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Abstract—Extracting spectral-spatial features from Hyper-
spectral imagery (HSI) has been proven to be efficient for
classification tasks. A recently developed superpixelwised PCA
(SuperPCA), which has shown its promising performance, is
a prominent technique in spectral-spatial feature extraction.
However, we have discovered that SuperPCA may lead to an
intra-class dispersion problem, which can result in a decrease in
classification accuracy. In this paper, a novel method called Col-
laborative Superpixelwised PCA (CSPCA) is proposed to address
this issue. The main idea behind CSPCA is to collaboratively
learn the projections for each superpixel. Specifically, CSPCA
first employs a superpixel segmentation technique to generate
superpixels. Next, the mean vectors of samples within each su-
perpixel are utilized to model the manifold structure of the data.
Then, a novel objective function is formulated, which aims to
simultaneously preserve the obtained manifold structure between
superpixels and the structure within each superpixel. To optimize
the objective function, the Manopt toolbox is employed in the
proposed method. The effectiveness of the proposed approach
is validated through experimental evaluations conducted on five
HSI data sets.

Index Terms—Dimension reduction, Hyperspectral imagery
(HSI) classification, spectral-spatial feature learning, superpix-
elwised PCA.

I. INTRODUCTION

Hyperspectral imaging has gained significant attention in
remote sensing applications, such as land use monitoring [1]
[2], urban planning [3] [4], due to its strong capability in
capturing rich spectral information. Hyperspectral image (HSI)
provides a high-dimensional spectral signature for each pixel,
enabling detailed analysis and discrimination of different mate-
rials and land cover types. However, the high dimensionality of
hyperspectral data brings challenges in terms of computational
complexity and the curse of dimensionality [5].

To address these challenges, dimensionality reduction (DR)
methods have been widely employed to reduce the data
dimension in HSI. The DR methods aim to extract a lower-
dimensional representation of the data that retains the relevant
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spectral information. Band selection (BS) [6] [7] [8] and
feature extraction (FE) [9] [10] are two effective approaches
for DR in HSI. BS techniques aim to select a subset of the most
informative spectral bands from the original high-dimensional
hyperspectral data, while FE techniques map the original
high-dimensional hyperspectral data onto a lower-dimensional
feature space. In general, BS techniques can preserve the
physical information of the spectral data but always exhibit
lower performance compared to FE ones. Thus, we focus on
FE methods for the HSI classification task in this work.

Many FE techniques have been applied for HSI classifi-
cation tasks in recent decades. Farrell and Mersereau [11]
demonstrated the effectiveness of Principal Component Anal-
ysis (PCA) in detecting targets in HSI, while Bandos et al.
[12] applied Linear Discriminant Analysis (LDA) for HSI
classification. In order to capture the nonlinear structure of
the data, manifold learning [13] [14] and kernel-based methods
[15] [16] have been proposed to extract more discriminative
features. To explore the spectral information for visualization
and classification, Kang et al. [17] converted a 1-D spectrum
into a 2-D image recently. More recently, the deep learning
approaches [18] [19] [17] have been adopted to enhance
the feature representations. While these techniques primarily
utilize the spectral information of the data to determine class
labels, they do not directly incorporate the spatial information
of HSI, which has been proven to be effective for classification.

To incorporate the spatial information into FE techniques,
various approaches have been proposed, which can be gen-
erally categorized into spatial filtering [20] [21], tensorial
representation [22] [23] [24] and superpixel segmentation
[25] [26] [27]. Spatial filtering considers the correlations
between neighboring pixels to incorporate spatial information.
Tensorial representation treats the HSI data as a tensor rather
than a vector, directly integrating spatial information into the
dimension reduction process. Superpixel segmentation divides
the HSI data into groups by jointly considering the texture,
color, and sample location information. This allows FE tech-
niques to be applied directly to each individual group. Among
these ways, the spatial filtering methods are typically applied
as a preprocessing step to enhance the spatial information in
the data. Tensorial representation methods, while effective, can
be computationally expensive due to the increased complexity
of tensor operations. Therefore, this study focuses on super-
pixel segmentation-based techniques. By grouping pixels into
superpixels, these methods enable the direct application of
FE techniques on each group, facilitating the extraction of
spatially enhanced features for HSI classification tasks.

SuperPCA [25] is a representative work for superpixel
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Fig. 1. An example illustrating why dispersion occurs in SuperPCA. X1 and
X2 represent the distributions of samples from the same category but located
in different superpixels. The right side shows the distribution of these samples
in 1D space after SuperPCA, while the left side illustrates the distribution after
PCA.

segmentation-based methods. Compared with other typical
spectral-spatial feature extraction techniques, SuperPCA has
demonstrated superior performance. However, we have dis-
covered that SuperPCA may destroy the intra-class structure
of the data, resulting in dispersion between samples from
the same category but located in different superpixels in the
low-dimensional feature space. To illustrate this dispersion
problem, an example is provided in Fig. 1. The objective of
SuperPCA is to find different projections for samples origi-
nating from different superpixels. However, if these samples
exist in different regions within the distribution, the resulting
projections would magnify the differences between them. As
illustrated in Fig. 1, the distributions of samples from two dif-
ferent superpixels are represented in red and blue, respectively.
The principal vectors, P1 and P2, exhibit significant differ-
ences, which leads to the samples being mapped to distant
locations in the 1D projection. Specifically, the X1 is mapped
along the X-axis, which ranges in [−5, 5], while X2 is mapped
along the Y-axis, with a range of [10, 18]. Consequently, after
SuperPCA, the data are distanced from each other in the 1D
space. Fig. 2 further demonstrates the dispersion problem of
SuperPCA using real-world data. In Fig. 2a, the raw data of
Corn class in Indian Pines data set is visualized using tSNE
[28]. Different colors and shapes denote samples located in
various superpixels. It is evident that the samples belonging
to Corn class are closely distributed both in Figs. 2a and 2b,
which represent the distributions of the original samples and
the samples after PCA transformation, respectively. However, a
noticeable dispersion between samples projected by SuperPCA
from different superpixels can be observed in Fig. 2c. The
dispersion problem in SuperPCA increases the complexity of
classification, as it can lead to overly intricate boundaries and
a higher risk of overfitting, particularly in high-dimensional
spaces like HSI. Previous studies [29] [30] have shown that
reducing intra-class variance can significantly improve class
separability and enhance classification accuracy.

To tackle the dispersion problem in SuperPCA, we propose
a new spectral-spatial FE method named Collaborate Superpix-
elwised PCA (CSPCA) in this paper. CSPCA aims to consider
the relations between samples from different superpixels when
finding the projections for each superpixel. Specifically, we

first utilize PCA to identify the first principal of HSI, and
employ Entropy Rate based Segmentation (ERS) [31] to
generate superpixels. Then, the arithmetic centers of each
superpixel are used to model the manifold structure of the data.
Later, a novel object function that preserves both the obtained
manifold structure between superpixels and the data’s structure
within each superpixel is proposed. To optimize this object
function, an appropriate toolbox is employed in our proposed
method. Experimental results on five HSI data sets, which
are Indian Pines, the University of Pavia, Salinas, WHU-Hi-
LongKou, and WHU-Hi-HanChuan, validate the effectiveness
of the proposed method.

