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Abstract—This paper presents a method to improve the usabil-
ity of lake ice cover (LIC) maps generated from Moderate Res-
olution Imaging Spectroradiometer (MODIS) top-of-atmosphere
reflectance data by providing estimates of aleatoric and epistemic
uncertainty. We used a Random Forest (RF) classifier, which
has been shown to have superior performance in classifying
lake ice, open water, and clouds, to generate daily LIC maps
with inherent (aleatoric) and model (epistemic) uncertainties. RF
allows for the learning of different hypotheses (trees), producing
diverse predictions that can be utilized to quantify aleatoric
and epistemic uncertainty. We use a decomposition of Shannon
entropy to quantify these uncertainties and apply pixel-based
uncertainty estimation. Our results show that using uncertainty
values to reject the classification of uncertain pixels significantly
improves recall and precision. The method presented herein is
under consideration for integration into the processing chain
implemented for the production of daily LIC maps as part of
the European Space Agency’s Climate Change Initiative (CCI+)
Lakes project.

Index Terms—Random Forest, Lake Ice, Uncertainty, Remote
Sensing.

I. INTRODUCTION

ACcording to the Global Climate Observing System
(GCOS), lake ice cover (LIC) is created as a thematic

product of lakes as an Essential Climate Variable (ECV)
required for climate monitoring [1]. It is also a significant
product of interest for improving numerical weather fore-
casting in northern high latitudes [2]. In recent years, a
considerable number of studies have been conducted on the use
of satellite-derived LIC and ice phenology (dates associated
with freeze-up and breakup, and ice cover duration) records
for documenting the response of northern lakes as well as
lakes on the Tibetan Plateau to climate variability [3] and
change [4, 5, 6, 7]. Observations from both active microwave
and passive (optical and microwave) sensors have been used
to map and monitor LIC (e.g., [8]). While synthetic aperture
radar (SAR) sensors provide all-weather and day/night acquisi-
tions, optical sensors collecting data in the visible to thermal
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infrared parts of the electromagnetic spectrum are the main
instruments for environmental monitoring, especially in the
context of climate change studies, which require extensive time
series with global coverage. The Moderate Resolution Imaging
Spectroradiometer (MODIS) aboard both NASA’s Terra and
Aqua satellite missions is especially relevant for this purpose,
as it has been providing more than twice daily acquisitions at
northern latitudes for over 20 years.

Together with the availability of a longer time series of
MODIS data, there has also been an increase in the application
of machine learning (ML) for lake ice classification from
optical imagery [1, 2, 9, 10]. This shift of attention toward
the use of ML techniques is primarily supported by the
better performance in accuracy metrics compared to previ-
ous threshold-based approaches for lake ice mapping [10].
While meaningful uncertainties can enhance the explainibility
of ML predictions, there is generally a gap in providing
uncertainties from ML-generated outputs. Such is the case
for the LIC thematic product generated for the European
Space Agency Climate Change Initiative (ESA CCI) Lakes
project (https://climate.esa.int/en/projects/lakes/) that is deliv-
ering multi-decadal satellite-based products (lake surface water
temperature, ice cover, water-leaving reflectance, water level,
and extent) on a common ca. 1-km grid over more than 2000
lakes for climate monitoring and to serve the climate modeling
community [11]. The LIC product delivered to the ESA CCI
Lakes project currently only contains information on overall
classification accuracies obtained with a random forest (RF)
classifier for its main categories (open water, ice cover, and
cloud cover). Pixel-based quantification of uncertainty is much
needed for users of the product.

Recently, uncertainty estimation has been found an essential
add-on in different ML research fields such as computer
vision, and natural language processing (NLP), as well as
classic machine learning problems such as regression and
classification [12]. In satellite remote sensing, there is often
an insufficient emphasis on the quantification of uncertainties
associated with the derived products or maps. While these
uncertainties are significant for the reliability and application
of such products, there is limited literature that addresses this
challenge. Notably, there are a few pioneering works in ice
mapping using SAR that focus on uncertainty decomposition
[13] as well as uncertainty estimation using probabilistic ap-
proaches [14]. This is particularly true when an ML approach
is applied for classifying the images, whereby only basic
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accuracy metrics are calculated (e.g., overall classification
accuracy, errors of omission, and commission) and not un-
certainties. This includes the significance of differentiating
two types of uncertainties often referred to as aleatoric and
epistemic uncertainty. While aleatoric uncertainty refers to
the randomness in the data-generating process, epistemic un-
certainty is caused by the learner’s lack of knowledge about
the best prediction [12]. Thus, the latter could in principle be
reduced through further information (e.g., more training data),
whereas the former is irreducible and implies an unavoidable
prediction error. The primary motivation for decomposing
uncertainty into epistemic and aleatoric components is to
enhance our understanding of model performance and the
inherent randomness within the data. This, in turn, facilitates
the planning for the fusion of various models, aiming to create
a reliable lake ice map product.

