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Abstract—Deep learning (DL) methods have recently made
substantial advances in polarimetric synthetic aperture radar
(PoIlSAR) image classification. However, supervised training re-
lying on massive labeled samples is one of its major limitations,
especially for PolSAR images that are hard to manually anno-
tate. Self-supervised learning (SSL) is an effective solution for
insufficient labeled samples by mining supervised information
from the data itself. Nevertheless, fully utilizing SSL in PolSAR
classification tasks is still a great challenge due to the data
complexity. Based on the above issues, we propose a SSL model
with multi-branch consistency (SSL-MBC) for few-shot PolSAR
image classification. Specifically, the data augmentation technique
used in the pretext task involves a combination of various
spatial transformations and channel transformations achieved
through scattering feature extraction. Additionally, the distinct
scattering features of PolSAR data are considered as its unique
multimodal representations. It is observed that the different
modal representations of the same instance exhibit similarity in
the encoding space, with the hidden features of more modals
being more prominent. Therefore, a multi-branch contrastive SSL
framework, without negative samples, is employed to efficiently
achieve representation learning. The resulting abstract features
are then fine-tuned to ensure generalization in downstream tasks,
thereby enabling few-shot classification. Experimental results
yielded from selected PolSAR datasets convincingly indicate that
our method exhibits superior performance compared to other
existing methodologies. The exhaustive ablation study shows
that the model performance degrades when either the data
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augmentation or any branch is masked, and the classification
result does not rely on the label amount.

Index Terms—Polarimetric synthetic aperture radar (PolSAR),
self-supervised learning (SSL), multimodal representation, image
classification, few-shot.

I. INTRODUCTION

OLARIMETRIC synthetic aperture radar (PolSAR), an

active microwave imaging sensor, serves as the primary
means of earth observation, and extracts fully polarimetric
information about targets under all-weather and all-time con-
ditions. Compared to conventional SAR, PolSAR incorporates
polarimetric decompositions for a more complete portrayal of
the target polarimetric scattering mechanism. PolSAR image
classification predicts the true category corresponding to each
pixel based on the information it contains, which is one of
the major components of PolSAR image interpretation and
has been applied widely in target detection [1], ecological
protection [2], urban planning [3], and more.

Researchers have proposed a range of effective methods
for traditional PolSAR image classification. These approaches
mainly focus on two key aspects: scattering feature extraction
and classifier enhancement. Scattering feature extraction is
performed by coherent and incoherent decomposition. The
former is based on the polarimetric scattering matrix [4],
[5], while the latter uses polarization coherence matrix and
covariance matrix as the basis, containing both eigenvalue-
based and scattering model-based decomposition [6]—[8]. Scat-
tering feature extraction provides more options for target
parameters, however, selecting the most appropriate feature for
a specific task depends on expert knowledge and experience. In
terms of classifier improvement, machine learning algorithms
such as support vector machine (SVM) [9], random forest
[10], and decision tree [11] have been employed for PolISAR
image classification. These methods solve complex nonlinear
problems through autonomous learning, but the reliance on
manual feature engineering is the main limitation.

The recent research has proven the effectiveness of deep
learning (DL) technology in image classification tasks, with
its ability to autonomously extract high-level abstract features
without human intervention [12]. Classic DL methods primar-
ily encompass deep belief network (DBN) [13], sparse auto
encoder (SAE) [14], and convolutional neural network (CNN)
[15], with the latter being widely used due to its efficient
parameter sharing and modular architecture. The exceptional
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performance of DL techniques has led to the applications
of numerous DL-based classification methods to PolSAR
images, such as real-valued CNN (RV-CNN) [16], complex-
valued CNN (CV-CNN) [17], and vision transformer (VIT)
[18]. While these methods produce satisfactory classification
accuracy, they encounter several challenges:

1) These models need a large amount of labeled data for
training, which is costly and often complicated by the
difficulty of ensuring label quality.

2) The performance of DL models in classification tasks
significantly declines when there is an insufficient number
of labeled training samples.

3) Models trained on artificially annotated labels are prone
to over-fitting. This phenomenon is characterized by the
model converging to a solution that is only applicable to
a specific task, resulting in poor generalization to new
tasks.

To address these challenges, considerable studies have been
conducted on few-shot scenarios to mitigate the dependency on
extensive labels [19]. Self-supervised learning (SSL) emerges
as a potential approach in this context, leveraging pretext tasks
to mine supervisory signals from large volumes of unlabeled
data, and train the network with this information to develop
meaningful representations for subsequent classification tasks
[20]. SSL not only overcomes the limitation of label quantity
but also mines latent data correlations, demonstrating con-
siderable potential in few-shot classification. In the context
of PolSAR, some reasonable SSL-based few-shot PolSAR
image classification frameworks have been designed [21], [22].
These frameworks complete the model training by reducing
the distance between positive sample pairs and expanding the
difference between negative pairs. However, when there are
insufficient negative samples or the differences among samples
are not significant, the generalization capability of the model
will be undermined. And due to the need to consider negative
samples, the computational resources required for this type of
framework are also larger. Though a SSL framework without
negative samples was proposed by [23], its pretext task only
involved simple cropping and flipping of the original patches
and did not consider the inherent characteristics of PolSAR
data.

