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 Abstract— In many areas of the world, particularly in arid and 

semi-arid regions, groundwater is the primary source of fresh 

water, and it supplies around one-third of the world's fresh 

water. Agriculture is the primary economic sector on the coast in 

the southern district (Nowshera). More food productivity is 

required due to the expanding population and diminishing 

agricultural lands, which increases the use of chemical pesticides 

and fertilizers in farming. The current study was conducted in 

northwestern parts of Pakistan to evaluate the impacts of the 

frequent use of pesticides and fertilizers in agricultural fields. 

Nine hydrogeological Parameters were considered, and the GIS-

based DRASTIC index was used to generate the final 

groundwater vulnerability map. The index map (ranging from 

220 to 1980) was further classified into five classes based on index 

vulnerability: very low (220 - 345), low (346 - 670), moderate (671 

- 730), high (731 - 1239), and very high 1240 - 1980). Nitrate and 

TDS, the two reliable and recognized scientific water quality 

measurements, have been used to validate the model. By 

regulating and controlling anthropogenic and agricultural 

pollution, the danger of contamination can be decreased. This 

research will aid in understanding the possible dangers and risks 

related to the usage of pesticides in agriculture and other 

industries. Furthermore, it will help identify the specific 

pesticides causing the contamination, assess the extent and 

severity of the contamination, and develop strategies to protect 

public health and the environment. 

Index Terms— Multispectral data; Groundwater contamination; 

Vulnerability; Rainfall; Agricultural management 
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I. INTRODUCTION 

ATER scarcity and pollution have become major 
global issues in recent decades. There are billions of 
people without access to water or who experience 

water scarcity worldwide; maintaining the quality of the 
groundwater is crucial for ensuring water availability for 
drinking water [1], [2]. When no other water supply is 
available, groundwater is the sole substantial source of life 
support for cultivable and non-cultivable lands [3], [4]. 
Groundwater is the primary source of drinking water for more 
than two billion people [5]. However, in recent years, the 
quantity and quality of groundwater sources have been 
declining globally as a result of the world's population growth, 
agricultural demands, and high manufacturing standards [6]. 
Contaminated drinking water has caused significant health 
concerns in recent years due to increased contamination in 
groundwater [7], [8]. Statistics show that drinking water 
contamination is responsible for 40% of all deaths and 30% of 
all diseases [9]. Once the aquifers are contaminated, restoring 
them is difficult or even impossible. Due to this, planners and 
engineers must identify essential terrain to protect clean 
groundwater by considering the vulnerability [10], [11]. 
Worldwide, around 260 million hectares of land is used for 
agriculture. More than half of the world's crops are produced 
by Pakistan, China, the United States, and India [12]. Two-
thirds of all freshwaters, mainly from groundwater, is used to 
irrigate and harvest about 60% of the world's agricultural 
lands. According to statistics, groundwater extraction for 
agricultural purposes is expected to reach between 750 and 
800 billion cubic meters annually [13]. Furthermore, due to a 
growing population and elevated living standards, the 
percentage rises by 1-3% annually worldwide [12]. 

In Pakistan, 90% of the population depends on 
groundwater to meet domestic needs. Population growth has 
increased water demand, severely stressing groundwater 
resources and worsening groundwater vulnerability. Once the 
subsurface aquifer has been contaminated, cleaning the water 
that has been polluted is a complex and expensive process 
[14]. According to community health surveys in Pakistan, 
water pollution is the primary cause of 50% of illnesses and 
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40% of deaths [15]. A total of 7000 random water samples 
were collected from Pakistan, and the results revealed that, on 
average, fecal and total coliforms were present in 
approximately 58% and 71% of the samples, respectively [16], 
[17]. In 2015, 62% of the groundwater in Pakistan's various 
regions, including Chichawatni, Vehari, and Rahimyar Khan, 
was unsuitable for human consumption. Recently, Ali et al. 
[18] evaluated the impacts of multiple pesticides in drinking 
water sources from the Peshawar basin, Pakistan, and found 
that the study area's selected water sources were all 
contaminated by various pesticides sprayed in the region. 
Approximately 66% of all water use comprises mechanical 
pumps and piping systems [19].  

In other cases, the method of purification could be more 
commercially feasible. To protect the groundwater from 
further contamination, it is crucial to identify the polluted 
areas of the aquifers and take the necessary precautionary 
measures [20], [21]. This is why there are significant problems 
with groundwater availability and quality [22]. The 
susceptibility evaluation indicates the groundwater quality's 
contamination or pollution vulnerability level. To raise 
awareness of groundwater vulnerability, France was the first 
to establish the concept in late 1960 [23]. The evaluation can 
categorize the zones based on the degree of contamination and 
generate calculated findings to protect groundwater in the 
specified areas in the target areas. Various techniques have 
been developed to examine and assess the susceptibility of 
aquifer formations. Numerous strategies were developed, 
including statistical, process-based, and overlay index 
procedures [24]. The DRASTIC method is the most thorough 
method under the overlay and index procedure  [22].   