In summary, the contributions of this paper are highlighted
as follows:

1) We identify the dispersion problem in SuperPCA and
introduce CSPCA to effectively solve the problem. The
proposed CSPCA jointly considers the projections for
each superpixel, thereby preserving the intra-class struc-
ture of the data.

2) A novel objective function is introduced, where the
manifold structure is leveraged to maintain the intra-
class relation of data from different superpixels, and
PCA is employed to maintain the structure of data
from the same superpixel simultaneously. To optimize
the proposed objective function, the Manopt toolbox is
employed, ensuring efficient and effective optimization
procedures.

The rest of this paper is organized as follows. Section II
reviews the related work briefly. Section III introduces the
details of CSPCA and the optimization methods. Experimental
results are discussed in Section IV, and the conclusion of the
paper is presented in Section V.

II. RELATED WORKS

In this section, we provide an overview of FE algorithms for
HSI classification. These works are categorized into spectral-
based methods, superpixel-based methods, and deep learning-
based methods. It is important to highlight that in this paper,
uppercase boldface symbols, denoted as G and P, signify
matrices. Lowercase boldface symbols, such as xi, represent
vectors. Additionally, regular typed symbols are used for
values, such as wij and η.

A. Spectral-based methods

HSI consists of hundreds of contiguous spectral bands,
where each pixel is represented as a feature vector containing
hundreds of entries. However, the high dimensionality of HSI
data presents challenges in classification tasks, including the
curse of dimensionality, computational complexity, and redun-
dancy in the spectral information. To address these problems,
feature extraction methods in machine learning are adopted in
HSI classification tasks.

PCA is a classical method in machine learning, which has
been widely used in HSI processing [32] [33] and classification
[11] [34] tasks. Given a data matrix X = {x1,x2, . . . ,xn} ∈
Rd×n, where xi is the ith sample with d dimensionality, and

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2024.3520960

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

(a) (b) (c)
Fig. 2. An example of dispersion problem. The samples of class Corn in Indian Pines data set are processed by tSNE for 2D illustration. (a) shows the raw
data. (b) displays the data after PCA. (c) presents the data after SuperPCA. Different colors and shapes represent the samples located in different superpixels.

n is the number of samples. PCA aims to find a projection
matrix P ∈ Rd×l by

P∗ = argmax
P

Tr(PTSP), (1)

where Tr(·) denotes the trace of a matrix, S = 1
n

∑
(xi −

µ)(xi −µ)T represents the covariance matrix of X, and µ =
1
n

∑
xi is the mean vector of the data. The problem in Eq.(1)

can be solved by selecting the eigenvectors corresponding to
the l largest eigenvalues of S.

Using the optimal matrix P, PCA transforms each sample
xi to yi by yi = PTxi. When d < l, PCA can effectively
reduce the dimensionality of the data. It is important to note
that PCA assumes the data follows a Gaussian distribution,
allowing the principal components to capture the main in-
formation of the data. However, in the case of HSI, the
data usually do not adhere to a Gaussian distribution as they
originate from different classes [35].

To address this problem, manifold learning methods, which
enforce that pixels with similar signatures remain close to each
other in the low-dimensional space, have been proposed for
HSI classification. For instance, Wang et al. [36] employed
Locality Preserving Projections (LPP), which is a classical
manifold learning method, to find a low-dimensional embed-
ding, which can preserve the geometric structure of the data.
Duan et al. [37] proposed a semisupervised FE technique that
first measures the distance between samples on a manifold,
and then constructs hypergraphs to effectively incorporate both
labeled and unlabeled training data. Jiang et al. [38] introduced
a new method by incorporating Laplacian regularization and
local enhancement into collaborative representation projection,
which allows for better representation of the manifold structure
and improves the performance of HSI classification tasks.

The spectral-based methods have made significant progress
HSI feature extraction over the past decades. However, these
methods often treat the HSI data, originally structured as a
3D cube, by flattening it into a 2D matrix to derive the low-
dimensional representation. This procedure largely overlooks
the critical spatial information presented in the image, where
neighboring pixels often belong to the same category, thus

missing valuable contextual information. A recent work in [17]
applied sequence data processing algorithms on the 1D spec-
trum to derive 2D features for classification and visualization.
This approach marked a new direction in the development of
the spectral-based FE method for HSI.

B. Superpixel-based methods

Superpixel segmentation techniques always serve as a pre-
processing step to incorporate spatial information into the
spectral-based FE methods. The superpixel segmentation tech-
niques first divide an HSI into multiple homogeneous regions,
the FE methods can then be applied to each homogeneous re-
gion to extract low-dimensional representation. By integrating
spatial information into spectral FE techniques, superpixel-
based methods can achieve improved performance in HSI
classification tasks.

SuperPCA is a representative superpixel-based technique
for HSI classification tasks, where PCA is applied to each
superpixel region to extract the local features. By integrating
spatial and spectral information, SuperPCA outperforms the
spectral-based FE methods. To further improve its classifi-
cation performance, several extensions have been developed,
such as GSuperPCA [39], RSuperPCA [39], SuperULDA
[40], SuperPCA-DA [41], and BAMS [27] were proposed.
GSuperPCA concatenates global features extracted from the
entire HSI with local features via SuperPCA, thus combining
global and local information. RSuperPCA enhances SuperPCA
by reconstructing pixels within the same superpixel block to
reduce noise. SuperULDA tackles the issue of mixed objects
and strong noise by applying LDA to the samples with pseudo-
labels to extract more discriminative local features. SuperPCA-
DA integrates data augmentation techniques with SuperPCA,
generating diverse new samples. BAMS adaptively determines
the optimal number of superpixels band-by-band, extracting
optimal joint spatial and spectral features. These methods
collectively demonstrate advancements in the utilization of
superpixel-based approaches for HSI classification.
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C. Deep learning-based methods

In recent years, deep learning methods have been widely
applied to HSI classification tasks due to their superior capa-
bility for automatic feature extraction. Among these methods,
Convolutional Neural Networks (CNNs) have become one of
the most popular architectures, leveraging both spectral and
spatial information for improved classification accuracy. For
instance, 2D CNNs [42] [43] treat HSI as typical multi-channel
2D images and focus on spatial features, while 3D CNNs [44]
[45] directly process the HSI cube, capturing spectral-spatial
features. However, these deep learning models are typically
trained in an end-to-end manner, requiring labeled data for
supervised learning. To address the lack of labeled data in
unsupervised settings, autoencoder-based architectures have
been explored, as demonstrated in the works of Zhang et al.
[46] and Zhang et al. [47], enabling unsupervised deep model
training for HSI classification.

Despite the significant advantages of deep learning methods
in HSI classification, one major challenge remains: the high
computational complexity and memory requirements not only
during training but also at the inference stage. Many deep
models, particularly complex architectures like 3D CNNs and
hybrid models, rely on resource-intensive operations, and often
require specialized hardware such as GPUs, which increases
both the time and cost of implementation, making such ap-
proaches less feasible for resource-constrained environments,
such as edge computing, onboard satellite systems, or low-
power devices. Given these constraints, in this work, we
focus on traditional machine learning FE methods. Approaches
like SuperPCA and CSPCA require significantly less com-
putational power during inference, as feature transformation
involves only simple matrix operations. These methods are
thus more practical for scenarios demanding lightweight and
efficient solutions, providing an alternative to deep learning-
based methods in contexts where computational resources are
limited.