In this paper, we present an approach to measure the
aleatoric and epistemic uncertainties in the prediction of LIC
from a random forest classifier applied to optical remote
sensing observations. RF is chosen not only due to its effi-
ciency and predictive performance in the same classification
problem as indicated by previous research [10], but also for
its ability to measure and quantify predictive uncertainty. As
will be explained in more detail later on, this is essentially
due to the added information that is provided by an entire
collection of predictions produced an ensemble technique such
as RF, compared to just a single prediction obtained from
a conventional classifier. Roughly speaking, the idea is that
epistemic uncertainty should be reflected by the agreement or
disagreement of the ensemble members: If all of them agree
on more or less the same prediction, then this is a sign of low
epistemic uncertainty. On the other side, a strong disagreement
between the predictions can be taken as an indicator of high
epistemic uncertainty. Similarly, information about aleatoric
uncertainty can be extracted from the collection of predictions.
This paper describes the methodology for calculating uncer-
tainties and outlines a strategy for generating lake ice maps for
each observation. Using optical sensors with high revisit rates
provides observations at a location with overlapping swaths.
The lake ice map product can result from the fusion of multiple
maps and the fusion can be done at the data or model level
with aleatoric or epistemic uncertainties as the main criteria.

The paper is structured as follows: We begin with an
overview of the study area and datasets employed in our
research. We then introduce the methodology for the classi-
fication of pixels and the quantification of both aleatoric and
epistemic uncertainties for such classifications. The subsequent
sections analyze the results at both the pixel and window
patch levels, followed by rejection criteria analysis. The paper
concludes with a discussion and summary of our findings.

II. DATA AND STUDY AREA

MODIS Terra Level 1B calibrated radiances product
(MOD02), Collection 6.1 (top-of-atmosphere reflectance) was
utilized for mapping lake ice, water, and cloud and uncertainty.
MOD02QKM bands 1-2 with a 250 m pixel spacing and
MOD02HKM bands 3-7 with a 500 m pixel spacing were

Fig. 1. False color RGB composite (R: band 2, G: band 2, B: band 1) of
MODIS Terra on 2014/01/14 covering our study area, Lake Erie.

used. We applied methods proposed by Trishchenko et al. [15]
and Wu et al. [10] for resampling to 250 m pixels and for the
optimal combination of bands, respectively.

We selected three winters (2014, 2016, and 2018) from Lake
Erie, one of the Laurentian Great Lakes of North America (Fig.
1), for analysis. Lake Erie covers an area of 25,655 km2, with
an average depth of 19 m. Lake Erie is an exception to the
other four Great Lakes (Huron, Michigan, Ontario, Superior)
as it sometimes completely freezes over during winter due
to its shallow depth. Winter 2014 is one of those instances
whereby the Great Lakes experienced their second-largest ice
coverage since 1973, due to persistent low air temperatures
(NOAA/GLERL NOAA Great Lakes Environmental Research
Laboratory—Historical Ice Cover. Available online: https :
//www.glerl.noaa.gov/data/ice/historical). MODIS im-
ages were filtered to select the ones with less than 50% cloud
coverage for further uncertainty analysis and to minimize the
imbalanced impact of the number of pixels in each class.
From January to April of 20141, 20162, and 2018 3, 12, 10,
and 19 images were selected, respectively. To train, validate,
and test the RF model, extensive data labels are collected to
maintain spatial and temporal independence. Additional inde-
pendent labels collected in the study area are for uncertainty
rejection analysis. The information on data labels is provided
in Subsection IV-A.