Groundwater monitoring is costly and labor-intensive, 
and it is difficult to accurately depict pollution on a larger 

scale [25]. Therefore, researchers have created a variety of 
approaches that are less expensive, more straightforward to 
use, and do not need a lot of data or complicated calculations 
[26]. Anantha Rao et al. [10], developed a DRASTIC, the 
most well-known, and commonly applied empirical 
rank/score-based index approach for vulnerability evaluation 
for the US Environmental Protection Agency [27]. This 
approach is based on nine hydrogeological factors, including 
hydraulic conductivity (C), topography (T), influence of the 
vadose zone (I), aquifer medium (A), net recharge (R), depth 
to water table (D), elevation (E) and drainage density (D). 
However, despite its widespread use, the DRASTIC technique 
has several drawbacks, and it has been criticized for its 
subjectivity and ambiguity in assessing the ratings and weights 
of its criteria [28], [29].  

Numerous researchers [30], [31] have begun improving 
the approach to fix this issue to increase its efficacy and 
precision for a particular aquifer [32]. Some examples of these 
enhancements include the optimization of the ratings and 
weights of the severe parameters through the use of the Fuzzy 
Analytic Hierarchy Process (FAHP)[33], the Analytic 
Hierarchy Process (AHP), multiple linear regression, the 
sensitivity analysis, and the Analytic Network Process (ANP) 
[34], [35]. Other researchers have proposed incorporating 
extra factors, such as land use and irrigation type [36], [37], 
[38]. The primary objective of this study is to assess the 
vulnerability of groundwater contamination resulting from the 
regular application of pesticides and fertilizers in agricultural 
areas in the central regions of the KPK province in Pakistan. 
An integrated GIS-DRASTIC model incorporated nine 
essential hydrogeological parameters to generate the 
DRASTIC index, a necessary component for creating a 
groundwater vulnerability map. 

 
Figure 1: (a) Geographical location of Pakistan (b) study region map of District Nowshera. 
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II. MATERIAL AND METHODS 

A. Study area 

The Nowshera District, located in the Khyber Pakhtunkhwa 
province of Pakistan, is approximately centered at latitude 
34.0151° N and longitude 71.9747° E with an area of 1,748 
km2 and elevation 1544 meters above sea level. These 
coordinates provide a general reference for the district, which 
spans a larger area with varying geographical boundaries [39], 
[40]. The region’s geology is complex, comprising 
sedimentary formations, alluvial deposits, and active fault 
lines, which collectively influence the distribution and 
accessibility of groundwater resources [41]. Nowshera's 
susceptibility to recurrent flooding underscores the importance 
of understanding its subsurface hydrology for disaster risk 
reduction and informed urban planning [42]. The district's 
climate, classified as "Cwa" under the Köppen climate 
classification system, is characterized by humid subtropical 
conditions with dry winters and hot summers [43]. Weather 
fluctuations are substantial, with summer temperatures 
reaching up to 40 °C and winter temperatures occasionally 
nearing freezing levels. The region's soils are generally deep 
and well-drained, though their fertility varies according to 

local topographical and drainage conditions [44]. 
Topographical variation plays a crucial role in shaping the 
district's hydrological and agricultural dynamics. Fertile plains 
formed by natural drainage systems are suitable for 
cultivation, while steeper terrains are prone to erosion and 
landslides [45], [46].  

B. Data Collection 

The data for the DRASTIC model was collected from primary 
and secondary sources. Water samples were collected from the 
field to validate the results. The groundwater depth data and 
water detecting diver were also collected during the field. 
Global precipitation measurement (GPM) rainfall data 
generated the net recharge map. The impact of vadose zone 
data was gathered from the public health engineering 
department (Table I). The soil map of the study area was 
collected from the Soil Survey of KPK, and the geological 
map was collected from the Geological Survey of Pakistan. 
ALOS PALSOR Digital elevation model with 12.5-meter 
resolution was downloaded from Earth data open access hub 
(https://scihub.copernicus.eu/dhus/#/home). 

TABLE I 

THE PRIMARY DATA SOURCES UTILIZED IN THIS STUDY. 

S. No Datasets Source  

1 Water Quality data  

(Nitrate and TDS  

Sample collection from the field (60 samples from open wells) 

2 Depth to Groundwater  Depth data collected from the field (30 locations) 

3 Net Recharge  Rainfall data downloaded from GPM (Global Precipitation Measurement)  

4 Vadose zone  Public Health Engineering Department Nowshera Division 

5 Soil media Soil Survey of Khyber Pakhtunkhwa  

6 Aquifer Media Geological Survey of Pakistan  

7 Topography  ALOS PALSAR with 12.5 meters spatial resolution was downloaded from Earth data open 

access hub. 