III. COLLABORATIVE SUPERPIXELWISED PCA

The details of the proposed method will be presented in
this section, which can be summarized into three main steps.
Firstly, the samples are assigned to different regions through
superpixel segmentation. Secondly, the relationship between
samples from different superpixels is modeled, and manifold
learning techniques are employed to capture this relationship.
Finally, PCA projections are collaboratively learned for each
superpixel. Fig. 3 shows an overall framework of the proposed
method.

A. Superpixel segmentation

Graph-based methods [31] and gradient-based methods [48]
represent two typical types of superpixel segmentation algo-
rithms. Compared with the gradient-based ones, the graph-
based methods have demonstrated superior performance and
higher efficiency. Therefore, we adopt Entropy Rate Seg-
mentation (ERS), a representative graph-based method, for
superpixel segmentation in our approach.

Given a graph G = (V,E), where V denotes the set of
vertices representing the pixels in the image, and E represents
the set of edges measuring the similarities between vertices.
ERS selects a subset of edges A ⊆ E to construct a resulting
graph G∗ = (V,A) that consists of exactly N subgraphs,
given a predefined number of superpixels N . The objective
function of ERS is formulated as

A∗ = argmax
A

Tr(H(A) + αB(A)), s.t.A ⊆ E, (2)

where H(A) represents the entropy rate term, which encour-
ages generating homogeneous and compact regions, and B(A)
is used to enforce region sizes to be similar. A greedy heuristic
algorithm is employed to find the optimal subset A∗.

ERS is a powerful technique for segmenting greyscale
images into superpixel regions with a given number of super-
pixels. When applied to HSI, however, the high dimensionality
of the data presents a challenge. To effectively apply ERS
in this context, PCA is first employed to reduce the multi-
channel HSI into a single-channel image in our scheme. This
preprocessing step enables the subsequent application of ERS
for generating desired superpixels.

B. Model the relationship between superpixels
The samples within each superpixel are probably from the

same category, making the mean vector of the samples a
meaningful representation of the formulated. To model the
structure of these mean vectors, we adopt the criterion used
in Locality Linear Embedding (LLE) [49], which can be
indicated as follows:

wi = argmin
wi

∥ µi −
∑
j

wijµj ∥2, s.t.
∑
j

wij = 1, (3)

where µi is the mean vector of samples within the i-th
superpixel, and the reconstruction weights wij are constrained
to 0 if xj is not in the K−nearest neighborhood of xi. The
optimal wi for Eq.(3) can be solved by Mwi = 1, where
M =

∑
j(µi − µj)(µi − µj)

T .
By iteratively applying Eq.(3) to each sample, an N × N

matrix GT = [w1,w2, . . . ,wN ] is obtained, which represents
the manifold structure of the data. It is important to note that
each row in G corresponds to the reconstruction weights of
each sample.

To preserve the manifold structure in Eq.(3) in subspace,
the following formulation can be employed:

P = arg min
PTP=I

∑
i

∥ µ̃i −
∑
j

wijµ̃j ∥2 . (4)

where µ̃i = PTµi and µ̃j = PTµj are the mean vectors
in the low-dimensional subspace, the constraint PTP = I is
enforced to ensure that the projection matrix P is orthogonal
and avoids trivial solutions in the optimization process.

C. Collaboratively learned PCA projections
SuperPCA finds the projection matrix for each superpixel by

minimizing the reconstruction error, which can be formulated
as follows:

L(P1,P2, . . . ,PN ) =
∑
i

∑
j

∥ PiP
T
i xij − xij ∥2, (5)
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Fig. 3. Outline of the proposed CSPCA.

where Pi is the projection matrix for the i-th superpixel, and
xij is the j-th sample within the i-th superpixel. Because Pi

is only related to the samples within the i-th superpixel, the
optimal set {P1,P2, . . . ,PN} can be obtained by solving a
set of PCA problems, individually. It should be noted that PCA
is known to effectively preserve the structure of given data, as
has been proven in prior studies.

To address the dispersion problem in SuperPCA, the man-
ifold structure is employed to ensure that low-dimensional
representations are similar when their corresponding high-
dimensional data exhibit similarities. Since different super-
pixels have different projection matrices, µ̃i = PT

i µi holds
in Eq.(4). By combining Eqs.(4) and (5), a new objective is
formulated as follows:
L(P1,P2, . . . ,PN ) =∑

i

(∥ PT
i µi −

∑
j

wijP
T
j µj ∥2 +η

∑
j

∥ PiP
T
i xij − xij ∥2),

s.t. PT
i Pi = I,

(6)

where the first term maintains the structure of the data between
superpixels, while the second term preserves the structure of
data located in the same superpixel, η is the weight to balance
the two terms.

D. Optimization method

To find the optimal {P1,P2, . . . ,PN} for each superpixel,
the coordinate descent method is adopted in our method.
Specifically, the projection matrix Ps for the s-th superpixel

is optimized while keeping the other N − 1 matrices fixed,
using the following formulation:

P∗
s = argmin L(P1, . . . ,Ps, . . .PN ),

s.t. PT
s Ps = I, s = 1, . . . , N.

(7)

To solve the problem in Eq.(7), by combining Eq.(6), we
present a proposition as follows.

Proposition 3.1: Eq.(7) is equivalent to the equation as
follows:

L(P1, . . . ,Ps . . .PN )

=Tr(PT
s AsPs) + 2Tr(PT

s Bs), s.t. PT
s Ps = I,

(8)

where As = µsµ
T
s − ηXsX

T
s , Bs =

∑
i,j wiswijµsµ

T
j Pj

−
∑

i(wis + wsi)µsµ
T
i Pi.
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Proof.∑
i

(∥ PT
i µi −

∑
j

wijP
T
j µj ∥2 +η

∑
j

∥ PiP
T
i xij − xij ∥2)

=
∑
i

((PT
i µi −

∑
j

wijP
T
j µj)

T (PT
i µi −

∑
j

wijP
T
j µj)

+
∑
j

(PiP
T
i xij − xij)

T (PiP
T
i xij − xij))

PT
s Ps=I
=

∑
i

µT
i PiP

T
i µi +

∑
i,j,k

wijwikµ
T
j PjP

T
kµk

− 2
∑
i,j

wijµ
T
i PiP

T
j µj + η

∑
i,j

(xT
ijxij − 2xT

ijPiP
T
j xij)

=
∑
i

Tr(PT
i (µiµ

T
i − ηXiX

T
i )Pi)− 2

∑
i.k

wijTr(PT
j µjµ

T
i

Pi) +
∑
i,j,k

wijwikTr(PT
j µjµ

T
kPk) +

∑
i

Tr(XiX
T
i ).