III. METHODOLOGY

In this section, we briefly recall the machine learning
and uncertainty quantification methodology we build on. We
describe the formalization of the predictive modeling task as a
problem of supervised learning, its instantiation with random
forests as an ensemble-based learning algorithm, and the
quantification of uncertainty in terms of appropriate numerical
measures. Our approach is largely based on the work by
Shaker and Hüllermeier [16].

12014/01/03, 2014/01/09, 2014/01/14, 2014/01/29, 2014/02/12, 2014/03/07,
2014/03/13, 2014/03/30, 2014/03/18, 2014/04/06, 2014/04/12, and 2014/04/17

22016/01/19, 2016/01/24, 2016/01/28, 2016/02/05, 2016/03/17, 2016/04/27,
2016/01/24, 2016/02/01, 2016/02/06, and 2016/04/17

32018/01/04, 2018/01/13, 2018/01/28, 2018/02/26, 2018/03/19, 2018/01/05,
2018/01/19, 2018/02/12, 2018/03/02, 2018/03/25, 2018/01/06, 2018/01/20,
2018/02/13, 2018/03/15, 2018/04/23, 2018/01/09, 2018/01/26, 2018/02/14,
and 2018/03/18
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A. Machine Learning for Predictive Modeling

Consider a standard supervised learning (classification) set-
ting, in which a learner is given access to a set of training
data

D =
{
(xi, yi)

}N

i=1
⊂ X × Y ,

where X is an instance space and Y a finite set of K possible
class labels that can be associated with an instance. In our
study, the set of class labels is given by

Y =
{
ywater, yice, ycloud

}
,

and each instance x ∈ X is a feature vector representing a
pixel (cf. Section II). Assuming that the training examples
are generated (independently) according to an underlying joint
probability distribution P on X ×Y , i.e., that each (xi,yi) is
a realization of (X,Y ) ∼ P , the task of predictive modeling
is to learn the marginal P (Y |X). More specifically, we seek
a mapping

h : X −→ P(Y)

that associates with each x ∈ X a predicted probability
P̂ (Y |X = x), which is an accurate approximation of the
true marginal — the quality of the approximation is specified
in terms of a so-called loss function. If Y is finite, then
P̂ (Y |X = x) can be represented as a probability vector
h(x) = (p1, . . . , pK), where pk is the probability predicted
by h for the kth class label.

In addition to the training data D, the learning algorithm
is given a hypothesis space H, from which a predictor (hy-
pothesis) h can be chosen. In our case, H consists of all
predictors X −→ P(Y) that can be represented by a decision
tree. The learner’s selection of a specific predictor h is guided
by an appropriate induction principle. The construction of
decision trees, for example, is guided by the idea of uncertainty
(entropy) reduction.

B. Uncertainty Quantification

Suppose a predictor h has been trained. How can we
quantify the uncertainty of a prediction h(x) for a specific
instance x? The goal of uncertainty quantification is to provide
numerical measures of the overall (total) uncertainty as well
as the aleatoric and epistemic uncertainty of the prediction.

As a prediction h(x) in the form of a probability distribution
on Y can only capture aleatoric uncertainty, the representation
of epistemic uncertainty requires the learner to go beyond the
induction of a single predictor h. In one way or the other,
it needs to represent its uncertainty about (the predictions
produced by) h. In the Bayesian approach to machine learning,
this is accomplished by a (second-order) probability distribu-
tion Q on the hypothesis space H. Thus, instead of inducing
a single predictor, a Bayesian learner maintains a probability
distribution over the entire hypothesis space, and learning
essentially consists of replacing a prior on this space by a
posterior distribution. The more concentrated this distribution
becomes, the less (epistemically) uncertain the learner is.

On the basis of the learner’s “belief” Q, uncertainty mea-
sures can be derived in various ways. The most common
approach in machine learning relies on Shannon entropy as

an established measure of (total) uncertainty, and leverages
the information-theoretic result that entropy can be expressed
as the sum of conditional entropy and mutual information [17].
Thus, the total uncertainty of the prediction h(x) is the entropy

TU(x) = H[ p̄ ] = −
K∑

k=1

p̄k · log2 p̄k ,

where H denotes Shannon entropy and the posterior predictive
distribution p̄ = (p̄1, . . . , p̄K) is obtained through (Bayesian)
model averaging, i.e., averaging the probability predictions
p = h(x) made by the individual models h ∈ H, weighted
by their posterior probability:

p̄ =

∫
H
h(x) dQ(h) .