8 Hydraulic conductivity Hydraulic conductivity data were collected from the public health engineering department of 
the Nowshera Division 

 
Figure 2: The present study employs a methodology flow chart to outline the sequential steps and procedures undertaken in the 
research process. The flow chart serves as a visual representation of the research methodology. 
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C. Method 

The DRASTIC technique also considers the environmental 
factors affecting groundwater contamination risk. Each factor 
is divided into ranges, and each range is given a rating based 
on how it affects the aquifer's vulnerability. According to Eq. 
1, the final DRASTIC vulnerability index (DVI) was 
calculated by multiplying the rating (i.e., 1-10) by the weights 
(from 1 to 5).  

 
where the letters  stand for weight and  represents the rates 
for each of the nine geo-environmental parameters: 

, and . 

This approach is simple to use, and it considers each 
parameter's rate and weight. The rates (1–10) are random and 
are determined by the expertise of professionals. One of the 
most critical limitations of this approach is that the weights 
assigned to each parameter are subjective [45]. The 
researchers made enhancements or adjustments to a significant 
extent by modifying the weights of the initial model, taking 
into account the specific attributes of the study region and the 
correlation coefficient between a particular contaminant, such 
as nitrate, and nine hydrogeological layers [47], [48], [49], as 
well as the parameters and the rates [50]. Figure 2 shows the 
methodology flow chart. 

 
Figure 3: Maps of the conditioning factors (a) depth to groundwater, (b) net recharge, (c) aquifer media, (d) soil types, (e) 
topography, (f) vadose zone, (g) hydraulic conductivity, (h) elevation and (i) drainage density.  

D. Preparation of DRASTIC factors 

1) Depth to groundwater 
The groundwater depth determines a possible pollutant's travel 
time to the water table. The depth-to-water table data were 
collected from 40 bore wells in the study area using an electric 
diver and GPS for locational coordinates. The depth-to-water 
table data were imported into the GIS environment for further 
processing. The inverse distance weighted (IDW) tool 

generated the surface inside the spatial analyst extension. The 
IDW data for depth to groundwater were classified into five 
classes: 60.25 – 180.15 feet, 180.16 – 430.58 feet, 430.59 – 
510.55 feet, 510.56 - 653.96 feet, and 653.96 – 951.48 feet. 
Figure 3a Shows the depth of the groundwater map of the 
study area. 
2) Net Recharge 
Water infiltration into the soil and groundwater table occurs 
from precipitation and other artificial sources. Net recharge is 
the term used to describe the quantity of water percolating per 
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square foot of soil. According to Shirazi et al. [6], this 
recharge is influenced by several variables, including slope, 
permeability, rainfall, land cover, and water seeping. High 
recharge correlates with higher contamination susceptibility 
and vice versa. Precipitation data from GPM was downloaded 
from 2006 to 2024. The GPM (raster) data were further 
processed in GIS. The study area receives 40.12 – 59.43mm 
average annual rainfall. The data were further classified into 
five classes: 59.43 – 62.34, 57.45- 58.24, 53.45 – 55.39, 35.42 
– 41.25, and 37.79 – 40.12 mm. Figure 3b Shows the net 
recharge map of the study area.  
3) Aquifer media 
This factor considers the physical properties of the saturated 
zone's media, such as porosity, grain size, and permeability, 
which control the pollutant absorption processes [50], [51]. 
This data was collected from the Geological Survey of 
Pakistan and tabulated and processed in GIS. Five main types 
of lithologies are found: Jurassic sedimentary rock, Cretaceous 
rock, Neogene rock, Paleogene rocks and Quartzite. Figure 3c 
shows the aquifer media map.  
4) Soil types 
This parameter considers the biologically active soil texture on 
the earth's surface [52]. The soil type controls the amount of 
recharge that may saturate groundwater [53], [54]. The soil 
map was collected from the Soil Survey of Khyber 
Pakhtunkhwa. It was Georeferenced and Digitized. Three 
types of Soil were found in the study area: Lithosol, Calcaric 
Regosol and Haplic Xerosol. Figure 3d shows the soil map of 
the study area. 

5) Topography 
This parameter describes the ground slope of the research area 
and affects how much water can permeate the soil. Digital 
elevation model ALOS PALSAR with 12.5 meters spatial 
resolution was downloaded from Earth data open access hub. 
The area was extracted using an extraction by-mask tool 
surface tools inside the spatial analyst extension generated 
slope in degrees [40], [41]. The slope was categorized into 
five classes: 0 – 11.77, 11.78 – 16.60, 16.61 – 22.59, 22.60 – 
39.02, and 39.03 – 67.44 degrees. Figure 3e shows the 
topography map of the study area. 

