates (u, v) through the RPC model. This constructs a total
of M×M×N pairs of virtual control points (xi, yi, zi, ui, vi),
where i = 1, . . . ,M×M×N . Finally, we eliminate the virtual
control points whose pixel coordinates fall outside the image
boundaries.

Solve a 3 × 4 projection matrix P = [pT
1 ;p

T
2 ;p

T
3 ] based

on these M × M × N virtual control points. Assuming that
the coordinates of the scene points are x = [x; y; z; 1], then
the projection equations for our perspective camera are u =
pT
1 x/p

T
3 x, v = pT

2 x/p
T
3 x.

Given L pairs of virtual control points (xi, ui, vi), i =
1, . . . , L, this paper employs the standard Direct Linear Trans-
formation (DLT) method to solve for P. Subsequently, we
decompose P into its canonical form K[R t]. It should be
noted that the numerical solution of this projection matrix

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2025.3528029

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

TABLE II: Statistical values of object space and image space reprojection errors for virtual control points.

Image number mean proj err
(pixels)

median
proj err (pixels)

max proj err
(pixels)

mean
inv proj err

(meters)

median
inv proj err

(meters)

max inv proj err
(meters)

00 WV03 0.016005 0.012989 0.08596 0.008019 0.006509 0.043071
01 WV03 0.024054 0.020372 0.116291 0.007606 0.006442 0.036777
02 WV03 0.024261 0.02036 0.113656 0.007645 0.006415 0.035801
03 WV03 0.028095 0.023443 0.154878 0.009569 0.007983 0.05277
04 WV03 0.027743 0.023766 0.139919 0.009661 0.008276 0.048704
05 WV03 0.024351 0.019732 0.122837 0.007989 0.006474 0.040283
06 WV03 0.026159 0.021457 0.140299 0.008849 0.007257 0.047496
07 WV03 0.0269 0.022059 0.141588 0.009112 0.007471 0.047978
08 WV03 0.022638 0.019161 0.1085 0.007429 0.006288 0.035592
09 WV03 0.022202 0.018554 0.097264 0.007232 0.006045 0.031669

will have a non-zero skew parameter, which is uncommon in
typical images but can be explained by the equation s = b1Z̄
in the derivation above. Satellite images are constructed by
stitching together rows of images captured at slightly different
moments; hence, these rows may not be perfectly aligned.

Using the equivalent pinhole imaging model to locally
approximate the RPC model offers several advantages beyond
its physical interpretability, simplicity, and efficiency. Firstly,
it enables the transformation of the RPC model from satellite
images into an equivalent pinhole imaging model for use in
existing Structure from Motion (SfM) and Multi-view Stereo
(MVS) workflows. Secondly, this approximation indicates that
satellite images approximately possess linear epipolar geom-
etry. The equivalent pinhole imaging model avoids dealing
with the complex epipolar described by the RPC model, which
is crucial for standard vision-based reconstruction processes.
Thirdly, the bundle adjustment of the equivalent pinhole imag-
ing model is simplified, whereas the bundle adjustment for the
RPC model is computationally demanding and requires prior
knowledge of the sensor.

B. Iterative resampling of images

The equivalent pinhole imaging model uses a 3× 4 projec-
tion matrix in mathematics to replace the 90 RPC parameters
for describing the mapping relationship from object space to
image space in satellite imagery. This significantly reduces
the number of parameters but also decreases the precision
of the mapping relationship. We can reflect the accuracy of
the model through the reprojection error of virtual control
points, as shown in TABLE II, which presents the statistical
results of the reprojection errors for the object and image
sides of 100 × 100 × 20 virtual control points. The local
approximation range of the equivalent pinhole imaging model
is 500m× 500m.

TABLE II lists the average, median, and maximum values
of the image space projection errors and object space projec-
tion errors for a 500m× 500m image. The results show that
the image space projection errors are within 0.2 pixels, and
the object space projection errors are less than 0.05 meters,
indicating that the projection errors generated by using the
projection matrix P to describe the local imaging relationship
of satellite images are limited. In other words, within a certain
level of accuracy, the pinhole imaging model can replace the
RPC model.