As fixing a single model h means committing to a sin-
gle predictive distribution and hence removing all epistemic
uncertainty, the entropy of such a distribution is a suitable
measure of aleatoric uncertainty. The conditional entropy is
the expectation of this measure with regard to Q:

AU(x) =

∫
H
H
[
h(x)

]
dQ(h) .

Epistemic uncertainty can then be computed as the difference
EU(x) = TU(x)−AU(x). Thus defined, it coincides with the
mutual information of the predictor h and outcome y (both
considered as random variables). Intuitively, this appears to
be plausible: epistemic uncertainty represents the (expected)
reduction of uncertainty that is achieved by revealing the
(uncertain) predictor h [12].

For complex model classes, the above approach is com-
putationally intractable, due to the need for integrating over
H. In practice, ensemble methods are commonly used as an
approximation [18]. Such methods train a set of M different
predictors h1, . . . , hM ∈ H, which are considered as a
representative sample from the true distribution Q. In our case,
we instantiate this approach with decision trees as the model
class, i.e., each ensemble members hm is a decision tree.

Given a trained ensemble, the posterior predictive distri-
bution as well as the uncertainty measures can be obtained
through arithmetic averaging instead of integration: For a
query instance x, let pm = (p1,m, . . . , pK,m) denote the
probability distribution predicted for x by the mth ensemble
member hm. The posterior predictive distribution is then given
by p̄ = (p̄1, . . . , p̄K), where

p̄k =
1

M

M∑
m=1

pk,m . (1)

Moreover, total, aleatoric, and epistemic uncertainty are given
as follows:

TU(x) = H
[
p̄
]

AU(x) =
1

M

M∑
m=1

H
[
pm

]
EU(x) = TU(x)− AU(x)
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Fig. 2. General flowchart of data processing steps from extracting TOA bands of MODIS based on lake coverage to RF and uncertainty maps

C. Implementation with Random Forests

The approach outlined above has been realized for the
random forest (RF) classifier [19] as an ensemble method and
implemented in Python. A random forest is comprised of a
collection of decision trees [20]. The primary objective of a
decision tree is to predict the target variable by learning deci-
sion rules derived from the data features. In this context, each
inner node within a tree is associated with a specific attribute
or feature of the training data. The branches emanating from
the node delineate potential outcomes or values of that feature,
guiding the traversal to subsequent nodes until a final decision
is ascertained at the terminal nodes, commonly referred to as
leave nodes. In the classification setting, to derive the predicted
probability distribution, one can utilize the relative frequency
of the samples of each class within the leaf node.

To introduce diversity in the ensemble, RF trains each de-
cision tree on a bootstrap, which involves randomly selecting
data points from the original dataset with replacement [21].
Additional variability is injected into the training of decision
trees by randomly choosing a subset of features as candidates
for defining a split at an inner node of the tree, thereby ensur-
ing greater diversity among the trees. Finally, the output of an
RF is an aggregation of the outputs from the set of grown trees.
In the classification setting, this aggregation typically involves
computing the average (1) over the probability distributions
from the individual trees, and this is the approach adopted in
the present study.

IV. RESULTS

A. Experimental Protocol

RF hyperparameters to be defined are the number of
variables and the number of trees that are set to develop
independent classifiers. In our RF classifier, MODIS TOA
reflectance bands correspond to the predictor variables. The
range of suitable hyperparameter values is provided by [10]
based on analyzing gained accuracy. The RF model was
trained and tested on an extensive, yet independent dataset
collected from MODIS on several lakes worldwide above 40

degrees latitude, during the years 2010 to 2020 with 1,048,575
labels. This independent dataset ensures that the model is
generalized and not biased toward specific test lakes, such
as Lake Erie. Before fine-tuning the hyperparameters, 20%
of the data, equivalent to 209,715 data points, was set aside.
Then, a 70%-30% train-validation split was applied to build
the RF classifier using the aforementioned parameters. The
hyperparameter values were sampled and tested to find the
optimal settings, resulting in maximum classification accuracy.
Ultimately, the hyperparameters were set to a maximum depth
of 30, a maximum of 3 features, and 1000 estimators. Fig.
2 shows the data processing chain to map lake ice and
uncertainties using TOA observation from MODIS sensor. We
only used scenes with lake coverage to avoid mosaicing and
to simplify the pre-processing steps.