Polarimetric features are a series of attributes with clear
physical significance extracted from rich scattering through
different target decomposition methods, which can be con-
sidered unique multimodal representations for PolSAR data.
Since the scattering theory for each pixel is unique, the
multimodal representations for the same pixel are similar.
Although chromatic distortion, a highly effective data aug-
mentation method in optical images, has no physical meaning
for PoISAR data. We consider whether it is possible to ex-
tract more important shared information from the multimodal
representations of PolSAR data. It is worth noting that [22]
have pointed out that mutual information between different
feature representations can provide good prior knowledge for
the model, but it only involves one pair of representations
at each run and needs negative samples to avoid collapse.
Inspired by multi-view [24], we believe that maximizing

mutual information across more representation modes may
lead to improved outcomes. The challenge lies in designing an
efficient SSL framework to extract high-quality prior knowl-
edge from multimodal representations of PoISAR data.

Based on the above facts, this study aims to design a SSL
model with multi-branch consistency (SSL-MBC) that utilizes
multimodal representations to solve the poor accuracy in Pol-
SAR image classification with insufficiently labeled samples.
Model training does not depend on artificial annotation labels
in the designed pretext task. The shared information extracted
from the multimodal representation of PolSAR data provides
prior knowledge for the model. A multi-branch framework is
proposed for the pretext task, and the entire process does not
require negative samples. After that, the trained feature extrac-
tion model is transferred to the downstream classification task
to achieve impressive performance. The main contributions of
this paper are summarized as follows:

1) We innovatively use multimodal representations of Pol-
SAR data to improve SSL performance, based on the fact
that invariant features present in more modalities better
represent the target’s essential properties.

2) A SSL framework combined with multi-branch consis-
tency (SSL-MBC) is proposed. This framework learns
consistency from different modal representations of un-
labeled PolSAR data through multiple branches without
negative samples.

3) A rich pretext task is designed to provide training motiva-
tion to our framework, which contains diverse geometric
transformation augmentations, as well as cross-modal
variance in the coding space.

The subsequent structure of this article is as follows:
Section II reviews the relevant work. Section III offers a
comprehensive account of the proposed method. Section IV
shows the experimental outcomes on diverse datasets and the
corresponding analyses. Finally, the conclusions are offered in
Section V.

II. RELATED WORK

A. PolSAR Data Processing

When considering the combined horizontal and vertical
polarization bases, the scattering properties of targets captured
by PolSAR can be effectively depicted using the complex two-
dimensional scattering matrix S:

Sun  Smv
S = 1
[SVH Svv )

where H and V' are the horizontal and vertical modes, respec-
tively. When the reciprocity assumption is satisfied, for single
station Sgy = Sy g.

The scattering matrix S is vectored as K by the Pauli
decomposition [25] as:

K [Sew + Svv,Sur — Svv,2Sav]" 2
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where the superscript 7" represents the transpose operation. On
this basis, the coherence matrix T after multilook is obtained

as:
1 L Ty T2 Ti3
T = I Z K,K? = Ty, Toy Tos 3)
i—1 Ts1 Ts2 Tss

where L is the number of looks and the superscript H is
the conjugate transposition. Based on Eq. (3), the matrix T’
is characterized as a Hermitian matrix, exhibiting real values
along its diagonal and complex values in its off-diagonal
elements.

Scattered feature extraction provides more detailed target
information, whereas incoherent decomposition methods based
on coherence and covariance matrices are more suitable for
feature analysis in large scenes [26]. Cloude-Pottier decompo-
sition [6] and Freeman-Durden decomposition [7] are classical
methods based on eigenvalue decomposition and scattering
models, respectively. Both of them are employed to extract
statistical and physical features, with their applications widely
used in land cover classification tasks.

In Cloude-Pottier decomposition, the coherence matrix T’
after eigenvalue decomposition is:

T =UAU" 4)

where A is a diagonal matrix that includes three eigenvalues
A1, A2, and A3 of the matrix T. U consists of the column
vectors associated with these eigenvalues. The entropy H,
anisotropy A, and mean scattering angle @ are provided as
follows:

3

Y
H=>Y -Plogg P, Pi= ——— (5)
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where «; is the scattering angle.
In Freeman-Durden decomposition, the formula for the
coherence matrix T is as follows:

T = fo(Tvor) + falans + fsTodad ®)

where T01, Tup, and 1,44 represents the volume, double, and
odd scatter model, respectively. f,, fq, and fs corresponds to
the respective scattering components. (-) is ensemble average
operation. Specifically, Ty, Tap;, and T,qq are defined as
follows:

1 2 20
(Tyor) = 1 01 0 9)
0 0 1
a2 a 0]
Tgw=|a* 1 0 (10)
0 0 0]
1 g 0]
Toaa= |8 [B* 0 (11)
0 0 o0

Original | —> [— H:H H [ ——> | Reconstruction
Image Loss

Decoder

Contrastive
— Loss

Discriminator

Latent Feature

(@)

ﬁﬁ@@muﬁ

Latent Feature

(b)

Input Encoder

Image X

i

Image Y

i

Input Encoder

Fig. 1. Comparing generative SSL and contrastive SSL concepts. (a) Gener-
ative SSL. (b) Contrastive SSL.

where « and [ are parameters for the double and odd scatter
models. Therefore, the scattering powers P,, Py, and P; for
each model are calculated as follows.

3

Pv - gfv (12)
Py = fa(1+ |af?) (13)
P, = f,(1+ (8] (14)

B. Self-Supervised Learning

Due to the complex imaging mechanism of PolSAR, its
pixel-level manual labeling relies on expert knowledge and a
lot of manpower and time. This indicates that having substan-
tial and accurate labeled data is unrealistic in practical tasks.
However, DL end-to-end operation implies an insufficient
prior hypothesis, which could cause overfitting or obtaining
incorrect results with insufficient training samples [27].