To solve the projection matrix Ps, the terms that are not
related to Ps are eliminated. Then the above equation becomes

Tr(PT
s (µsµ

T
s − ηXsX

T
s )Ps)− 2

∑
j

wsjTr(PT
j µjµ

T
s Ps))

−2
∑
i

wisTr(PT
s µsµ

T
i Pi)) +

∑
i,k

wiswikTr(PT
s µsµ

T
kPk)

+
∑
i,j

wiswikTr(PT
j µjµ

T
s Ps)

=Tr(PT
s AsPs) + 2Tr(PT

s Bs).

In Eq.(8), the matrix As captures the relationships between
samples within the s-th superpixel, while the matrix Bs

describes the relationship between samples across different
superpixels. To further elaborate, the first term in Bs incor-
porates the second-order links within the graph G, where both
µs and µj are in the neighborhoods of µi. The second term
in Bs considers the first-order links in the graph, with µs

located in the neighborhoods of µi or vice versa. In this
way, the proposed CSPCA can incorporate the relations of
samples between superpixels and solve the dispersion problem
in SuperPCA.

Minimizing the problem in Eq.(8) is challenging because the
solution is restricted to a Stiefel manifold, which makes the
problem not only non-convex but also numerically expensive
[50]. In order to address this issue, the solver Stiefel manifold
in Manopt1, which is a toolbox specifically designed for
optimization on manifolds, is adopted in our method. The
Stiefel manifold solver requires the derivative of Eq.(8), given
by:

∂L(P1, . . . ,Ps, . . . ,PN )

∂Ps
= 2AsPs + 2Bs. (9)

The optimization procedure of the proposed CSPCA is
outlined in Algorithm 1.

1https://www.manopt.org/reference/manopt/manifolds/stiefel/stiefelfactory
.html

Algorithm 1 Optimization procedures of CSPCA
Input: An HSI X = {X1,X2, . . . ,XN}, where Xi =

{xi1,xi2, . . . ,xiNi
} denotes the samples from the i-th

superpixel, and Ni is number of samples within this
superpixel. The mean vectors set {µ1,µ2, . . . ,µN}, the
balance weight η, the number of iterations T , the weight-
ing matrix G.

Output: The projection matrices {P∗
1,P

∗
2, . . . ,P

∗
N}.

1: Initial the projection matrices {P(0)
1 ,P

(0)
2 , . . . ,P

(0)
N };

2: for t = 0 to T do
3: for s = 1 to N do
4: Calculate the loss As and Bs in Eq.(7), the derivative

∂L(Ps)
∂Ps

in Eq.(9) using {P(t)
i }, i = 1, . . . , s− 1, s+

1, . . . , N ;
5: Calculate the optimal P(t)

s by the solver Stiefel man-
ifold;

6: end for
7: end for
8: return {P(T )

1 ,P
(T )
2 , . . . ,P

(T )
N }.

IV. EXPERIMENTS

A. Data sets

To evaluate the proposed CSPCA, experiments are per-
formed on several public HSI data sets, which are Indian Pines
(IP), the University of Pavia (PU), Salinas (Sa), WHU-Hi-
LongKou (LK) [51] [52], and WHU-Hi-HanChuan (HC) [51]
[52]. The detailed information of these data sets is as follows.

1) Indian Pines: The Indian Pines data set was collected by
the AVIRIS sensor in 1992. It contains 145×145 pixels
with 224 spectral bands. 24 bands are removed due to
their low signal-to-noise properties. In this way, each
pixel is with 200 bands in our experiments. This data
set consists of 10249 labeled samples from 16 different
classes, the number of samples in each class is listed in
TABLE I. Fig. 4a presents the false color map of Indian
Pines. The false color map of PU is presented in Fig.
4a.

2) University of Pavia: This data set was collected by the
ROSIS sensor, which recorded a scene in Pavia, northern
in Italy. It contains 610 × 340 pixels and 103 spectral
bands after removing the noise and water-absorption
bands. This data set has 42776 samples from 9 classes.
The number of samples in each class is also presented
in TABLE I. The false color map of PU is presented in
Fig. 4b.

3) Salinas: This data set was acquired using the AVIRIS
sensor in Salinas Valley, USA. It comprises 610 × 340
pixels with 224 spectral bands. After eliminating 20
noisy and water bands, 204 bands are used in our
experiments. The data set includes 53129 samples from
16 different classes. The number of samples in each class
is also outlined in TABLE I. The false color map of SA
is presented in Fig. 4c.

4) WHU-Hi-LongKou: This data set was acquired using
an 8-mm focal length Headwall Nano-Hyperspec sensor
in Longkou Town, Hubei Province, China. The camera
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TABLE I
NUMBER OF SAMPLES IN THE INDIAN PINES, UNIVERSITY OF PAVIA, SALINAS, WHU-HI-LONGKOU, AND WHU-HI-HANCHUAN.

Indian Pines University of Pavia Salinas WHU-Hi-LongKou WHU-Hi-HanChuan
Class name Numbers Class name Numbers Class name Numbers Class name Numbers Class name Numbers

c1 Alfalfa 46 Asphalt 6631 Broccoli green weeds1 2009 Corn 34511 Strawberry 44735
c2 Corn-notill 1428 Meadows 18649 Broccoli green weeds2 3726 Cotton 8374 Cowpea 22753
c3 Corn-mintill 830 Gravel 2099 Fallow 1976 Sesame 3031 Soybean 10287
c4 Corn 237 Tress 3064 Fallow rough plow 1394 Broad-leaf soybean 63212 Sorghum 5353
c5 Grass-pasture 483 Mental sheets 1345 Fallow smooth 2678 Narrow-leaf soybean 4151 Water spinach 1200
c6 Grass-tress 730 Bare soil 5029 Stubble 3959 Rice 11854 Watermelon 4533
c7 Grass-pasture-mowed 28 Bitumen 1330 Celery 3579 Water 67056 Greens 5903
c8 Hay-windrowed 478 Bricks 3682 Grapes untrained 11271 Roads and houses 7124 Trees 17978
c9 Oats 20 shadow 947 Soil vineyard develop 6203 Mixed weed 5229 Grass 9469

c10 Soybean-nottill 972 Corn senesced green seed 3278 Red roof 10516
c11 Soybean-mintill 2455 Lettuce romaine 4wk 1068 Gray roof 16911
c12 Soybean-clean 593 Lettuce romaine 5wk 1927 Plastic 3679
c13 Wheat 205 Lettuce romaine 6wk 916 Bare soil 9116
c14 Woods 1265 Lettuce romaine 7wk 1070 Road 18560
c15 Buildings-grass-trees-dirves 386 Vineyard untrained 7268 Bright object 1136
c16 Stone-steel-towers 93 Vineyard vertical trellis 1807 Water 75401

Total number 10249 Total number 42776 Total number 54129 Total number 204542 Total number 257580

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Fig. 4. The false color images and ground truth maps. The false color images
of (a) IP. (b) PU. (c) SA. (d) LK. (e) HC. The ground truth maps of (f) IP.
(g) PU. (h) SA. (i) LK. (j) HC.

was equipped on a DJI Matrice 600 Pro UAV platform.
This data set contains 550×400 pixels with 270 spectral
bands from 400 to 1000 nm. There are 204542 labeled
samples from 9 different classes, the number of samples
in each class is listed in TABLE I. The false color map
of LK is illustrated in Fig. 4d.