In order to better describe the projection relationship be-
tween the object space and image space of satellite imagery
using the projection matrix, this paper adopts a resampling
method to correct the satellite images. Since there is a signifi-
cant difference between the line array push-broom imaging and
pinhole imaging, it is difficult to correct this difference using a
simple affine transformation. This paper designs a high-order
polynomial iterative resampling scheme to generate pseudo-
images, as shown in Fig. 2.

Firstly, based on the UTM coordinates of the experimental
area, the range of the object space region is roughly de-
termined, and a virtual control point grid of 100 × 100 ×
20(corresponding to the ENU three dimensions) is constructed
within the object space, as shown in the Fig. 1 by the blue
point set P (hereinafter referred to as Blue P ). According to
the RPC model, the corresponding image point coordinates
of Blue P are calculated to obtain the red point set P ′

(hereinafter referred to as Red P ′), and the PCM (Pinhole
Camera Model) parameters are calculated based on Blue P
and Red P ′. Then, using the PCM model, the corresponding
image point coordinates of Blue P are calculated to obtain
the green point set P (hereinafter referred to as Green P ),
and the distance between the homologous points of Green P
and Red P ′ is referred to as the reprojection error. To reduce
the reprojection error, Green P is used as the image point
coordinates of the target image, and Red P ′ is used as the
coordinates of the original image I (the image to be corrected),
to calculate the polynomial coefficients of the transformation
from Red P ′ to Green P (i.e., the polynomial coefficients
from the original image to the target image); then, the original
image is resampled using the polynomial model to generate a
pseudo-image I1, and the resampled coordinates of Red P ′

are Red P ′′, which completes the first resampling.Iterative
resampling refers to the process of using P ′′ as the image point
coordinates of the pseudo-image I1, and using Green P as the
image point coordinates of the target image, to calculate the
polynomial coefficients for the transformation from Red P ′′

to Green P (i.e., the polynomial coefficients from the pseudo-
image I1 to the target image). Then, the pseudo-image I1 is
resampled using the polynomial model to generate the pseudo-
image I2, and the resampled coordinates of Red P ′′ become
Red P ′′′. This completes the second iteration, and so on.
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Fig. 2: Iterative resampling of satellite imagery

C. Skew parameter correction of the projection matrix

The pinhole model is used to locally approximate the
RPC model, and the projection matrix is used to replace the
RPC parameters to describe the imaging relationship between
the object space and image space of satellite imagery. This
reduces the number of parameters but also decreases the
precision of the description. We can reflect the accuracy of
the equivalent pinhole model by calculating the reprojection
error of virtual control points. The skew parameter s included
in the intrinsic matrix K of the equivalent pinhole model is
not zero.In computer vision methods, the skew parameter in
the intrinsic matrix is usually assumed to be zero, and existing
computer vision methods cannot directly handle images with
non-zero skew parameters.Therefore, it is necessary to correct
the skew parameter of the intrinsic matrix. The method for
skew correction is as follows: The original image is I, and the
corresponding intrinsic parameter matrix is K. Decompose the
intrinsic matrix K into MK1, where M is the transformation
matrix, and K1 is the intrinsic parameter matrix with zero
skew parameters.Then, apply the inverse of M to transform
the original image to obtain the new image I1. The matrix K1

is the intrinsic parameter matrix of the new image I1, and this
process is shown in Fig.3.

X represents the 3D point coordinates in the world coor-
dinate system, and x represents the 2D point coordinates in
the image plane coordinate system. P is a 3x4 homogeneous
camera projection matrix. Under homogeneous coordinates,
the relationship from a 3D point to a 2D point is given by
x=PX, where P can be decomposed into the intrinsic matrix K,
the rotation matrix R, and the translation vector t, i.e., P =
K[R|t]. In the equivalent pinhole camera model of satellite
imagery, K includes a non-zero skew parameter s. To ensure
that the skew parameter ss of the image is zero, the following

method is designed: K is decomposed into MK1, where K1

does not contain the skew parameter, and the skew parameter
is factored into M, thus obtaining x = MK1[R|t]X. By
rearranging, we get M−1x = K1[R|t]X. Multiplying the
image point coordinates x on the left by M−1 is essentially
resampling the original satellite image. Assuming the new
image after resampling is I1, then K1 is the intrinsic matrix
of I1. After correction, the new image I1 and the intrinsic
matrix K1 with a skew parameter of 0 are obtained.