SSL mines data intrinsic co-occurrence relationships as self-
supervision signals and ensures that the learned high-level
features are also effective for downstream tasks. It is one of the
useful ideas for solving the few-shot problem. Based on the
architecture and objectives of SSL, it can be broadly divided
into two categories: generative SSL and contrastive SSL, and
their rough conceptual diagrams are shown in Fig 1.

Generative SSL primarily includes generative adversarial
networks (GAN) [28] and autoencoder (AE) [29], which
generate new data from the original data, aiming to make
the generated data as close as possible to the original data.
Contrastive SSL enables the model to distinguish similar
samples from dissimilar samples by comparing them, facil-
itating the acquisition of invariant features across distinct
instances. In comparison to generative SSL, contrastive SSL
presents simpler and more direct tasks, demonstrating greater
effectiveness in computer vision classification tasks. Currently,
a series of effective contrastive SSL frameworks, such as CMC
[24], MoCo [30], SimCLR [31], BYOL [32], and SimSiam
[33] have been proposed. Among them, BYOL and SimSiam
discard negative samples, achieving enhanced efficiency while
maintaining high performance.

Many researchers have yielded impressive results by de-
signing classification methods based on SSL in PolSAR image
classification domain. [21] first introduced the concept of SSL
into PolISAR data processing, extracting mutual information
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Fig. 2. Architecture of proposed SSL-MBC for Few-Shot PolSAR image classification. There is a main branch with a prediction head and two auxiliary

branches in the multi-branch SSL.

from different representations of unlabeled data to provide
prior knowledge for the model, and achieving notable results
even under circumstances with limited sample availability.
[22] combined a diversity stimulation mechanism with con-
trastive SSL and learned transferable representations from
unlabeled PolSAR data using convolutional architecture. [23]
investigated a SSL framework without negative samples that
achieved excellent performance when combined with the mix-
up regularization strategy. [34] utilized a distribution-inspired
positive sample generation strategy for representation learning
and designed a hybrid anti-imbalance scheme to solve the class
imbalance problem. Moreover, methods based on SSL have
been widely applied in region detection [35], ship identifica-
tion [36], and other fields.

III. PROPOSED METHOD

We propose a SSL-MBC framework and a comprehensive
overview of related techniques is provided in this section. The
primary focus is based on the natural properties of PoISAR
data, using multimodal representations of the same instance
as learning pairs to avoid the dilemma that only spatial data
augmentation is not easy to control. The designed multi-branch
SSL framework unifies the consistency between branches to
mine potential connections across modals while discarding
negative sample pairs to cope with the computational increase
in modal number. Furthermore, the specifics of the encoder
designing and other components within the framework, along
with the process of transferring the model to downstream tasks,
are also described.

A. Framework of SSL-MBC

The SSL-MBC framework follows the pretrain-finetune
paradigm commonly used in SSL methods. The model is first
trained by constructing supervised information from massive
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~a A ~a

Encoderl

Encoder3,
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Embedding space

Encoderl Encoder3

Encoder2
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Fig. 3. The schematic diagram shows that different modal representations of
the same instance are similar in the encoding space.

unlabeled data via the pretext task, and then the trained model
is transferred to labeled downstream tasks for fine-tuning to
achieve satisfactory performance.

The overall architecture of SSL-MBC is presented in Fig.
2. Firstly, multi-branch representations are constructed by
different decompositions (Cloud-Pottier decomposition and
Freeman-Durden decomposition), and the data augmentation
is performed separately. The obtained representations consider
both rich spatial transformations and the natural properties
of PolSAR data. Secondly, different modal representations
are fed into the multi-branch SSL framework without neg-
ative samples for embedding and projection, accomplishing
implicit knowledge learning by maintaining consistency across
branches. Notably, the branch with prediction header is called
the main branch, and the rest are auxiliary branches. Z;;, Z;.,
and Z;; are used to represent the hidden features extracted by
different branches. Since the proposed method aims to address
the problem of low and difficult-to-obtain labeled data, no
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artificial labels are involved at all in SSL pretraining.

B. Multi-Branch Representations Construction

The efficacy of input representations significantly influences
the acquisition of knowledge during self-supervised training
processes, where X denotes the input space and R the space
of representations. The training seeks to optimize a mapping
f X — R to minimize the objective function L. For optical
images, data augmentation combining geometric and color
transformations has been proven to be crucial for learning
effective representations [31]. While PolSAR images lack
spectral features, the aforementioned perspective motivates
us to generate enhanced PolSAR data by simultaneously
altering the spatial and scattering dimensions. In the spatial
dimension, certain effective transforms such as cropping and
flipping can be directly applied from the optical image domain.
Additionally, polarimetric features derived through eigenvalue
decomposition using the covariance matrix yield comparable
results to those computed in the scattering dimension of the
original data. This characteristic holds significance not only
for PoISAR data, but also distinguishes it from other types of
data. Second, it is widely recognized that crucial elements are
shared between multiple views [24]. Due to various scattering
features in PoISAR data, we believe the most core signal is
present in various features. Hence, our approach is not limited
to one or two modalities but extended to more.