6) Vadose Zone 
This parameter makes a reference to material from the 
unsaturated zone. The water flow in the unsaturated zone 
impacts the transport of contaminants to the aquifer. The 
Impact of Vadose zone data was collected from the Public 
Health Engineering Department of KPK. The department 
provided the strata chart of the constructed bore wells in the 
study area. According to these charts, Alluvium, Sand with 
little Gravel, and Clay with some gravel were found in the 
study area[55]. Figure 3f shows the impact of the Vadose zone 
map. 

7) Hydraulic conductivity 
Hydraulic conductivity describes how easily water (and 
dissolved pollutants) travel throughout the 
groundwater/aquifer system. This data was also collected from 
the Public Health Engineering Department in Khyber 
Pakhtunkhwa. The Hydraulic conductivity values range from 
587.9 – 682.6, 682.7 – 721.4, 721.5 – 754.1, 754.2 – 803.2, 

and 803.3 – 838.8 in the study area. The data was divided into 
five classes. Figure 3g shows the hydraulic conductivity map. 

8) Elevation 
The Nowshera District's elevation is critical in influencing 
groundwater distribution and accessibility [56]. With 
elevations ranging from approximately 239 meters to 300 
meters above sea level in the plains, the district benefits from 
the Kabul River and associated alluvial formations that 
enhance groundwater recharge in lower-lying areas. However, 
steep gradients and rocky substrates reduce infiltration 
capacity in the elevated and rugged terrains, limiting 
groundwater potential [42]. These elevation-induced 
variations emphasize the need for detailed hydrological studies 
to identify and manage groundwater resources effectively 
across diverse topographical zones. Figure 3h shows the 
elevation map. 

9) Drainage density 
Drainage density, defined as the total length of streams and 
rivers per unit area, is a crucial indicator of groundwater 
potential in a region. A low drainage density typically 
signifies a high infiltration rate and greater potential for 
groundwater recharge, as surface water has more time to 
percolate into the subsurface. Conversely, areas with high 
drainage density often exhibit reduced infiltration due to 
surface runoff dominance, indicating limited groundwater 
recharge potential [57]. In regions like Nowshera District, 
where topographical and geological variations influence 
hydrology, understanding drainage density is vital for 
identifying groundwater potential zones and managing water 
resources sustainably. Figure 3i shows the drainage density 
map of the study region. 

E. Validation of Model Results 

Model results were validated with water samples collected 
from the open wells evenly distributed throughout the study 
area. For this purpose, 40 water samples from the study area 
were analyzed for TDS and nitrate in the geochemistry 
laboratory at the National Centre of Excellence in Geology, 
University of Peshawar, Pakistan. The concentration of TDS 
and nitrate was cross-checked with a resultant vulnerability 
map. 

III. RESULTS 

A. Results of DRASTIC factors 

1) Depth to water level 
The term "depth to water table" refers to the distance between 
the ground's surface and the water table. Pollutants and 
contaminants travel this distance before dissolving in the 
groundwater, according to Aller et al. [51], the probability of 
groundwater pollution decreases with increasing depth. The 
water table in the study area varies from 70.10 to 797.93 feet. 
The data was collected using an electric water diver. The data 
was classified into five classes ranging from 60.25 -180.15, 
180.16 - 430.58, 430.59 – 510.55, 510.56 - 653.96, and 653.97 
– 951.48 feet having the theoretical ranking 9, 8, 7, 5, 3, 
respectively and DRASTIC weight of 44, 42, 36, 18 and 12, 
respectively (Table II). The data was collected from Akora 
Khattak, Amangarh, Pirpai, Cherat, Jalozai, Risalpur, 
Khawarai, Kaka Sahib, Pabbi, Azakhel, Manki Sharif, and 
Shaidu and 20 samples of data along with well depth were 
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collected from each major village. Figure 4a shows the 
reclassified weighted map of depth to groundwater.  

2) Net recharge 
The DRASTIC ranks for each precipitation class are 9,5,4,3 
and 1, respectively. The weight assigned to net recharge was 
five, and the total DRASTIC weights for each precipitation 
class were 43, 39, 37, 33, and 25 respectively (Table II). The 
weights were assigned according to the vulnerability to 
contamination. Figure 4b shows the reclassified net recharge 
map of the study area.  

3) Aquifer media  
The underlying rock formations significantly influence the 
permeability rate and subsequent breakdown of the pollutants 

into the groundwater. Additional activities like filtration, 
cation exchange, and sorption occur when the water penetrates 
inside. Therefore, aquifer media is a crucial factor in 
influencing groundwater quality. The formation's permeability 
and thickness consequently influence the passage of the 
pollutants. Reduced danger of contamination and a higher rate 
of pollutant dilution are exhibited by thicker formations and 
lower permeability, respectively [58]. Weights and ranks were 
assigned according to the vulnerability to pollution of different 
rock types. The total weight assigned to aquifer media was 3, 
the DRASTIC ranks were 7, 5, 4, 3 and 2, and the DRASTIC 
weights were 29, 25, 18, 15, and 9, respectively (Table II). 
Figure 3c shows the reclassified aquifer media map. 