D. Chunking of satellite images and DSM stitching

The width of satellite images can reach tens to hundreds of
kilometers. This paper has found that an increase in the image
size corresponding to the equivalent pinhole camera model
results in a larger reprojection error. To improve the accuracy
of 3D reconstruction, a block processing method has been
designed for large-format satellite images. First, the satellite
image is uniformly blocked and cropped according to UTM
coordinates (cropping RPC parameters at the same time); then,
the cropped image blocks are equivalent to the pinhole camera
model, and 3D reconstruction is performed using SfM and
MVS; finally, the DSM generated from the image blocks
are stitched together to obtain a 3D reconstruction product
corresponding to the entire image. To ensure a certain degree
of overlap when stitching DSMs later, each image block should
be cropped with a certain degree of overlap.

In the experiment, the resolution of the generated DSM) was
uniformly set to 0.3 meters, and UTM coordinates were used
consistently, ensuring that all DSMs could be spatially aligned
with a consistent resolution. For pixels in the overlapping
areas, this experiment took the DSM value from any one of the
DSMs as the value for that pixel, rather than taking the average
or median value of the overlapping areas. This is because the
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Fig. 3: Correction of the skew parameters of the projection matrix

more partitions there are, the larger the overlapping areas will
be, and the stitching method that takes the average value will
provide a more significant accuracy improvement for schemes
with more partitions. The purpose of using this stitching
method in this experiment was to ensure that any differences
in the accuracy of the resulting DSM were entirely due to the
different partitioning methods.

E. Accuracy metrics

The accuracy assessment metrics used in this paper are
generally divided into two categories: one is for the assessment
of reprojection error, and the other is for evaluating the
reconstruction accuracy of the DSM.

Reprojection errors can be categorized into two types. The
first type is image space reprojection error, which is the
difference between the projected coordinates of the object
space points in the image plane and their true image space
coordinates. The second type is object space reprojection error,
which is the difference between the projected coordinates of
the image space points in object space and their true object
space coordinates. Assuming the image space coordinates of
the control point are x, the object space coordinates are X ,
and the projection matrix is P.

• The image space reprojection error proj err(pixels) can
be expressed as: proj err = |PX− x|.

• Similarly, the object space reprojection error
inv proj err(pixels) (meters) can be expressed
as: inv proj err =

∣∣P−1x−X
∣∣.

• Since there are many control points, we statistically
analyze the reprojection errors and take the maximum,
median, and mean values as assessment indicators of the
reprojection error, resulting in six accuracy assessment
metrics. The three evaluation indicators for the image
space are denoted as Mean P err (mean image space
reprojection error), Median P err (median image space
reprojection error), and Max P err (maximum image
space reprojection error).

• The three evaluation indicators for the object space are
denoted as Mean I P err (Mean Inverse Reprojection

Error), Median I P err (Median Inverse Reprojection
Error), and Max I P err(Maximum Inverse Reprojec-
tion Error).

The accuracy assessment indicators for DSM are as follows:
• Error Map, under the condition of geographical coor-

dinate alignment, the difference in elevation values for
each grid is taken to obtain the error map. The method
for calculating the error map is as follow: err map =
|DSM −Ground Truth|, where DSM is the matrix
representing the DSM, and Ground Truth is the matrix
representing the actual ground surface model,which is
obtained from LiDAR point clouds;

• The Mean Absolute Error (MAE) in elevation is the av-
erage of the absolute values of elevation errors:MAE =
1
N

(∑N
i=1

∣∣∣ĥi − hi

∣∣∣), where N is the number of elements
in the err map matrix, hiis the value of the i-th element
in the err map, and ĥi is the mean value of the elements
in the err map;

• The err num percentile refers to the error value corre-
sponding to a specific percentile point when all elements
of the error map are sorted in ascending order. The
percentile error can reflect the distribution characteristics
of the errors, similar to the role of an error histogram. For
example, err 10 percentile = 0.3m means that 10% of
the elements in the err map are less than 0.3m.