The build process of the pretext task is shown in the first
half of Fig. 2. The elements in the upper triangular part of
the covariance matrix, {H, A, «} obtained by the Cloude-
Pottier decomposition, and {P,, P;, Ps} derived from the
Freeman-Durden decomposition are selected as multi-modal
representations for PoISAR data. The Cloude decomposition
statistically characterizes the target, providing a quantitative
understanding of its scattering complexity and orientation.
The Freeman decomposition yields components that distinctly
represent the various physical scattering mechanisms inherent
in the target, offering insights into its underlying physical
properties. The distinctiveness of the input features across
different decomposition branches enables the model to learn
the generalized information better. They undergo several spa-
tial transforms, namely random cropping, random flipping,
random rotation, and cutout, respectively, to obtain the final
unsupervised representations. Where cutout is to mask several
rectangular regions randomly on a patch [37]. As shown in
Fig. 3, different modal representations of the same instance
in this task are considered similar after encoding processing.
The goal of training the model in the self-supervised stage is
to maximize the similarity of features extracted from different
modal representations of the same instance. It is noted that
since our approach does not involve negative samples, differ-
ences between modes of different instances are not considered.

C. Architecture of Encoder

Benefiting from the local connectivity and shared weights,
CNN is still the most popular feature extractor in PolSAR
classification [38], [39]. Typically, it consists of convolutional
layers, nonlinear activation functions, pooling layers, and fully

connected layers. To accomplish the intended objective, CNN
must demonstrate a certain level of complexity to achieve satis-
factory fitting. However, due to the nonlinear transformations,
deeper networks will suffer from a degradation in performance
due to the difficulty of achieving consistent transformations
[40].

Residual blocks (ResBlock) provide a direct solution to deep
model degradation [41]. Its underlying mapping R(z) for input
x is represented as:

R(z)=F(x)+=x (15)

where F'(x) denotes the mapping of all layers in the block for
x. ResBlocks avoid gradient vanishing by forming a constant
mapping through the cross-layer connection. Since PolSAR
image classification is a pixel-level task, the small size patch
around a particular pixel used for its representation is simulta-
neously fed into the encoder. Residual networks (ResNet) have
demonstrated impressive performance in computer vision, par-
ticularly ResNet-18 and ResNet-50. However, these models
exhibit notable feature degradation and excessive pooling as a
result of their high number of layers. Consequently, they are
not suitable for direct application to POISAR image tasks [42].

As shown in the Fig. 4, a light ResNet suitable for process-
ing PolSAR patches is designed as the encoder f(-) of this
framework. It primarily comprises of three ResBlocks and a
global average pooling layer, exhibiting a more profound struc-
ture compared to [21]-[23]. Each ResBlock consists of two
convolutional layers and two batch normalization (BN) layers
alternately, and the stride of the kernel in the first layer has a
stride of 2 in order to accomplish feature downsampling. The
number of convolutional layer kernels in the three ResBlocks
are 32, 64, and 128, respectively, and the size of all kernels
is 3x3.

D. Projection and Predictor

The presence of projection and predictive heads has been
confirmed to improve SSL by transferring the loss of valid
information [31]-[33]. For the encoder output f(x), the pro-
jection head ¢(-) transforms it into g(f(x)), thus mapping it to
the space where the contrastive loss is applied. Specifically, the
purpose of SSL is to eliminate the effect of data augmentation
on the input style while keeping the content unchanged.
However, since the implementation of data augmentation is
not task-independent, it is impractical to leave the content in-
formation unaffected during training [43]. The projection head
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Fig. 4. The structure of the encoder.
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encodes the encoder’s backbone feature f(z) into g(f(z))
for loss computation, which protects the diversity of f(z)
content to a certain extent and allows it to generalize better in
downstream tasks. Given the discussion in [31], the projection
head in this framework is nonlinear and comprises two linear
connection layers, a BN layer and a ReLL.U nonlinear activation
layer.

The prediction head ¢(-) further maps the projection head
output g(f(z)) to ¢(g(f(x))), which exists solely in the
main branch and renders the model more ’flexible’ in the
sense. Whether the loss is symmetric or asymmetric, the
SSL framework without negative samples collapses when the
prediction head is absent [33]. In the proposed framework, the
structure of projection head ¢(-) is the same as g(-).

E. Loss Function and Optimization

The goal of this SSL framework is to enable the encoder
to learn effective features that generalize well in downstream
tasks. For a batch with input X = {1, z9,z3,...,2,}, the
multimodal representations of z; € X are j, Ti., and z;f.
In the main branch each network parameter is defined by
a set of weights 6 with three components fy(-), go(-), and
g (). The weights in both auxiliary branches are £ and only
fe(), ge(-). From z;, the main branch produces a feature
yit = fo(zit) and a projection z; = gp(yir). To facilitate
parameter migration, x;; reduces the channel depth to the same
as x;c and x;7 by a 1D convolution before input to the main
branch. Similarly, ;. and z;; respectively undergo auxiliary
branching to obtain features y;. = fe(@ic), Yif = fe(xir) and
projections z;c = ge(¥ic), zif = ge(yiy). Due to the presence
of the predictor head gy (-) in the main branch, we end up with
qo(2it), zic and 2;j.