5) WHU-Hi-HanChuan: This data set was acquired in
Hanchuan, Hubei Province, China, with a 17-mm focal
length Headwall Nano-Hyperspec sensor equipped on a
Leica Aibot X6 UAV platform. There are 1217 × 303
pixels in the image, and each pixel has 274 spectral
bands. There are 257580 labeled samples from 16 dif-
ferent classes, the number of samples in each class is
also presented in TABLE I. The false color map of HC
is illustrated in Fig. 4e.

B. Experimental setup

In this experiment, several well-known FE techniques, in-
cluding several methods only using spectral information, such
as PCA, LPP, LRCRP [38], and TDWR [17], as well as meth-

ods that incorporate spatial-spectral information through super-
pixel segmentation, such as tensorSSA [22], SuperPCA [25],
Reconstruction SuperPCA (RSuperPCA) [39], Concatenated
SuperPCA (CSuperPCA) [39], SuperULDA [40], SuperPCA-
DA [41], and BAMS [27]. Additionally, we establish the
performance of features without FE as a baseline, referred to
as raw features in the experiments. The original HSIs are used
without any further preprocessing, and the local filtered pro-
cedure in S3-ULDA is also eliminated. The implementations
of PCA, LPP, SuperPCA, RSuperPCA, CSuperPCA, LRCRP,
tensorSSA, TWDR, SuperULDA, SuperPCA-DA, and BAMS
can be accessed from the authors’ websites, respectively. To
determine the category of each sample, we first apply the
samples in HSI to the FE methods. Subsequently, we use
a Support Vector Machine (SVM) to classify the samples
based on the low-dimensional representation obtained from
FE techniques. All experiments are conducted using Matlab
R2019b, ensuring a consistent and standardized evaluation
framework across the compared methods.

To test the proposed method, the overall accuracy (OA),
average accuracy (AA), and kappa are used to evaluate the
performance of different FE techniques. The evaluation is
conducted on 10 random splits sets in [25], with separate
training and testing sets.

To evaluate the performance of our proposed method, two
experiments are conducted on a desktop computer equipped
with a 2.5GHz Core i5-12400F CPU and 32GB RAM. In
the first experiment, we focus on investigating the optimal
parameters in CSPCA. Based on the results of the first
experiment, we aim to assess the effectiveness of CSPCA
compared to SuperPCA and other common FE techniques in
the second experiment.

C. Parameters tuning

In the proposed CSPCA, several parameters need to be pre-
defined when applying the method to HSI data. These include
the number of superpixels, denoted by N , which controls the
granularity of superpixel segmentation. The number of nearest
neighbors in LLE, denoted by K, influences the construction
of the local neighbors. The balancing weight, denoted by η,
adjusts the trade-off between the local and global information
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(a) (b) (c) (d) (e)
Fig. 5. The OAs with different parameters. (a) illustrates the OAs obtained with different values for r and η on Indian Pines data set. Similarly, (b), (c), (d)
and (e) illustrate the OAs with the same setting on the University of Pavia, Salinas, WHU-Hi-LongKou and WHU-Hi-HanChuan data sets, respectively.

in CSPCA; The dimensionality of the low-dimensional space,
denoted by l, determines the size of the extracted features.

For the balancing weight η and the number of nearest
neighbors K are involved in Eq. 6, we first perform a joint
search for optimal values across the five data sets. Following
the setting of SuperPCA, the dimensionality of the subspace is
fixed at 30, with 100 superpixels for IP and SA, and 20 for the
other three data sets. 30 samples from each category are chosen
to train the SVM. For η, its value is varied within the range
of [0.5, 0.75, 1, 1.25, 1.5]. Additionally, since the number of
nearest neighbors K is inherently related to the number of
superpixels N , the ratio r = K

N is evaluated by testing values
in the range of [0.1, 0.2, 0.3, 0.4]. The experimental results are
illustrated in Fig. 5, providing insights into the influence of
different values of η and r on the performance of CSPCA.

Fig. 5 reveals that the the ratio of r is the main factor
influencing the performance of CSPCA. On the IP data sets,
the OA of CSPCA achievs best when r = 0.1 and then
decreases with increasing r. It is important to note that the
number of superpixels N is fixed at 100 in IP, and a higher
value of r means a larger K, which could potentially lead
to confusion between samples from different categories. A
similar phenomenon can be observed in the SA data set, where
a N is also set to 100. For the PU and LK data sets, the OA
achieves best when r = 0.2, this may be attributed to the fact
that too few samples cannot efficiently capture the geometrical
relationship of the data. Different from PU and LK, the OA
achieves best when r = 0.3 on the HC data set, this may be
because there are more samples in HC, and a small K cannot
capture the relationship of the data.

Based on the results from the above experiments, we
empirically set the balance weight η to 1 for all five data
sets. Additionally, we empirically determine the ratio r to be
0.1 for data sets with a large number of superpixels, 0.2 for
data sets with a moderate number of superpixels, and 0.3 for
data sets with very few superpixels. Consequently, the number
of superpixels is small. Thus, the number of nearest neighbors
K is set to 10 for IP and SA data sets, and 4 for the other
three data sets.

We then evaluate the impact of dimensionality of the
reduced feature, which is denoted as l, and several experiments
are performed. In these experiments, K is set according to
the previously determined values, and we fix η = 1. The
subspace dimension l is varied from 5 to 95 with an interval
of 10, and the corresponding overall classification accuracies

Fig. 6. The OAs with different reduced feature dimensions in Indian Pines,
University of Pavia, Salinas, WHU-Hi-LongKou, and WHU-Hi-HanChuan.

Fig. 7. The OAs with different number of superpixels in Indian Pines,
University of Pavia, Salinas, WHU-Hi-LongKou, and WHU-Hi-HanChuan.

are evaluated using 20 training samples per class with SVM.
The experimental results are illustrated in Fig. 6, and

several insights can be observed. For example, concerning the
dimensionality l, the best OA of 92.94% is attained at l = 35
for IP. Conversely, the worst OA of 72.61% is noted at l = 5.
Comparable patterns are observed for PU, with OA ranging
from 88.01% to 93.11%, and for SA, where OA fluctuates
between 89.09% and 99.03%.

It is apparent that when l = 5, the classification accu-
racies are consistently low on all data sets, which aligns
with common intuition. A limited number of features hinders
the capacity to convey adequate discriminative information.
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Nevertheless, with increasing values of l, the OAs exhibit
a steady improvement. Eventually, a point is reached where
the growth of OAs becomes marginal, suggesting that the
available discriminative information is already effectively uti-
lized. Further increasing l would escalate the complexity and
computational demands of the classifier without substantial
performance enhancements.

Finally, we conduct several experiments to analyze the
impact of the number of superpixels, which is denoted by
N . In these experiments, the balancing weight η is fixed to
1, and the dimensionality l is set to 30. Based on the results
from the previous experiments, we set K = ⌊N × 0.3⌋ when
N < 10, and K = ⌊N × 0.2⌋ when 10 ≤ N < 50, and
K = ⌊N × 0.1⌋ when N ≥ 50, where ⌊·⌋ denotes the floor
function. we evaluate the corresponding overall classification
accuracies using 30 training samples per class with SVM as
N ranges in [1, 5, 10, 20, 50, 100, 150, 200, 300].