In addition to accuracy assessment, we also evaluate the
efficiency in terms of reconstruction time, which refers to the
time span from the input of images to the generation of DSM
products.

F. Experimental programme

We tested the effectiveness of the iterative resampling and
block-based reconstruction methods proposed in this paper on
the IARPA MVS 3DM dataset, which was used in the IARPA
Multi-View Stereo 3D Mapping Challenge [31]. The dataset
comprises 50 DigitalGlobe WorldView-3 panchromatic images
covering a 100 square kilometer area near San Fernando,
Argentina. These images have a minimum ground sampling
distance of 30 cm and were acquired over a 14 month period,
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TABLE III: Partitioning method for satellite image block reconstruction.

Partitioning Method Reconstruction range GSD Number of partitions Size of partition Number of pixels Overlap range

Method 1 500m×500m 0.3m 1 500m×500m 1650×1650 20m
Method 2 500m×500m 0.3m 4 260m×260m 850×850 20m
Method 3 500m×500m 0.3m 9 180m×180m 600×600 20m
Method 4 500m×500m 0.3m 16 140m×140m 450×450 20m

with most images taken on different dates. The dataset also
includes airborne lidar-derived terrain truth at a 30 cm reso-
lution for a 20km2 subset of the area. During the evaluation
process, the ground truth and the reconstructed point cloud
are projected onto a pre-designated geographic grid with a
specification of 0.3 meters by 0.3 meters, resulting in two ele-
vation maps with a resolution of 0.3 meters. Then, these maps
are aligned and their differences are calculated to generate
an error map (err map). Based on the err map, evaluation
metrics are computed, including the percentile elevation error
err num percentile and the mean absolute elevation error
MAE.

The experimental data used in this paper are World-
View3 multiview stereoscopic images (50 views).the equip-
ment used for the experiment is a laptop computer, run-
ning on 32G of RAM, and the Central Processing Unit is
AMD Ryzen 9 6900hx with radeon graphics 16, and the
graphics card is NVIDIA Corporation/AMD Yellow carp.

The experimental plan for this paper is as follows: Exper-
iment 1: Calculate the reprojection error of the equivalent
pinhole model to explore the feasibility of approximating a
pinhole camera. If the reprojection error is within a certain
tolerance, it indicates that satellite images described by the
RPC model can be locally approximated using the projection
matrix P. Analyze the changes in reprojection error with
iterative resampling correction to verify the effectiveness of
the iterative image resampling method proposed in this paper.

Experiment 2: Compare the reprojection errors of equivalent
pinhole imaging models for satellite images of different sizes
to explore the relationship between the size of satellite images
and the reprojection error of the equivalent pinhole imaging
model.

Experiment 3: Partition-based Reconstruction of Satellite
Images and DSM Mosaicking. This study involves the 3D re-
construction of partitioned satellite images and the subsequent
mosaicking of the generated DSM. The experiment evaluates
the accuracy of DSMs produced by various reconstruction
schemes and analyzes the optimal partitioning strategy. The
paper presents four partitioning schemes as illustrated in
TABLE III.

IV. RESULTS

A. Reprojection error after iterative resampling of satellite
images

In Section III A, we theoretically derived the possibility of
locally approximating the PRC model with a pinhole model
and experimentally validated that the reprojection error of
virtual control points calculated using the equivalent pinhole
model is within a certain tolerance range. On the premise

that the equivalent pinhole imaging model is feasible, this
paper also designed an iterative resampling scheme to further
reduce the reprojection error. We tested the reprojection errors
of satellite images after different numbers of iterative resam-
plings, with the test results of three images shown in Fig.4. The
first row of the Fig. 4 set displays the reprojection errors of
virtual control points for the uncorrected images. The second
row of the Fig. 4 set shows the reprojection errors of virtual
control points for images after one iteration of resampling,
with the third and fourth rows following accordingly. The
figure in Fig. 4 named Resample 1 00 indicates that the
number of iterations is 1, and the image number is 00.