TABLE II 
DRASTIC RATES, RANKS, AND TOTAL WEIGHT OF THE FACTORS 

Factors Class Range   DRASTIC Index Rate DRASTIC Index Weight  Total DRASTIC Weight  

(Rating × Weight)  

Depth to water level (in feet) 60.25 -180.15 9  

 

05 

44 

180.16 - 430.58 8 42 

430.59 – 510.55 7 36 

510.56 - 653.96 5 18 

653.97 – 951.48 3 12 

Net recharge (in/ year) 59.43 – 62.34 9  

 

07 

43 

57.45- 58.24 5 39 

53.45 – 55.39 4 37 

35.42 – 41.25 3 33 

37.79 – 40.12 1 25 

Aquifer media Jurassic sedimentary rock 7  

 

03 

29 

Cretaceous rock 5 25 

Neogene rock 4 18 

Paleogene rocks 3 15 

Quartzite 2 09 

Soil types Lithosol 7  

05 

25 

Calcaric Regosol 6 23 

Haplic Xerosol 3 19 

Topography (Slope in %) 0 – 11.77 9  

 

06 

25 

11.78 – 16.60 7 19 

16.61 – 22.59 4 18 

22.60 – 39.02 2 11 

39.03 – 67.44 1 08 

 

Vadose zone  

Alluvium 6  

07 

35 

Sand with little Gravels 5 24 

Clay with some gravel 4 11 

Hydraulic conductivity 

587.9 – 682.6 9  

 

04 

32 

682.7 – 721.4 8 22 

721.5 – 754.1 7 18 

754.2 – 803.2 5 11 

803.3 – 838.8 4 08 

 

 

Elevation 

239 – 300 8  

 

06 

49 

300.1 – 448.7 7 45 

448.9 – 643.7 5 39 

643.8 – 950.4 4 28 

950.5 – 1544 1 18 

 

 

Drainage Density 

0 – 1000 9  

 

05 

69 

1001 – 3807 8 65 

3808 – 5306 7 58 

5307 – 10410 6 41 

10420 – 25930 4 39 

 

4) Soil types 
The soil media is the uppermost layer of the vadose zone with 
biological life. The soil media actively contributes to the 
movement of pollutants through the formations and controls 
the area's recharge. Because of its efficient adsorption and 
attenuation, soil media is essential in removing contaminants. 
The soil media facilitates increased cationic exchange and the 
removal of heavy metals since it is chemically active and rich 
in organic matter. The soil dramatically influences the 
presence of pollutants and how they move vertically into the 
vadose zone. The ranks for Lithosol were 7, Calcaric Regosol 
were 6 and 3 for Haplic Xerosol, while weights for these soil 

classes were 25, 23 and 19, respectively (Table II). The 
weights and ranks were assigned according to the porosity and 
vulnerability to pollution. Figure 4d shows the soil media map 
of the study area.  

5) Topography 
Topography accurately depicts where contaminants 
accumulate, infiltrate, and contaminate underground water. In 
regions with more excellent slopes, infiltration is slower, and 
there is less chance that pollutants will seep downward. The 
slope (in degree) was categorized into five classes and 
DRASTIC Index Rates were assigned accordingly: 0 – 11.77 
(DIR 25), 11.78 – 16.60 (DIR19), 16.61 – 22.59 (DIR18), 
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22.60 – 39.02 (DIR11), and 39.03 – 67.44 (DIR 8) (Table II). 
Figure 4e shows the topography map of the study area.    

6) Impact of vadose zone  
Jalayer et al. [59] state that the vadose zone is the under-
saturated area above the water table. The vadose zone 
significantly influences the amount of contaminated water that 
percolates down. Therefore, by serving as a conduit, the 
vadose zone media controls the number of contaminants that 
travel to the water table and their absorption. Different bio-

chemical degradation processes like filtration and straining 
take place in this zone. Alluvium, Sand with little gravel, and 
clay with some gravels were found in the study area. The DIR 
were assigned to these classes: Alluvium (6), Sand with little 
Gravel (5), and Clay with some gravel (4). The weightage for 
each class was set at 35, 24, and 11, respectively (Table II). 
The weights and DIR were assigned according to their 
vulnerability to pollution and contamination. Figure 4f shows 
the impact of the vadose zone reclassified map.  