Considering the computational burden and the fact that both
decompositions are performed based on the coherence matrix,
o (z;) obtained from representation x;; is considered as ’core’
in this framework. The ’core’ representation distinguishes
itself from other representations by requiring optimization
and calculating individual losses with them. Specifically, the
following mean squared error loss L(z;,x;.) is used to
measure the similarity between lo-normalized gg(z;;) and z;.:

(q0(zit) Zic)

—92_2.
llgo(zie)ll2 - |[2icll2

ﬁ(ffit,xic) (16)
According to Eq. (16), the loss L(z,2;¢) between gg(zit)
and z;r is similarly obtained. Therefore, the final loss Lgnal
is generalized as:

Lanal = Z L(xit, xn) = L(Tig, Tic) + L(Tir, i) (A7)

n=ic,if

Based on the aforementioned results, stochastic gradient
descent (SGD) is employed on every batch of samples using
back propagation to minimize the loss during model training.
Notably, only the main branch parameter ¢ is updated in the
gradient propagation. The auxiliary branch provides regression
objective for the main branch, and its parameter £ is updated
by the exponential moving average strategy (EMA) with decay
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Fig. 5. The final fine-tuning process. The encoder is migrated to the
downstream task and only a few labeled samples are used to train the new
classifier.

rate p [44]. As shown in Fig. 2, the framework parameter
update can be summarized as:

(18)
19)

0 = optimizer(0, Lanal, M)

where optimizer is the specified optimizer. 7 is the learning
rate and p € [0, 1]. EMA allows f¢(-), g¢(-) to be updated from
fo(+), go(+) with a momentum state, which ensures a consistent
and stable output. This strategy effectively maintains the
dissimilarity of features between the primary and auxiliary
branches, thereby preventing the model from adopting a
simplistic solution. Furthermore, it facilitates iterative partial
parameter updating.

F. Final Fine-Tuning

During the SSL training phase, the encoder is equipped
with the ability to extract generalized discriminative features
through the pretext task. However, supervised fine-tuning the
trained model is required to enhance its applicability before
migrating it to downstream tasks.

The final fine-tuning process is shown in Fig. 5. In fine-
tuning, the encoder fp(-) in the main branch of SSL-MBC
is constantly transferred to the downstream task for feature
extraction, but the projection and prediction heads are dis-
carded. In addition, a new linear fully connected layer with
randomly initialized parameters is added to the encoder back
as a classifier, whose neuron count equals category count.
Only a few labeled samples are used for supervised training,
which is perfectly adequate for classifiers with low complexity.
Remarkably, the migrated encoder parameters are untrained
and completely unchanged during the fine-tuning phase.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. Description of Experimental Datasets

Three representative PoISAR datasets Flevoland, San Fran-
cisco, and Oberpfaffenhofen are chosen to conduct the experi-
ments. Specific descriptions of the individual dataset are given
below:

1) Flevoland: As shown in Fig. 6, the Flevoland dataset
was obtained by the ARISAR system of NASA/JPL laboratory
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Fig. 6. Flevoland dataset. (a) Pauli-RGB image. (b) Ground truth. (c) Category
legend.
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Fig. 7. San Francisco dataset. (a) Pauli-RGB image. (b) Ground truth. (c)
Category legend.

in 1989 by detecting the ground over the Flevoland region
of Poland, which consists of 1024x750 pixels. There are
15 land objects in the labeled area, namely stembeans, peas,
forest, lucerne, wheat, beet, potatoes, bare soil, grass, rapeseed,
barley, wheat2, wheat3, water, and buildings.

2) San Francisco: As depicted in Fig. 7, the San Francisco
dataset was obtained by the RadarSat-2 satellite over the San
Francisco region of the United States in 2008, which consists
of 1024x900 pixels. There are 5 types of ground features
within the labeled area, including bare soil, mountain, water,
buildings, and vegetation.

3) Oberpfaffenhofen: As shown in Fig. 8, the Oberpfaffen-
hofen dataset was collected by the German Aerospace Center
during ground exploration over the Oberpfaffenhofen region
of Germany, which consists of 1300x 1200 pixels. There are
3 surface types within the marked area, comprising built-up
areas, wood land, and open areas.

B. Experimental Setting

Due to the inherent limitations of the image system, the raw
PolSAR images exhibit severe speckle noise [45]. The data
preprocessing has been performed before formal sampling.
First, a refined Lee filtering with a 7x7 window is used to
filter each dataset [46]. Then, Cloude-Pottier decomposition
and Freeman-Durden decomposition are applied to obtain the

@ ‘ (b)

[ wood land
(c)

[ Built-up areas [Jopen areas

Fig. 8. Oberpfaffenhofen dataset. (a) Pauli-RGB image. (b) Ground truth. (c)
Category legend.

corresponding scattering features. Additionally, the data are
standardized in each scattering dimension.

In data augmentation, a patch is first randomly cropped at
a ratio between [0.8, 1] and restored to the initial size. It is
then flipped horizontally and vertically with a chance of 0.5,
and rotated at an angle between [-30°, 30°]. Finally, two 2x2
regions in the patch are randomly masked out.

The details of the encoder have been displayed in Fig. 4.
For projection and prediction heads, the dimensions of their
linear connected layers are 128 and 32, respectively. In the
SSL phase, 20% of the unlabeled samples from each dataset
are selected for representation learning. The optimizer is a
SGD with n of 0.01, momentum of 0.9, and weight decay of
0.0001, which performs 100 epochs and reduces n by half at
epoch=60. In addition, the batch size is 512 and the decay rate
p is 0.996.

For fine-tuning, we use only 50 labeled samples per class
to form the few-shot case. The sampling rates in the above
three datasets are 0.47%, 0.03%, and 0.01%, respectively. An
Adam optimizer with 1 of 0.01 is used to train the newly
added classifier with 100 epochs and the batch size is 64.