For 50 WorldView-3 images, an iterative resampling test
was conducted on the reprojection error of the approximate
pinhole model. The experiment showed that although the
initial reprojection error varied from image to image, the
reprojection error gradually decreased during multiple resam-
pling processes, presenting the pattern shown in the three
example images of Fig. 4. This iterative resampling scheme
effectively resolved the projection error issues stemming from
the insufficient local approximation accuracy of the pinhole
imaging model.

To further test the impact of the iterative resampling scheme
on the accuracy of 3D reconstruction from satellite imagery,
this paper uses lidar-scanned terrain data as the ground truth
to assess the accuracy of the reconstructed DSM. As shown in
Fig. 5, the reconstruction area in this experiment is a square
region with a side length of 500 meters. The yellow and dark
green in the figure represent the magnitude of the error of
the reconstructed DSM compared to the ground truth, with
the specific mapping relationship shown in the legend’s color
band. It can be seen from the error map that the errors of
the DSM are mainly concentrated in areas with significant
elevation changes, such as the edges of residential houses,
vegetation, and roads. The experimental results show that the
3D reconstruction error range of the resampled images is
smaller, and the boundary of the corresponding error map is
clearer. The essence of image resampling is to rearrange the
local pixels on the satellite image, generating pseudo-images
by reconfiguring the pixel arrangement on the satellite image.
This makes the mapping relationship between the object space
and the image space in the strict imaging model of the pseudo-
image more accurate, thereby improving the accuracy of 3D
reconstruction.

In order to quantitatively study the changes in the accuracy
of the DSM before and after resampling, this paper calculates
the percentage error values in the DSM error map, as shown in
TABLE IV. Curve graphs were created based on the percentage
errors, as shown in Fig. 6 , Fig. 7, corresponding to the 2p5d
reconstruction results and 3D reconstruction results in Fig. 1,
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Fig. 4: Reprojection error of the equivalent pinhole camera for different image sizes

respectively. The curves in Fig. 6 and Fig. 7 indicate that in the
percentile error statistics curve, the DSM error reconstructed
using the resampled image is less than the error of the
DSM reconstructed using the original image. This suggests
that using the iterative resampling method can improve the
reconstruction accuracy of the DSM.

TABLE IV: Statistical values of object space and image space
reprojection errors for virtual control points.

% 2p5d
0 iters
(pixels)

2p5d
1 iters
(pixels)

2p5d
2 iters
(pixels)

3d
0 iters
(pixels)

3d
1 iters
(pixels)

3d
2 iters
(pixels)

0 0 0 0 0 0 0
10 0.180592 0.06275 0.058563 0.135599 0.073566 0.071903
20 0.27096 0.127726 0.120243 0.245644 0.150173 0.145491
30 0.343691 0.201033 0.187553 0.345008 0.234657 0.224815
40 0.417559 0.293962 0.268705 0.447403 0.336418 0.316416
50 0.518047 0.425749 0.382908 0.569099 0.471537 0.436619
60 0.701374 0.636036 0.585171 0.740398 0.671076 0.615639
70 1.097548 1.061097 1.038439 1.074598 1.009964 0.965623
80 2.164554 2.104804 2.128172 2.009983 1.85307 1.892384
90 5.632227 5.452448 5.482693 5.394635 5.030376 5.093053

B. Reprojection errors for regions of different sizes

In Section IV A, experiments have shown that pseudo-
images generated by iterative resampling can reduce the re-
projection error of the equivalent pinhole model. To further
enhance the accuracy of 3D reconstruction, we conducted tests
using images of different extents to explore the relationship
between image size and the reprojection error of the equivalent
pinhole camera, with the specific results as shown in Fig. 8.