 
Figure 4: Results of the conditional factors were utilized in this study (a) depth to groundwater, (b) net recharge, (c) aquifer 
media, (d) soil types, (e) topography, (f) vadose zone, (g) hydraulic conductivity, (h) elevation and (i) drainage density.  
 

7) Hydraulic conductivity  
Hydraulic conductivity is a crucial factor that affects how 
quickly groundwater moves into the saturation zone and, in 
turn, how quickly pollutant-rich water is transmitted into the 
aquifer. The risk of contamination increases with higher 
hydraulic conductivity. The Hydraulic conductivity values 
range from 587.9 to 838.8 in the study area. The data was 
divided into five classes, and accordingly, DIR were assigned: 
587.9 – 682.6 (DIR 9), 682.7 – 721.4 (DIR 8), 721.5 – 754.1 
(DIR 7), 754.2 – 803.2 (DIR 5) and 803.3 – 838.8 (DIR 4). 
The weights for each class were set at 3, 9, 15, 24, and 27 
(Table II). Figure 4g shows the hydraulic conductivity map of 
the study area. 

8) Elevation  
The elevation-based analysis of groundwater vulnerability in 
the Nowshera District reveals a significant relationship 

between elevation ranges and groundwater susceptibility. The 
lowest elevation range, 239–300 meters, exhibits the highest 
groundwater vulnerability with a score of 8 and a notable 
frequency of 49. This indicates increased susceptibility due to 
flat terrain, higher infiltration, and proximity to river plains. 
The elevation range is 300.1–448.7 meters followed by a 
vulnerability score of 7 and a frequency of 45, suggesting 
moderate susceptibility. As the elevation increases to 448.9–
643.7 meters, the vulnerability score drops to 5 with a 
frequency of 39, reflecting reduced infiltration potential due to 
slope and terrain variability. In higher elevations, such as 
643.8–950.4 meters, the vulnerability decreases further with a 
score of 4 and a frequency of 28, attributed to steeper 
gradients and reduced groundwater recharge capacity. The 
highest elevation range, 950.5–1544 meters, has the lowest 
vulnerability score of 1 and a frequency of 18, indicating 
minimal groundwater susceptibility due to limited recharge 
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and increased runoff. This pattern demonstrates that 
groundwater vulnerability in Nowshera District is primarily 
concentrated in lower elevations where topography favors 
groundwater recharge. In comparison, higher elevations 
exhibit decreased vulnerability due to their geomorphological 
characteristics. 

9) Drainage density 
The drainage density in the Nowshera District is a critical 
factor influencing groundwater vulnerability. The model 
classifies drainage density into five ranges, revealing a trend 
where higher drainage densities correlate with increased 
groundwater recharge potential and vulnerability to 
contamination. The lowest drainage density range, 0–1000, is 
associated with the highest score (9) and accounts for 69 units, 
indicating areas with minimal surface drainage, likely to have 
greater infiltration potential. The 1001–3807 range scores 8 
with 65 units, representing moderate drainage density areas 
where surface runoff is more prominent. In the 3808–5306 
range, the score drops to 7 with 58 units, while the 5307–
10410 range has a score of 6 and 41 units, suggesting areas 
with higher surface drainage and reduced infiltration potential. 
The highest drainage density range, 10420–25930, scores 4 

and has 39 units, signifying regions with extensive surface 
drainage networks that limit recharge and increase runoff. 

B. DRASTIC groundwater vulnerability zones 

Based on an overlay map of the DRASTIC map index, Figure 
5 shows the study area's groundwater vulnerability. The range 
of the index values was 220 to 1980. The index map was 
further classified into five classes based on index 
vulnerability: very low (220 - 345), low (346 - 670), moderate 
(671 - 730), high (731 - 1239), and very high 1240 - 1980). 
This study reveals that out of the total area of 1748 km2 in the 
study area, very low area is 54.68 km2 (3.13%), low area is 
244.18 km2 (13.97%), moderate area is 478.33 km2 (27.37%), 
high area is 409.65 km2 (23.44%), and very high vulnerable 
zone's area is 561.02 km2 (32.10 %) (Table III). The data was 
collected from Akora Khattak, Amangarh, Pirpai, Cherat, 
Jalozai, Risalpur, Khawarai, Kaka Sahib, Pabbi, Azakhel, 
Manki Sharif, and Shaidu and 20 samples of data along with 
well depth were collected from each major village. Due to the 
lack of an adequate sewage infrastructure in the area, domestic 
wastewater discharge from residential areas, schools, Govt 
offices, and agriculture activities increases the risk of 
groundwater pollution. 