The experimental results are shown in Fig. 7. From the
results, it can be observed that the classification accuracies
first increase and then decrease as N increases. However, the
number of superpixels has varying effects on different data
sets. For instance, when N = 100, the OAs are highest on
the IP and SA data sets. In contrast, the best OAs on PU and
LK data sets are achieved when N = 20, while on the HC
data set, the optimal OA occurs when N = 50, though the
accuracy remains close to that obtained when N = 20.

D. Comparison with other FE techniques

We select Tr = 5, 10, 20, 30 samples from each class
for training the SVM, with 5 samples from each class
for validation, and the remaining samples are used for
testing. For classes with an insufficient number of samples,
we select a maximum of half of the total samples from
them. Specifically, the SVM uses the Radius Basis Function
(RBF) kernel, and the optimal γ in RBF is determined
through cross-validation, with values searched from
[0.01, 0.1, 1, 5, 10, 15, 20, 30, 40, 50, 100, 200, 300, 400, 500].
Based on the experimental results in Section III.C, the number
of superpixels N is set to 100 for both IP and SA data sets,
and set to 20 for PU, LK, and HC data sets. In RSuperPCA,
the number of nearest spatial neighbors is set to 15 , as
recommended by [39]. In CSPCA, the number of nearest
neighbors in Eq.(3) is set to 10 for IP and SA, and 4 for PU
and LK, and 6 for HC, and the balance weight η = 1 for all
the data sets.

The average OA, AA, and Kappa of all algorithms on
five public data sets are reported in TABLE II when the
dimensionality of the subspace is set to 30. It should be noted
that PCA is further applied to the features obtained by TWDR,
ULDA, and BAMS, for their dimensionalities are larger than
30. The dimensionality of the feature obtained by SuperPCA-
DA is equal to the dimensionality of the raw feature. To clearly
show the best result on each data set, we highlight them in
bold. From the experimental results, several conclusions can
be observed as follows.

1. The performance of CSPCA outperforms SuperPCA in
all tested scenarios, implying that the new objective function

proposed in Eq.(6) effectively addresses the intra-class dif-
ference problem caused by the SuperPCA. To validate our
findings, we choose a random split from IP data set and
visually present the classification results in Fig. 8. When
comparing Fig. 8h with Fig. 8n, it is evident that CSPCA
significantly improves the classification accuracy of samples
in Soybean-mintill. Specifically, a blue box highlights a region
where some samples are misclassified. This is primarily due to
SuperPCA finding the subspace based solely on the samples
within the superpixel, leading to the distribution of samples
in subspace overlaps with samples from other categories.
By considering the relationship between superpixels, CSPCA
achieves a tighter distribution of samples from the same
category, resulting in an improvement in Fig. 8n. We also
provide extra experiments results using random splits from
PU, SA, LK, and HC data sets in the Supplementary Material
to further observe the visual performances of the compared
methods.

2. Compared to other spatial-spectral FE algorithms,
CSPCA demonstrates superior classification accuracies in
most cases. Several key observations can be drawn from the
results. Firstly, RSuperPCA achieves better performance on
SA when number of training samples is 5. This improvement
can be attributed to the transmission of label information be-
tween superpixels during the reconstruction operation, which
is useful for the samples within superpixels lacking labeled
data. Secondly, the BAMS outperforms CSPCA in several
cases under the same setting due to its multiscale determi-
nation scheme, and the proposed CSPCA only chooses one
superpixel segmentation result to extract the spatial-spectral
feature. Thirdly, it is surprising that the CSuperPCA, which
merges global features directly with local features obtained
from SuperPCA, demonstrates competitive performance in the
experiments. We imply that CSPCA performs worse than
RSuperPCA, and BAMS in this case because the number of
samples in SA is large, and the number of superpixels is
also significant. When the training samples are very limited,
insufficient training information is fed into SVM, leading to
suboptimal performances for CSPCA. The experiments high-
light the utility of reconstruction and concatenation operations
in HSI tasks, which can be integrated into CSPCA to further
enhance its performance.

3. The performances of spectral FE algorithms are notably
surpassed by spatial-spectral approaches. Among the spectral
FE algorithms, manifold-based methods such as LRCRP, LPP,
and TWDR, always have superior classification accuracies.
This can be attributed to the capability of the manifold-based
FE algorithms to preserve the local structure of the data in
the subspace, as opposed to traditional FE algorithms like
PCA, which focus on capturing the global information of
the data in the subspace. Interestingly, the performances of
raw feature and PCA outperform manifold-based and several
spatial-spectral FE algorithms on SA with 5 training samples
per class. This phenomenon is primarily due to the small
proportion of training samples, meanwhile the number of su-
perpixels is large. With a limited number of training samples,
even if the local data structure is preserved, the classification
boundary might not be accurately delineated. Moreover, the
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TABLE II
CLASSIFICATION PERFORMANCES OF THE 13 METHODS ON INDIAN PINES, UNIVERSITY OF PAVIA, SALINAS, WHU-HI-LONGKOU, AND

WHU-HI-HANCHUAN. THE T.N.S/C REPRESENTS THE NUMBER OF TRAINING SAMPLES FROM EACH CLASS.

data set T.N.s/C metric raw PCA LPP LRCRP TWDR tensor
SSA

Super
PCA

RSuper
PCA

CSuper
PCA

Super
ULDA

Super
PCA-DA BAMS CSPCA

IP

5
OA(%) 44.53 44.72 47.05 49.32 45.03 46.95 63.49 53.23 64.29 68.76 71.09 70.61 71.15
AA(%) 58.16 57.97 61.39 58.64 63.17 62.32 78.11 69.19 78.27 80.29 80.59 80.47 80.66
kappa 0.3864 0.3901 0.4143 0.4287 0.3900 0.4042 0.5869 0.4785 0.5974 0.6433 0.6712 0.6697 0.6722

10
OA(%) 54.99 55.02 56.69 57.79 54.10 62.78 82.67 69.58 83.12 83.15 83.09 82.68 83.24
AA(%) 68.39 67.85 69.01 65.82 68.88 75.12 89.15 80.98 89.65 89.68 89.76 88.82 89.51
kappa 0.5072 0.5013 0.5181 0.5251 0.4901 0.5822 0.8014 0.6593 0.8086 0.8092 0.8100 0.8053 0.8092

20
OA(%) 63.78 62.13 64.96 64.68 66.33 73.34 92.39 80.88 92.33 92.11 91.38 90.21 92.39
AA(%) 74.97 73.19 74.02 73.23 76.12 83.23 95.01 88.69 94.98 94.89 94.43 93.44 94.99
kappa 0.5942 0.5769 0.6113 0.6034 0.6229 0.6992 0.9116 0.7825 0.9138 0.9090 0.9029 0.8901 0.9142

30
OA(%) 68.75 66.23 69.69 69.08 73.37 80.01 94.45 85.570 94.71 93.22 93.89 93.15 94.55
AA(%) 78.44 76.40 78.71 79.69 81.18 87.64 96.28 91.23 96.25 96.19 96.09 95.55 96.38
kappa 0.6489 0.6205 0.6592 0.6517 0.6988 0.7718 0.9312 0.8359 0.9388 0.9345 0.9309 0.9248 0.9379