Fig. 8 displays the test results from 50 WorldView-3 im-
ages, encompassing six assessment indicators: image space
projection errors (mean, maximum, median) and object space
projection errors (mean, maximum, median). The findings
indicate that the smaller the image area corresponding to the
equivalent pinhole model, the lower the reprojection error
of the control points, and the better the approximation of
the RPC model by the projection matrix. These experimental
results also provide a strategy for 3D reconstruction of satellite
imagery based on the equivalent pinhole model. This strategy
involves dividing large satellite images into several smaller
sections, treating each section as an equivalent pinhole camera
model, conducting 3D reconstruction based on these equivalent
pinhole models, and then mosaicking the reconstructed DSMs
to obtain a DSM for the entire area.
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Fig. 5: Error map of 3D reconstruction of resampled images with different iteration times

Fig. 6: Relationship between DSM error and resampling times 2p5d

Fig. 7: Relationship between DSM error and resampling times 3d

C. Satellite Image Partition Reconstruction and DSM Mosaic-
ing

In Section IV B, experiments revealed that the reprojection
error of the RPC model approximated by the pinhole imaging

model is related to the extent of the local approximation; the
smaller the approximation range, the smaller the reprojection
error. Against this backdrop, in order to further enhance the
accuracy of 3D reconstruction, a block-based reconstruction
scheme for DSM was designed in the Section III D. The
experimental results are depicted in Fig. 9. This paper tabulates
the reprojection errors of the approximated pinhole imaging
model and the errors in the reconstructed DSM during the
block-based reconstruction process, as shown in TABLE V.
A stacked curve of DSM errors was plotted to reflect the
distribution of DSM errors, as illustrated in Fig. 10.

The results from Fig. 9 demonstrate that the brightness
values of the error maps for the block-reconstructed DSM
are lower, indicating higher accuracy of the DSMs. Due to
the block processing of the target area, there are differences
in accuracy between different regions, leading to noticeable
stitching seams on the error maps. Combining the data in
TABLE IV, it can be observed that increasing the number of
blocks reduces the area of each individual region, decreases
the reprojection error, and enhances the accuracy of the
reconstructed DSM, but at the same time, it consumes a longer
duration.

As shown in Fig. 9, there are terrain differences across
the various experimental regions. Although the reconstruc-
tion accuracy varies, with higher accuracy in the plains and
lower accuracy in areas with significant elevation variation,
both methods proposed in this study effectively improve the
accuracy of the equivalent pinhole imaging model, regardless
of the terrain type.

Fig. 10 represents the stacked error curves of the DSMs
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Fig. 8: Reprojection error of the equivalent pinhole camera for different image sizes

Fig. 9: Reprojection error and elevation error of DSM reconstruction by different zoning schemes
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TABLE V: Reprojection Errors and DSM Elevation Errors of Equivalent Pinhole Models for Different Subdivision Schemes.

Method
No.

Mean
P err
/pixel

Median
P err
/pixel

Max
P err
/pixel

Mean
I P err
/meter

Median
I P err
/meter

Max
I P err
/meter

2p5d
MAE
/meter

3d MAE
/meter

Time /min

Method1 0.02366 0.01987 0.11879 0.00821 0.00690 0.04140 0.23783 0.31313 32.71238
Method2 0.00974 0.00821 0.04734 0.00336 0.00283 0.01641 0.13391 0.23077 57.59312
Method3 0.00638 0.00546 0.02906 0.00220 0.00188 0.01004 0.09542 0.19195 81.32990
Method4 0.00491 0.00424 0.02122 0.00169 0.00146 0.00732 0.09074 0.19809 111.78648

Fig. 10: Reprojection error of the equivalent pinhole camera for different image sizes

generated by different partitioning schemes. From the error
stacking curves, it can be observed that the smaller the parti-
tioning range, the fuller the convex curve of the error stacking
graph, meaning that the error values of the DSM grids are more
distributed on the side closer to zero. Therefore, regardless of
whether a 2.5D DSM reconstruction scheme or a 3D DSM
reconstruction scheme is used, block-based reconstruction can
improve the accuracy of DSM reconstruction.