To demonstrate the effectiveness of the proposed methods,
six advanced methods are chosen for comparison, including
SVM [47], MLP [48], CNN [16], CV-CNN [49], PCLNet [22],
SSPRL [23], PiCL [34]. Among them, SVM is a machine
learning method. MLP, CNN, and CV-CNN are DL meth-
ods in the supervised paradigm. PCLNet, SSPRL, and PiCL
are state-of-the-art SSL. methods for PolSAR classification.
Furthermore, four common metrics, namely overall accuracy
(OA), average accuracy (AA), kappa coefficient, and class
accuracy, are employed to assess the results. Each method was
individually replicated ten times across every dataset, enabling
the calculation of mean values for four designated metrics, as
well as the variance for the first three metrics.

C. Experimental Results of Flevoland

The experimental results of each approach on the Flevoland
dataset are shown in Fig. 9. Due to the variety of targets in
this dataset, the results of each classification method relying
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Fig. 9. Classification maps of the Flevoland dataset. (a) Ground truth. (b) SVM. (c) MLP. (d) CNN. (e) CV-CNN. (f) PCLNet. (g) SSPRL. (h) PiCL. (i)

SSL-MBC.

on supervised training are not satisfactory in the case of
small samples. Specifically, SVM and MLP have substan-
tial misclassified pixels in each type of region. Both CNN
and CV-CNN are limited by insufficient training samples
and have wide consecutive errors in some species such as
beet and wheat, which is the main factor for their poor
performance. Several SSL-based methods have the ability to
extract discriminative features that distinguish between cate-
gories through pretraining, thus giving more accurate results.
Although PCLNet, SSPRL, and PiCL have achieved a certain
level of accuracy, obvious error patches are still noticed. Our
SSL-MBC intuitively achieves the best results with relatively
few misclassified pixels and consistent performance across all
classes.

The quantitative metrics of the selected methods are shown
in the Table I. The SSL-MBC proposed in this study obtains
the best values on all three metrics, OA, AA, and Kappa,
which corresponds to the results presented in Fig. 9. It is
important to highlight that SSL-MBC demonstrates not only
the highest average but also the lowest variability across
the aforementioned metrics. This implies that it excels in
performance while simultaneously ensuring strong stability.

D. Experimental Results of San Francisco

The experimental results of each approach on the San
Francisco dataset are shown in Fig. 10. Due to lacking labeled
data, the model cannot achieve a stable solution, resulting
in unsatisfactory results for all supervised training methods.
There are a substantial number of misclassification points in
the categories of mountain, building, water, and vegetation,
which have a large distribution range. The performance of
PCLNet shows significant improvement over the previously
mentioned methods; however, it still encounters challenges
in differentiating between building and vegetation pixels. Af-
fected by the imbalance of category samples, SSPRL has large
misclassifications around the bare soil category. PiCL presents
a result map that is notably cleaner, but there still remains a
significant cluster of errors observed on the right side of the
sampled area. Compared to the above methods, SSL-MBC
shows a more reliable performance and provides excellent
identification of regions that are commonly susceptible to
incorrect judgment.

The quantitative metrics of the selected methods are shown
in the Table II. It is clear that the designed SSL-MBC achieves
the most accurate and stable results. It achieves the highest OA
of 96.71% and 95.38% on bare soil and buildings, respectively.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully ¢
content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2025.3528529

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

TABLE I
CLASSIFICATION RESULTS OF DIFFERENT METHODS ON THE FLEVOLAND DATASET

Class SVM MLP CNN CV-CNN PCLNet SSPRL PiCL SSL-MBC
Strambeans 43.00 40.44 79.86 83.86 96.67 98.05 99.15 99.17
Peas 54.74 52.93 45.68 67.35 98.11 98.69 97.48 98.61
Forest 17.62 80.81 87.15 79.95 91.67 97.05 97.19 98.20
Lucerne 87.19 85.11 48.74 75.35 91.48 93.43 96.06 95.13
Wheat 65.90 25.86 47.67 71.89 88.05 91.73 91.68 95.18
Beat 67.76 56.51 73.27 83.05 94.58 95.04 96.39 97.21
Potatoes 18.39 63.31 67.44 76.44 84.75 87.27 95.14 98.25
Bare Soil 98.07 89.95 99.86 71.98 99.98 99.97 99.12 98.61
Grass 83.93 14.74 31.41 28.43 92.03 94.90 88.96 90.09
Rapeseed 72.23 30.37 49.73 18.50 88.90 84.67 92.99 93.65
Barley 91.55 34.03 64.08 68.05 97.73 98.49 95.85 97.81
Wheat2 74.59 78.30 84.28 84.07 92.19 95.51 95.97 95.69
Wheat3 80.69 64.45 68.28 66.05 90.64 95.08 98.13 97.82
Water 91.26 79.88 96.85 95.46 98.62 82.29 89.94 97.65
Buildings 98.32 76.73 96.85 98.21 99.09 99.47 98.79 99.12
OA(%) 64.4540.25 57.484+3.27 67.084+1.28 70.1442.59 92.0940.22 92.7140.28 95.1040.18 96.7240.04
AA(%) 69.68+0.08 58.4342.53 69.4143.49 71.2440.19 93.6340.15 94.1140.11 95.5240.19 96.814+0.06
Kappa(x100) 62.1740.24 53.78+3.37 64.20+1.59 67.4942.87 91.3740.26 92.0640.33 94.6540.22 96.4210.05
TABLE 11
CLASSIFICATION RESULTS OF DIFFERENT METHODS ON THE SAN FRANCISCO DATASET
Class SVM MLP CNN CV-CNN PCLNet SSPRL PiCL SSL-MBC
Bare Soil 87.54 88.28 88.75 86.37 87.50 94.19 95.61 96.71
Mountain 76.46 77.30 74.90 87.01 92.49 94.99 93.43 94.05
Water 92.17 86.65 87.42 89.52 93.10 92.58 95.94 95.19
Buildings 87.44 82.38 85.62 84.65 89.56 89.64 92.31 95.38
Vegetation 75.86 77.65 80.54 80.70 83.27 89.87 85.91 87.42
OA(%) 87.7540.83 83.52+3.81 85.23+3.08 86.60+2.34 90.7940.17 91.3640.90 93.5240.09 94.69+0.12
AA(%) 83.8940.44 82.45+1.92 83.4446.76 85.65+2.83 89.18+4.30 92.2540.87 92.6440.21 93.57+0.08
Kappa(x100) 81.38+1.74 75.8946.95 78.1246.31 80.11+4.67 86.03+0.32 86.98+1.91 90.08+0.19 91.83+0.25
TABLE III
CLASSIFICATION RESULTS OF DIFFERENT METHODS ON THE OBERPFAFFENHOFEN DATASET
Class SVM MLP CNN CV-CNN PCLNet SSPRL PiCL SSL-MBC
Built-up Areas 63.89 52.85 70.48 70.56 82.53 75.06 77.36 81.90
‘Wood Land 82.79 89.55 83.33 74.68 86.65 93.11 89.08 91.90
Open Areas 83.10 93.15 91.63 95.49 89.41 91.55 93.79 93.77
OA(%) 78.2440.64 82.40+2.11 84.78+2.92 85.34+0.26 87.1740.11 87.7240.19 88.80+0.37 90.45+0.10
AA(%) 76.5940.83 78.524+1.91 81.82+1.80 80.24+0.60 86.2040.47 86.5740.18 86.7540.50 89.19+0.30
Kappa(x100) 63.994+1.31 69.9745.02 74.054+6.93 74.6440.81 78.4740.35 79.3340.54 80.96+1.00 83.83+0.29