PU

5
OA(%) 64.50 65.19 68.12 67.07 65.12 65.66 68.27 66.39 76.69 72.69 65.19 74.71 77.21
AA(%) 67.49 68.19 69.87 49.11 72.75 72.21 72.12 73.23 80.29 77.37 68.34 81.59 77.29
kappa 0.5413 0.5522 0.5765 0.3279 0.5601 0.5632 0.5958 0.5698 0.7011 0.6523 0.5533 0.6812 0.7088

10
OA(%) 70.05 69.12 69.38 71.04 73.12 77.35 83.14 81.29 89.13 84.00 70.25 84.09 89.89
AA(%) 75.57 75.61 75.89 75.11 75.42 82.34 85.22 85.51 90.13 87.39 75.89 89.18 89.33
kappa 0.6174 0.6152 0.6151 0.6249 0.6441 0.7108 0.7842 0.7579 0.8539 0.7938 0.6211 0.7975 0.8652

20
OA(%) 74.52 75.17 74.51 75.79 74.65 85.62 87.04 86.70 90.95 87.48 75.28 90.65 92.40
AA(%) 78.88 79.68 79.32 79.50 80.13 89.46 89.53 89.26 91.28 89.83 79.96 93.88 93.00
kappa 0.6863 0.6805 0.6700 0.6789 0.6906 0.8005 0.8370 0.8161 0.8882 0.8382 0.6960 0.8924 0.8982

30
OA(%) 76.04 74.22 75.96 77.09 75.50 87.34 90.39 86.20 93.30 90.36 77.43 92.71 93.83
AA(%) 81.19 80.90 81.13 80.37 79.85 91.63 91.83 90.93 93.69 91.55 81.71 95.01 93.84
kappa 0.6847 0.6900 0.6956 0.6960 0.6807 0.8451 0.8740 0.8391 0.9054 0.8742 0.7057 0.9094 0.9178

SA

5
OA(%) 81.30 81.35 79.20 78.17 78.15 81.91 76.38 79.87 78.43 82.02 84.05 88.15 78.36
AA(%) 84.95 87.78 86.48 85.84 86.15 86.61 81.17 83.91 84.10 85.07 89.42 91.22 82.67
kappa 0.7884 0.7968 0.7717 0.7571 0.7697 0.7898 0.7463 0.7916 0.7657 0.8081 0.8257 0.8870 0.7550

10
OA(%) 85.01 84.01 82.96 84.83 84.88 86.63 92.68 92.87 93.17 92.65 91.15 91.65 94.09
AA(%) 88.81 88.99 89.12 89.81 90.04 91.16 93.84 94.07 94.15 93.71 93.80 92.89 94.72
kappa 0.8356 0.8298 0.8132 0.8383 0.8423 0.8530 0.9149 0.9354 0.9104 0.9339 0.9019 0.9221 0.9359

20
OA(%) 87.46 87.41 87.77 86.44 86.87 89.88 97.14 98.24 97.28 97.89 95.13 98.15 98.26
OA(%) 92.56 92.35 92.03 92.60 93.60 92.68 97.88 98.36 97.60 96.98 95.15 98.47 98.68
kappa 0.8637 0.8515 0.8632 0.8496 0.8693 0.8844 0.9590 0.9820 0.9730 0.9745 0.9710 0.9630 0.9842

20
OA(%) 88.29 87.25 89.39 87.93 90.46 91.46 97.17 98.64 97.18 98.52 97.51 99.09 99.24
AA(%) 93.22 92.19 92.96 93.22 94.40 95.21 98.40 98.26 98.42 97.61 97.48 97.55 98.99
kappa 0.8673 0.8658 0.8780 0.8729 0.8817 0.8976 0.9825 0.9657 0.9719 0.9599 0.9744 0.9866 0.9902

LK

5
OA(%) 78.81 79.78 78.90 69.87 78.58 83.04 78.19 84.09 83.51 75.56 80.30 85.56 84.39
AA(%) 67.88 68.31 66.92 60.11 66.07 70.42 81.13 75.70 84.10 65.16 69.64 87.13 84.57
kappa 0.7368 0.7379 0.7333 0.6090 0.7083 0.7821 0.7301 0.8062 0.8058 0.6870 0.7501 0.8311 0.8307

10
OA(%) 85.61 86.01 86.21 70.65 85.65 88.07 87.80 89.89 90.33 82.74 87.77 91.86 92.44
AA(%) 81.43 80.72 83.73 65.68 81.48 81.72 88.80 87.49 90.04 71.91 84.10 91.07 92.14
kappa 0.8169 0.8139 0.8154 0.6478 0.8296 0.8459 0.8628 0.8615 0.8762 0.7745 0.8564 0.9101 0.9123

20
OA(%) 89.22 89.65 91.34 78.74 89.02 89.82 92.93 92.65 93.50 87.37 91.93 94.09 94.68
AA(%) 86.81 87.90 89.85 75.30 86.85 88.75 91.88 89.96 93.49 78.65 92.35 92.30 93.48
kappa 0.8604 0.8631 0.8850 0.7362 0.8726 0.8830 0.9118 0.9146 0.9183 0.8307 0.9102 0.9285 0.9344

30
OA(%) 90.83 90.83 91.96 81.11 92.20 92.43 93.62 94.08 92.64 88.43 94.53 94.97 96.05
AA(%) 89.59 89.50 91.87 77.86 91.33 91.26 94.37 92.97 94.63 83.73 94.66 94.51 95.47
kappa 0.8857 0.8714 0.9025 0.7580 0.8961 0.8980 0.9182 0.9082 0.9155 0.8571 0.9144 0.9468 0.9508

HC

5
OA(%) 58.62 57.88 57.79 52.30 57.08 57.79 61.92 61.51 62.68 62.28 59.76 58.18 64.22
AA(%) 49.41 48.87 48.61 42.90 48.95 47.30 64.59 53.18 63.06 59.95 52.92 56.01 63.57
kappa 0.5266 0.5321 0.5267 0.4685 0.5184 0.5005 0.5730 0.5620 0.5934 0.5755 0.5376 0.5704 0.6008

10
OA(%) 63.30 64.20 65.22 61.05 69.04 67.49 73.78 70.67 74.97 69.20 67.07 70.07 75.69
AA(%) 57.78 56.16 57.12 52.08 61.74 73.89 61.87 63.86 74.59 72.45 63.35 71.78 76.61
kappa 0.5915 0.6100 0.5922 0.5645 0.6467 0.7011 0.6412 0.6693 0.7111 0.7125 0.6293 0.6521 0.7179

20
OA(%) 71.41 70.44 69.79 70.73 73.90 77.42 80.41 77.23 82.85 81.15 79.27 79.92 83.55
AA(%) 64.77 64.06 62.94 63.82 70.25 72.76 80.63 72.10 80.76 81.40 78.36 80.99 83.28
kappa 0.6701 0.6574 0.6559 0.6679 0.6971 0.7316 0.7642 0.7362 0.7969 0.7647 0.7636 0.7700 0.8079

30
OA(%) 72.74 73.28 74.02 73.62 78.97 81.51 82.62 80.51 86.11 81.50 80.90 84.40 85.88
AA(%) 67.90 67.83 68.19 67.16 76.87 83.40 77.27 76.26 85.40 83.68 78.60 83.04 85.97
kappa 0.7034 0.6797 0.6976 0.6960 0.7832 0.7892 0.7986 0.8427 0.8367 0.8165 0.7959 0.8344 0.8459

large number of superpixels results in only a few superpixels
containing labeled samples. Consequently, raw features and
PCA, which do not compromise the global information of the
data, yield superior performance in such scenarios.