D. Analysis and Discussion

Zhang et al. selected three areas on the MVS3D dataset
to test the feasibility of the equivalent pinhole model. The
experimental results indicated that the precision and speed
of the equivalent pinhole model reconstruction method were
comparable to S2P, and even with the addition of MRF
(Markov Random Fields) optimization, the generated DSM
achieved higher accuracy than S2P [7].Hong et al. employed
an improved equivalent pinhole camera model, denoted as
PREM in the text, to generate DSMs with the smallest Root
Mean Square Error (RMSE) compared to other methods [30].
Building upon the foundational work of previous researchers,
we have developed an iterative resampling method and a
block-based reconstruction strategy, thereby enhancing the
accuracy of DSM reconstruction based on the equivalent
pinhole imaging model.

The iterative resampling method also has its limitations.
In order to preserve the features of the image, cubic spline
interpolation algorithms are required during the resampling
process, coupled with multiple iterations of sampling, the
process of generating pseudo-images involves significant com-

putational consumption. Iterative resampling, in its pursuit
of ”high precision” equivalence, inevitably leads to the rear-
rangement of local pixels, which may disrupt the information
contained in the original local image. Excessive resampling
may destroy the original neighborhood relationships between
pixels, leading to distortion in the resampled pseudo-images.
Considering that the enhancement of image precision with
the number of iterative resamplings will reach saturation, the
number of iterative resamplings in the experiment should be
appropriate.

In the partition reconstruction experiment, we observed that
smaller areas had lower reprojection errors in the equivalent
pinhole model and higher accuracy in the reconstructed DSM.
This is likely due to the fact that larger ground areas exhibit
more significant height differences, making the imaging re-
lationship between the object space and image space of the
corresponding image more complex. The complex imaging
relationship leads to increased reprojection errors in the local
approximation of the RPC model by the equivalent pinhole
model, thereby introducing greater errors in 3D reconstruction.
However, if the reconstruction area is too small, it may result
in inaccurate depth estimation and imprecise positioning. To
accurately align the reconstructed DSMs, a greater number
of control points or actual DSM data are required. Without
proper alignment and calibration, the partitioned DSMs may
exhibit noticeable overall shifts. Furthermore, the partitioned
DSMs need to be stitched together, which means maintaining
overlap between partitions is essential. It should also be
considered that excessive partitioning can lead to excessive
overlap, thereby reducing the efficiency of reconstruction.
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V. CONCLUSIONS

To better adapt satellite imagery to 3D reconstruction meth-
ods in the field of computer vision, this paper investigates
the differences between the RPC model and the projection
matrix, and analyzes the causes and patterns of reprojection
errors in the equivalent pinhole imaging model. The projection
matrix with fewer parameters cannot accurately fit the complex
object-to-image mapping relationship of satellite imagery. To
reduce the reprojection errors when fitting satellite imagery
with the projection matrix, this paper designs the following
two methods: First, generating pseudo-images through multi-
ple resamplings to better satisfy the object-to-image mapping
relationship of the pinhole imaging model; second, the im-
agery is divided into blocks and approximated locally as a
pinhole imaging model, which reduces the size of the satellite
imagery fitted by the equivalent pinhole model and decreases
the complexity of the object-to-image mapping relationship.
The test results on the MVS3D dataset demonstrate that this
paper has improved the 3D reconstruction accuracy of satellite
images by optimizing the reprojection error, enabling the
equivalent pinhole imaging model to be better applied to the
3D reconstruction of remote sensing satellite images.

It should be noted that although both methods can improve
accuracy of 3D reconstruction, they also have the following
limitations: Iterative resampling to reduce reprojection errors
has a certain degree of limitation;excessive resampling can
disrupt the adjacency of pixels in the original image and
the epipolar geometry, consuming a huge amount of compu-
tational power without significantly enhancing the accuracy
of reconstructed DSM. Image clipping and block process-
ing can improve the internal accuracy of local area DSM
reconstruction, but if the block area is too small, it can
cause an overall shift in the generated DSM (reduced external
accuracy), requiring control point data or true value DSM
to correct the shift. Moreover, an increase in the number
of blocks requires the reconstruction of more overlapping
areas for stitching and mosaicking, which consumes more
computational power. Therefore, we need to set reasonable
numbers of iterations and partitioning schemes based on the
specific scene’s requirements for accuracy and efficiency.
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