This indicates that abstract features derived from multimodal
representations possess greater significance and exhibit a
stronger ability to generalize in subsequent classification tasks.

the SSL-MBC classification map appears cleaner due to its
precision, which is evident in the open areas.

The quantitative metrics of the selected methods are shown
in the Table III. Because there are few categories in oberp-
fafenhofen dataset and each kind of pixel is many, the OA of
all methods reaches a certain level. Although our SSL-MBC
does not reach the highest accuracy in any of the three cate-
gories, the overall OA, AA and Kappa are optimal, reaching
90.45%, 89.19%, and 83.83% respectively. In particular, SSL-
MBC is advantageous in AA, which means that it possesses
discriminative features that are practical for all classes and not
limited to one class.

E. Experimental Results of Oberpfaffenhofen

The experimental results of each approach on the Oberp-
faffenhofen dataset are shown in Fig. 11. SVM and MLP
identified numerous build-up areas as wood land and open
areas. CNN and CV-CNN suffer from severe misclassification
in all three categories included in the dataset, especially
in the middle and bottom right regions where the classes
are more complex. On the contrary, the result plots of the

SSL-trained PCLNet, SSPRL, and PiCL demonstrate superior - Ablation Study

quality. Although they do not show large errors, the presence
of scattered error points still limits their accuracy. Notably,

In order to exhaustively illustrate the effectiveness of
data augmentation and multi-branch design in the SSL-MBC
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Fig. 10. Classification maps of the San Francisco dataset. (a) Ground truth. (b) SVM. (¢) MLP. (d) CNN. (e) CV-CNN. (f) PCLNet. (g) SSPRL. (h) PiCL.

(i) SSL-MBC.

framework, we have conducted comprehensive ablation exper-
iments. Designate data augmentation, the Cloude-Pottier de-
composition branch, and the Freeman-Durden decomposition
branch with the symbols ”A,” ”C,” and "E” respectively. The
base frame with all the above parts removed is the “Base”, at
which point it does not make sense to learn a representation
between the input and itself. We gradually add other modules
to “Base” and conduct separate experiments on each dataset.

The ablation results for all datasets are shown in the Table
IV. Although the specific values are different, the trends
presented in each result are similar. According to “"Base+C+F”,
data augmentation is crucial in improving the training effect,
and when it is masked, the classification accuracy decreases
in all scenarios. Combining multiple augmentations makes
the comparison task more difficult, resulting in a higher
quality of features learned by the model. When the model
is not fine-tuned with a limited number of labels, the newly
added classifier parameters are randomized. As a result, the

classification outcomes are purely random. Besides, more
branch consistency means better performance. Specifically,
”Base+A+C+F” based on multimodal representations is better
than “"Base+A+C” and “Base+A+F’ which mask one modal-
ity, while they are better than “Base+A” that use only a
single modality. This supports the viewpoint of the paper,
which states that the inclusion of key attributes in the modal
representations of the target enhances its overall credibility.
Further constraints are imposed on the invariance of hidden
features by incorporating multiple modalities. This approach
eliminates the dependence on a single or limited number
of modalities, reducing the potential for contingency. Con-
sequently, the model can prioritize stable, fundamental, and
widely applicable features.

G. Impact of Labeled Sample Size

In the fine-tuning phase, a limited number of labeled sam-
ples are given to facilitate supervised training of the model’s
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Fig. 11. Classification maps of the Oberpfaffenhofen dataset. (a) Ground truth. (b) SVM. (c) MLP. (d) CNN. (e) CV-CNN. (f) PCLNet. (g) SSPRL. (h) PiCL.