Figure 5: (a) Groundwater vulnerability zone (b) TDS concentration (c) Nitrate concentration  
TABLE III 

GROUNDWATER VULNERABLE ZONE AREA IN THE STUDY REGION 

S. No DRASTIC Index Vulnerable zone Area (km2) Area (%) 

1 220 - 345 Very low vulnerable 54.68 3.13 

2 346 - 670 Low vulnerable 244.18 13.97 

3 671 - 730 Moderate vulnerable  478.33 27.37 

4 731 -1239 High vulnerable 409.65 23.44 

5 1240 - 1980 Very high vulnerable 561.02 32.10 

C. Validation  

Nitrate and TDS parameters have been utilized to validate the 
DRASTIC model results, which were used to create the final 
groundwater vulnerability map. Samples were collected and 

analyzed in a laboratory for Nitrate and total dissolved solid 
(TDS) values. In the study area, the nitrate and TDS 
concentrations ranged from 2.01 to 14.85 mg/l and 300.6 to 
826.3 mg/l, respectively (Figure 6). The geographic 
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distribution of the parameters in the north area shows that 
Akora Khattak, Amangarh, Pirpai, Cherat, Jalozai, Risalpur 
exhibit low nitrate concentrations between 2.01 and 4.68 
mg/L, and similarly show low TDS concentrations between 
300.6 and 459.57 mg/L. These areas have a low level of 
groundwater vulnerability. The southwest part of the region 
(district Nowshera), specifically the Akora Khattak, 
Amangarh, Pirpai, Cherat, Jalozai, Risalpur regions, have 

incredibly high levels of groundwater vulnerability, as well as 
high concentrations of nitrate, ranging between 8.95 to 14.85 
mg/L and high TDS concentrations ranged between 802.5 and 
826.3 mg/L. The contaminants from agriculture combine with 
the recharge water and contaminate the groundwater. TDS and 
nitrate concentrations are also high in areas where the 
DRASTIC index is similarly high. 

 
Figure 6: Validation of the DRASTIC model using AUC_ROC 

IV. DISCUSSION 

It is essential to determine how vulnerable groundwater 
aquifers are to pollution if they are to continue functioning 
[60]. The US Environmental Protection Agency introduced the 
DRASTIC model, which is mainly employed to assess 
groundwater's vulnerability to pollution [22]. Datasets were 
created using the sources listed in Table I, according to Aller 
et al. [51], the water table's depth is the most critical factor in 
groundwater vulnerability. Additionally, the water table in the 
study area varies from 60.25 to 180.15 feet. The data was 
collected using an electric water diver. The data was classified 
into five classes: 60.25 -180.15, 180.16 - 430.58, 430.59 – 
510.55, 510.56 - 653.96 and 653.97 – 951.48 feet as classified 
by different researchers and planners [61], [62]. Higher water 
table readings indicate more frequent water pumping occurs in 
the area. 
Groundwater contamination is also significantly impacted by 
net recharge (R) [63]. The study area receives 59.43 – 40.12 
mm Average annual rainfall. The data was further classified 
into five classes:  59.43 – 62.34, 57.45- 58.24, 53.45 – 55.39, 
35.42 – 41.25, and 37.79 – 40.12 mm annual rainfall. Aquifer 

media control the path that contaminants take and how long 
they travel. The parameter, which also contains sand, is given 
a high weight. Aquifer media in the study area includes 
Jurassic sedimentary rock, Cretaceous rock, Neogene rock, 
Paleogene rocks, and Quartzite. The exact weights were 
assigned in the study [64] . According to Aslam et al. [65] the 
weights and ratings given to soil media were based on 
previous studies. Figure 3d depicts two different soil media, 
including clay loam and loam soil, for the research region. The 
soil with the most permeability was assigned the highest rating 
value, and the soil with the lowest permeability was given a 
lower rating.  
The slopes in the study area were categorized into five classes 
(degrees): 0 – 11.77, 11.78 – 16.60, 16.61 – 22.59, 22.60 – 
39.02, and 39.03 – 67.44, according to the ratings and weights 
assigned by Maqsoom et al. [66], these values were assigned 
since water drainage is higher on steeper slopes, and pollutants 
are less likely to be present there. The vadose zone is 
responsible for water movement in the subsurface. Results 
showed that alluvium, sand, and clay with gravel are the 
primary elements in the vadose zone. According to Figure 3g, 
alluvium receives a rating of 6, sand gets a rating of 5, and 
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clay with gravel gets a rating of 4. Hydraulic conductivity, the 
nine parameter of the DRASTIC model, can influence the rate 
of pollution transmission [60]. An aquifer can carry water 
[67]. The Hydraulic conductivity values range from 587.9 to 
838.8 in the study area. The data was divided into five classes: 
587.9 – 682.6, 682.7 – 721.4, 721.5 – 754.1, 754.2 – 803.2, 
and 803.3 – 838.8. 
While the GIS-DRASTIC integrated technique represents a 
valuable approach for groundwater vulnerability assessment 
under semi-arid to arid conditions, it is crucial to acknowledge 
certain limitations inherent in its application. Firstly, the 
technique heavily relies on available data, and the accuracy of 
the vulnerability map is contingent upon the quality and 
spatial resolution of input parameters such as lithology, soil, 
and land use. In regions with limited data availability or 
inconsistent datasets, the accuracy of vulnerability 
assessments may be compromised. Additionally, the model 
assumes steady-state conditions and does not account for 
potential temporal variations in land use, climate, or 
groundwater recharge, which may impact the reliability of 
long-term predictions [64]. The GIS-DRASTIC method also 
simplifies the complex hydrogeological processes by using 
predetermined weightings for each parameter, potentially 
oversimplifying the variability in the vulnerability landscape. 
Furthermore, the technique may not fully capture the dynamic 
interplay of anthropogenic activities and their evolving impact 
on groundwater quality over time. Recognizing these 
limitations requires practitioners and policymakers to interpret 
results judiciously and supplement GIS-DRASTIC outcomes 
with site-specific investigations for a more comprehensive 
groundwater vulnerability assessment. 
This study utilizes a DRASTIC risk map to assist planners and 
engineers in identifying areas with a high risk of 
contamination. The groundwater Vulnerable Zones map was 
divided into categories: low vulnerable zone, medium 
vulnerable zone, high vulnerable zone, and very high 
vulnerable zone of groundwater contamination. The outcome 
of this study will help achieve the United Nations' sustainable 
development goals (SDGs) related to the good health and 
well-being of people, food security, and the provision of clean 
water. Specifically, our approach provides a quantitative 
measure for the indicator 6.1.1 Proportion of population using 
safely managed drinking water services. The approach 
adopted in this study can be further improved by adding 
parameters of land use. Also, hospital data for various diseases 
in the study area related to pesticide contamination water will 
greatly impact policymakers to plan accordingly. 