V. DISCUSSION

The main contribution of this work is the development
of the CSPCA algorithm, which effectively addresses the

dispersion problem observed in SuperPCA. The dispersion
problem refers to the phenomenon where samples from the
same category but located in different superpixels are scattered
far from each other in the feature space, as shown in Fig.
2. This issue is particularly problematic for classification
tasks because it increases intra-class variance, leading to more
complex decision boundaries and higher risks of overfitting.
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TABLE III
CLASSIFICATION ACCURACIES FOR EACH CLASS USING 20 TRAINING SAMPLES ON INDIAN PINES.

raw PCA LPP LRCRP TWDR tensor
SSA

Super
PCA

RSuper
PCA

CSuper
PCA

Super
ULDA

Super
PCA-DA BAMS CSPCA

c1 89.23 87.31 92.31 94.23 84.62 79.62 100.00 100.00 100.00 100.00 100.00 95.38 100.00
c2 45.68 39.67 41.97 53.09 44.67 53.15 85.09 85.09 84.61 83.76 86.61 79.34 85.20
c3 58.74 59.81 56.67 67.32 60.86 52.42 90.99 90.99 91.46 90.38 91.49 88.47 90.69
c4 73.00 70.83 65.44 78.11 63.13 86.96 93.69 93.69 94.52 94.38 93.18 89.95 94.01
c5 83.78 83.37 92.87 87.04 74.73 75.72 93.28 93.28 93.17 94.97 92.94 91.43 93.26
c6 88.31 87.04 92.39 91.41 82.54 75.00 98.27 98.27 98.56 97.87 98.08 99.59 97.96
c7 92.86 92.14 78.57 95.71 85.71 89.29 97.14 97.14 97.14 97.14 96.43 97.14 97.14
c8 87.42 86.35 88.86 96.51 91.48 91.55 99.61 99.61 99.61 99.67 99.61 99.19 99.61
c9 80.00 71.00 60.00 100.00 70.00 84.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
c10 63.31 62.71 74.26 73.49 64.71 60.97 87.71 87.71 87.63 87.39 87.46 88.28 87.73
c11 51.00 50.26 53.51 64.41 53.59 56.10 92.64 92.64 93.47 90.71 87.49 88.30 93.31
c12 61.41 58.94 64.40 72.25 70.33 68.94 92.58 92.58 92.57 93.63 92.15 93.96 92.53
c13 96.70 91.43 94.59 98.59 92.43 94.59 99.46 99.46 99.46 99.46 99.46 99.46 99.46
c14 76.68 74.79 76.14 87.72 79.20 84.10 95.71 95.71 95.73 98.10 98.35 95.90 95.73
c15 57.10 56.42 54.92 77.49 64.21 75.66 95.93 95.93 95.60 96.07 93.74 95.57 95.63
c16 95.34 95.89 97.26 97.12 93.15 93.84 98.49 98.49 98.36 97.67 97.67 97.81 98.49
OA 63.81 62.16 65.36 73.56 64.71 66.51 92.45 79.20 92.63 92.13 91.59 90.40 92.57
AA 75.04 73.25 74.01 83.41 73.46 76.37 95.04 87.84 95.12 95.08 94.67 93.74 95.05

kappa 0.5945 0.5764 0.6120 0.7011 0.6036 0.6231 0.9136 0.7650 0.9157 0.9101 0.9042 0.8907 0.9149

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)
Fig. 8. Classification maps are from different methods on the Indian Pines data set. (a) The superpixels result by ERS. (b) Raw feature(67.89%). (c)
PCA(65.36%). (d) LPP(66.12%). (e) LRCRP(65.11%). (f) tensorSSA(76.42%). (g) TWDR(69.70). (h) SuperPCA(94.80%). (i) RSuperPCA(83.34%). (j)
GSuperPCA(94.91%). (k) SuperULDA (93.50%). (l) SuperPCA-DA (92.16%). (m) BAMS(90.33%). (n) CSPCA (95.02%).

Prior studies [29] [30] have demonstrated that reducing the
intra-class variance can improve classification performance.
In contrast, PCA does not exhibit this issue. This raises a
common question: why does SuperPCA still outperform PCA
in HSI classification tasks? To explore this, we use t-SNE to
visualize the distribution of all the samples in the IP data set,
as shown in Fig. 9.

It can be observed that the raw features and PCA-extracted
features of different classes are not well-separated, while Su-
perPCA and CSPCA produce more distinct class separations,
despite the presence of the dispersion problem in SuperPCA.
When applying SVM for classification, kernel methods can
alleviate the dispersion issue, but struggle with classes that
exhibit strong overlap. CSPCA resolves this issue more ef-
fectively by reducing intra-class dispersion while maintaining
inter-class separability. This helps explain why CSPCA per-
forms best among the three methods, and why SuperPCA still

outperforms PCA in these tasks.
To delve deeper into the reason, PCA searches for a single

subspace P to extract features, which often makes it difficult or
impossible to find a subspace where all features are separable.
On the other hand, SuperPCA and CSPCA identify a set
of subspaces tailored for each group of features, resulting
in better separability of the extracted features. Furthermore,
this work demonstrates that reducing intra-class dispersion can
benefit the HSI classification tasks.

VI. CONCLUSION

In this paper, we have identified the dispersion problem
in SuperPCA and introduced CSPCA, a new FE technique,
to address this problem. The core concept of CSPCA is
to incorporate the relations between samples from different
superpixels when finding the projection for each superpixel.
We have formulated a novel objective function combining the
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(a) (b) (c) (d)
Fig. 9. The distributions of (a) raw features, (b) features extracted by PCA, (c) features extracted by SuperPCA, and (d) features extracted by CSPCA in IP
data set are shown. Different colors represent different categories in these figures.

global information between superpixels and local information
within each superpixel. Experiments on five HSI data sets have
validated the effectiveness of the proposed method.

However, CSPCA underperforms compared to several state-
of-the-art FE methods in certain scenarios. Furthermore, de-
termining the optimal number of superpixels, which can
affect its performance, is also a limitation of CSPCA. In
future work, we aim to enhance CSPCA’s performance. First,
reconstructing each sample from its neighbors, a technique
shown to effectively reduce noise in HSI classification could
serve as a preprocessing step to improve CSPCA. Additionally,
incorporating multilevel superpixel segmentation [25] into the
CSPCA may further enhance its performance. Moreover, we
plan to explore a method for automatically determining the
number of superpixels, which could optimize the superpixel
selection process and improve the overall effectiveness of
CSPCA.
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