To evaluate uncertainty, we created a new set of labels in
Lake Erie and used this dataset for accuracy rejection anal-
ysis. Separating the datasets for this experiment helps ensure
robustness by evaluating the model on new data, providing a
more accurate assessment of its generalization performance.

B. RF maps and Uncertainty analysis

he RF model achieved a high accuracy score of 97% on
the test set, which comprised 209,715 labels that were kept
unseen during the hyperparameter fine-tuning step. The F-
scores for the classification of ice, water, and cloud classes
were 0.94, 0.97, and 0.98, respectively. Total, aleatoric, and
epistemic uncertainty for each pixel was calculated using the
methodology outlined in the previous section. These uncer-
tainties were then mapped in the same coordinate system as
MODIS observations for further visual and statistical analysis.
An example of the produced LIC map and corresponding un-
certainties on 2014/01/03 are presented in Fig. 3. Noteworthy,
as the uncertainty is calculated using entropy, it translates
to the range of uncertainties as the minimum and maximum
of entropy for probability distributions. The range of the
uncertainty in RF is then defined as [0, log2(K)] with K
being the number of classes. Therefore, in our experiments,
the maximum uncertainty is log2(3) = 1.58. The mean and
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Fig. 3. (a) RF LIC map of 2014/01/03, (b) total uncertainty, (c) aleatoric uncertainty, and (d) epistemic uncertainty.

variance of values of uncertainties for each year are reported
in Table I. Among the years of study, average cloud coverage
in selected scenes was at a minimum in the winter of 2014.
This year was marked as a unique winter season when the
lake experienced complete ice coverage, as confirmed by other
remotely sensed observations such as SAR [22, 23], it had the
least average ice coverage compared to other selected years.

Visual inspections of satellite imagery across various dates
reveal how the physical properties of lakes influence pixel
classification. The observed differences in coverage indicate
that assessments based on imbalanced class coverage are
unreliable. For instance, the year with the lowest coverage
exhibited the highest total uncertainty in RF classification.
Noticeable examples are cloud in 2014 and water classes
in 2016 which show the highest uncertainties while having
the least coverage among other classes of the same winter
season. On the other hand, the average epistemic uncertainties
are lower than aleatoric uncertainties, so total uncertainty is
mainly affected by aleatoric uncertainties. Interestingly, visual
inspections of over thirty days show that patterns of both
aleatoric and epistemic uncertainties are similar within a small-
scale area of the lake’s coverage, as can be seen in Fig. 3. The
discrepancies between aleatoric and epistemic uncertainties
become noticeable at smaller scales as explained in the next
Subsection.

C. Neighbourhood analysis

Consistent variances of epistemic uncertainties tell us
that the classification model is not out-performing or miss-
performing in classifying any specific class. In general, these
average uncertainty values cannot infer specificity on class
performance as differences in values are not significant. Fur-
thermore, uncertainties in each pixel reported in Table 1 do
not include any spatial context. To take spatial variability
into account, we studied window-based statistics with a 5
by 5 moving window to analyze how variability in sur-
rounding pixels impacts uncertainties. The histograms of each
class’s pixel counts based on grouping into intervals of 10

were analyzed and it was observed that employing a natural
breaks classification with intervals of 10 and 20 effectively
reduces variance within classes and maximizes variance be-
tween classes. Consequently, for the window-based statistical
analysis of uncertainties within a 5x5 window, three groups
of pixel counts—namely 10, 10-20, and 20-25—have been
selected.