(i) SSL-MBC.

classifier. To explore the effect of the labeled sample size on
the results, we conducted independent experiments at sample
sizes of 10, 20, 30, 50, 150, 200, and 300 per category
concerning the settings in [22]. Additionally, an encoder that
is not pre-trained in SSL is utilized for comparison, which
is referred to as "W/O SSL-MBC”. In ”"W/O SSL-MBC”,
the encoder parameters are only randomly initialized without
migration and are updated together with the classifier during
the training process.

The comparison results on three datasets are shown in Fig.
12. Intuitively, the performance of the encoder without SSL is

greatly degraded on either dataset, which is especially obvious
when the sample size is not more than 50. On the Flevoland
dataset, due to the complexity of its object types, the encoder
still fails to have a satisfactory performance when labeled
samples per class reach 300. This indicates that SSL-MBC
is necessary for the encoder to obtain excellent classification
performance. Moreover, according to the curve variation, SSL-
MBC maintains high accuracy even if only 10 labeled samples
are available for fine-tuning. The rise in labeled sample count
is not significant for the performance improvement of SSL-
MBC, suggesting that our method does not rely on a large
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TABLE IV
ABLATION STUDIES ON ALL SELECTED DATASETS

Methods Flevoland SanFrancisco Oberpfaffenhofen
OA(%) AA(%) Kappax 100 OA(%) AA(%) Kappax 100 OA(%) AA(%) Kappax 100

Base - - - - - - - - -
Base+A 93.29 93.89 92.69 90.74 90.72 86.00 85.78 83.03 76.08
Base+A(w/o fine-tuning) 6.80 10.64 1.12 26.81 29.86 9.37 55.02 39.74 26.04
Base+A+C 94.69 94.61 94.20 92.07 90.42 87.93 87.88 85.56 79.48
Base+A+F 94.20 94.48 93.67 91.76 89.86 87.42 88.80 87.47 81.11
Base+C+F 94.65 95.47 94.17 93.92 93.44 90.70 88.89 87.85 81.26
Base+A+C+F 96.83 96.89 96.55 94.69 93.75 91.83 90.45 89.19 83.83
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Fig. 12. Performance comparison of encoder trained with different numbers of labeled samples. The solid and dashed lines represent the results with and
without SSL-MBC, respectively. (a) Flevoland. (b) San Francisco. (c) Oberpfaffenhofen.

amount of training data. Finally, each metric of "W/ SSL-
MBC” outperforms "W/O SSL-MBC” in all cases, which
partly implies that SSL mines better supervisory information
than manual labeling.

H. Embedding Feature Visualization

To further illustrate the elevation of the encoder features
by SSL-MBC, the high-dimensional features are projected to
the 2D plane for visualization via t-SNE [50]. Specifically, we
compare the results of encoder feature visualization with and
without SSL. Due to the excessive sample volume in the San
Francisco and Oberpfaffenhofen datasets, only 10,000 samples
of each class were randomly selected for visualization.

The t-SNE feature visualization for each dataset are shown
in Fig. 13, where scatter colors are the same as ground truth
label colors. It is evident that the embedded features produced
by the encoder trained by SSL-MBC are robust, implying
that the features are more compact and separable. Encoders
following supervised training using only a few labeled samples
fail to converge or overfit due to insufficient training. Its
features are relatively dispersed and there is substantial overlap
among various point classes. In Fig. 13, we mark some heavily
overlapping regions with red boxes to make it more intuitive.

V. CONCLUSION

To address the issue of limited samples in PolSAR classifi-
cation tasks, a new approach called SSL-MBC is proposed. In
pretext task design, our approach emphasizes the importance
of data augmentation through simultaneous transformations in

both spatial and channel dimensions, treating the extraction
of scattering features as a transformation within the scattering
dimension of PolSAR images. This task takes advantage of
scattered features, the inherent characteristic of PolISAR data,
and terms it as multimodal representations. Furthermore, the
diverse modal representations of a given instance exhibit
similarity in the embedding space, with features consistently
present across multiple modalities considered central. There-
fore, we perform SSL training with multi-branch consistency.
Since branch expansion increases computational complexity, a
SSL architecture without negative samples is adopted, which
consists of a main branch with a prediction head and auxiliary
branches. Among them, the projection and prediction head
optimally preserve the information contained in the encoder
features, and the EMA update strategy maintains the param-
eter difference between the main and auxiliary branches as
well as the consistency of outputs. Finally, high accuracy on
downstream tasks is achieved by fine-tuning based on the SSL
pretraining results. Comprehensive experiments are conducted
on three authoritative PoISAR datasets. Supervised training-
based methods suffer from underfitting due to insufficient
labels. Other recent SSL-based methods fail to adequately
mine the hidden information in multimodal data. And our
method has the best performance. Furthermore, an ablation
study confirms the effectiveness of all modules and settings
within the framework.

Although our work holds great significance for future Pol-
SAR SSL studies, the performance is still affected by branch
construction and few samples in the target domain. In practical
applications, selecting more appropriate scattering features or
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Fig. 13. The feature visualization for each dataset. (a) With SSL-MBC on Flevoland. (b) Without SSL-MBC on Flevoland. (c) With SSL-MBC on San
Francisco. (d) Without SSL-MBC on San Francisco. (e) With SSL-MBC on Oberpfaffenhofen. (f) Without SSL-MBC on Oberpfaffenhofen.

considering more modal representations may lead to even more
improved results. This ensures the practicality and extensibility
of our study. Additionally, exploring the potential of PoISAR
image classification without relying on target domain samples
could be a novel direction. Using domain generalization and
similar methods can achieve precise classification even when
the target domain is not visible during the training phase.
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