V. CONCLUSION 

The prevention of groundwater pollution depends on 
functional groundwater planning and management because 
groundwater is an essential and precious resource for many 
human activities. The groundwater vulnerability zones in 
the Nowshera District are classified into five categories 
based on their susceptibility. The very low vulnerable zone 
covers an area of 54.68 km², representing only 3.13% of the 
total area, indicating minimal groundwater contamination 
risk. The low vulnerable zone occupies 244.18 km² 
(13.97%), reflecting relatively low susceptibility to 
contamination. The moderate vulnerable zone, which 
accounts for 478.33 km² or 27.37%, represents a significant 
portion of the district where groundwater contamination 

potential is moderate. The high vulnerable zone covers 
409.65 km², constituting 23.44%, signifying regions with a 
considerable risk of groundwater contamination. Finally, 
the very high vulnerable zone, with the largest area of 
561.02 km² (32.10%), highlights regions most susceptible 
to groundwater contamination. This classification 
emphasizes that a substantial portion of the district lies 
within high and very high vulnerable zones, underscoring 
the need for sustainable groundwater management and 
targeted mitigation strategies. 
A study on groundwater susceptibility can benefit 
management and policymaking authorities by establishing 
regulations that prevent bodily waste from mixing with 
groundwater. These policies will help maintain a healthy 
environment as the local population grows.  
The study provides valuable insights into groundwater 
vulnerability by conducting a comprehensive assessment of 
the impacts of frequent pesticide and fertilizer use in 
agricultural fields of District Nowshera. Utilizing nine 
hydrogeological parameters and the GIS-based DRASTIC 
index represents a methodological advancement in evaluating 
the potential risks associated with agricultural practices. The 
generated groundwater vulnerability map, classified into four 
categories, is crucial for policymakers, land managers, and 
farmers to identify at-risk areas and implement targeted 
mitigation measures. The validation of the model using 
scientifically recognized water quality measurements, namely 
Nitrate and TDS, enhances the reliability of the findings. The 
research contributes to our understanding of the region's 
specific contaminants and offers a blueprint for proactive 
measures to regulate and control anthropogenic and 
agricultural pollution. This approach not only aids in reducing 
the danger of contamination but also holds the potential to 
identify specific pesticides causing pollution, assess the extent 
of contamination, and prioritize remedial actions. Several 
future actions and measures are crucial to safeguard the 
aquifer in the most vulnerable areas of District Nowshera, 
Pakistan. Firstly, implementing sustainable agricultural 
practices, including precise pesticide and fertilizer application, 
can mitigate groundwater contamination. Promoting 
awareness programs among farmers and the community about 
responsible water usage and pollution prevention is essential. 
Establishing monitoring wells and regularly assessing 
groundwater quality will enable early detection of 
contamination. Implementing stringent regulations on land use 
and development in vulnerable zones, coupled with effective 
enforcement, is imperative. Collaborative efforts between 
local authorities, communities, and environmental agencies 
will be essential for successful aquifer protection and ensuring 
a sustainable water supply for the future. 
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