Uncertainties were calculated for three groups (< 10, 10-20,
> 20) of classified ice, water, and cloud pixels within 5 by 5
windows, and their density histograms are plotted in Fig. 4. As
can be seen, the uncertainties of classified ice, water, and cloud
decrease when there is more homogeneity of the same class
within 5 by 5 windows. A similar pattern can be seen in all
classes for aleatoric and epistemic uncertainties, and there is
no obvious difference between uncertainties’ dispersion with
pixel counts with less than 10 or 10 to 20 counts. In other
words, as long as there are less than 20 pixels of the same
class within a 5 by 5 window, the uncertainties are normally
distributed and the mean is much higher than in cases where
more than 20 pixels of the same class are mapped. The high
density of the first bin of histograms in all three classes for
both aleatoric and the epistemic uncertainties with less than
10 counts of the class of interest, can be explained by the
presence of regions where a low number of counts of a specific
class in the center exists and a large number of the same class
of another class is present. For instance, in the case of plot
Fig. 4d, we have a large number of windows with a small
fraction of water pixels surrounded by clouds or ice with more
than 20 pixels and as a result, the first bin with the lowest
total uncertainty values has a high frequency of occurrence.
This highlights the importance of spatial variability, as both
aleatoric and epistemic uncertainties are found to be higher in
windows where a small pixel count of the class of interest is
surrounded by other classes.

D. Accuracy rejection experiment

To assess the effectiveness of uncertainty quantification,
accuracy-rejection curves are plotted. Here, we arrange our
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TABLE I
AVERAGE UNCERTAINTIES CALCULATED FOR EACH CLASSIFIED PIXEL DURING WINTERS OF 2014, 2016, AND 2018 (AVERAGE IS APPLIED TO ALL

PIXELS FOR EACH CLASS IN ALL SELECTED SCENES OF EACH YEAR)

2014

Coverage % Total Uncertainty Epistemic Uncertainty Aleatoric Uncertainty
Mean Variance Mean Variance Mean Variance

Water 61.7 0.38 0.38 0.16 0.19 0.22 0.21
Ice 24.9 0.36 0.38 0.17 0.21 0.18 0.19
Cloud 12.4 0.61 0.49 0.27 0.24 0.33 0.26

2016

Coverage % Total Uncertainty Epistemic Uncertainty Aleatoric Uncertainty
Mean Variance Mean Mean Variance

Water 0.5 0.92 0.42 0.42 0.23 0.5 0.21
Ice 62.6 0.24 0.34 0.11 0.17 0.13 0.17
Cloud 33.4 0.28 0.41 0.13 0.21 0.15 0.21

2018

Coverage % Total Uncertainty Epistemic Uncertainty Aleatoric Uncertainty
Mean Variance Mean Variance Mean Variance

Water 42.6 0.30 0.38 0.17 0.18 0.18 0.20
Ice 35.7 0.37 0.42 0.17 0.21 0.20 0.22
Cloud 20.2 0.39 0.48 0.12 0.22 0.22 0.26

Fig. 4. Density histograms of uncertainty are plotted for selected scenes, categorizing each RF class in the center of a 5 by 5 window based on the total
number of instances of that class within the window. a,b, and c show total, epistemic, and aleatoric uncertainties for the ice class, whereas d,c, and f maps
out uncertainties for the water class, and g,h, and i represent uncertainties for the cloud class in the same order. The peak for pixel counts less than 10 in the
lowest uncertainty bin indicates relatively isolated pixels of a given class surrounded by a majority of another class.

Random Forest predictions by their uncertainty values and
progressively discard the uncertain ones while monitoring the
accuracy of the remaining predictions. The underlying concept
is that if the uncertainty quantification reliably distinguishes
highly uncertain predictions (likely incorrect) from highly

certain ones (mostly correct), the model’s accuracy will im-
prove as more uncertain predictions are rejected. Conversely,
if predictions are rejected randomly, there will be no impact
on accuracy.

Accuracy-rejection curves for a specific scene with balanced
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Fig. 5. Rejection analysis based on aleatoric, epistemic, and total uncertainties for ice and water classification

coverage of ice and water (with cloud coverage of only 0.35%
in the scene) are shown in Fig. 5. These plots depict the
F1-accuracy of classifying ice and water, with respect to
rejection, on the left y-axis, correlated with rejected pixels
exhibiting higher uncertainties, encompassing total, epistemic,
and aleatoric uncertainties. The uncertainty values are rep-
resented by dashed lines in alignment with the right y-axis.
As anticipated, there is an increase in accuracy performance
for all three types of uncertainty rejections—total, epistemic,
and aleatoric—while random rejection stays unchanged. Ac-
cording to these plots, epistemic uncertainty demonstrates the
most effective rejection performance. This suggests that by
rejecting fewer predictions, we can achieve the same level
of accuracy as with total or aleatoric uncertainty, which will
make more rejections. This discovery also validates the utility
of decomposing total uncertainty into epistemic and aleatoric
components when determining lake ice cover maps.

V. DISCUSSION

Visual inspections of the classified maps and corresponding
uncertainty maps reveal that the highest uncertainties are
present along edges/transitions between water, ice, and cloud
cover. In addition, based on our prior knowledge of Lake Erie’s
ice coverage [23], high uncertainty was also found in areas
with thin ice cover, which are present in the western basin

of Lake Erie. These findings can help feed more informative
annotations for RF training to gain more accurate classification
maps. Misidentification of surface types under conditions of
variable cloud cover was another noteworthy observation.
These cases frequently result in the incorrect classification
of other surface features. An example of this is observed on
January 21, when ice was mistakenly identified as cloud cover.
The uncertainty values for this date were markedly higher
compared to those of adjacent dates with correct classifica-
tions, underscoring the utility of uncertainty analysis. Another
significant application would be using uncertainty maps as
label uncertainties while training an ML-based model. The
outcome of such an application would contribute to mapping at
scale with minimal resources for annotations, similar to weakly
supervised approaches.

To better understand the spatial pattern of the uncertainties,
rather than only inferring statistics based on a pixel-based
averaging in the mapped area, we used window-based statistics
to estimate uncertainties of classes in each window while
considering class variabilities in each window. Results indicate
that spatial variability is one of the main drivers of higher
uncertainty in both epistemic and aleatoric forms. This work
can be applied in the collective classification technique [24]
where the pixel to be classified is compared with its neighbors
iteratively. By incorporating uncertainties in collective classi-
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fication and taking into account the spatial context within a
region, the accuracy of classification could be improved.

The present study represents a significant shift from pre-
vious work on uncertainty in lake and sea ice domains that
used convolutional neural networks. To capture uncertainty,
these studies incorporated modified loss functions [23, 25],
uncertainty decomposition [13], or a calibrated probability
[26]. Random forest approaches are more common than CNNs
for multispectral data. The approach presented is rigorous and
principled and can be used for other problems with similar
input data.

This investigation represents a significant shift from previ-
ous methodologies in the domain of lake and sea ice mapping,
which predominantly utilized convolutional neural networks
(CNNs) and employed approaches such as modified loss func-
tions [23, 25], uncertainty decomposition [13], or calibrated
probabilities [26]. In contrast, the use of Random Forest in this
study for analyzing multispectral data introduces a method-
ologically rigorous and principled approach that is adaptable
to other research scenarios involving similar data types. This
strategy enhances the robustness of uncertainty quantification,
facilitating more reliable classification outcomes and offering
potential frameworks for future applications.

VI. CONCLUSIONS

Mapping of lake ice cover using optical spaceborne sensors
has a long history, however, quantification of how reliable
are those retrievals at the pixel level is lacking. Uncertainty
estimates expand the lake ice map product usability by making
researchers aware of aleatoric and epistemic uncertainty for
incorporating ice fractions in numerical models, such as lake
and weather forecasting models. Quantifying both aleatoric
and epistemic uncertainties is crucial for improving the relia-
bility and robustness of model predictions. Aleatoric uncertain-
ties, which represent the inherent variability and randomness
within the data or system being modeled, remain irreducible
regardless of the amount of information available. Epistemic
uncertainties are essential for comprehending a model’s per-
formance and are integral to the fusion of disparate models
for generating a specific product. Uncertainty incorporation
can be done in the form of direct integration of observation
error variance or as a quality control flag. To expand the
application of the presented work, efforts are underway to
integrate this methodology within the existing processing chain
of daily lake ice cover (LIC) product generation of ESA’s
CCI Lakes project. This integration will include the use of
uncertainty as an informative tool to identify problematic
classifications, both spatially and temporally, within the LIC
product. Such integration will not only extend the current
work but also address data limitations, thereby providing a
foundation for global lake ice mapping. The availability of
uncertainty data will facilitate the development of data fusion
methods, leveraging discrepancies within classifications or
lakes and across different dates to enhance the overall product
quality.
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