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Abstract—The frequent occurrence of intense snowfall events 

and extreme temperature fluctuations in China significantly 

hampers the precise monitoring of snow-covered areas.  The 

provision of near-real-time monitoring of fractional snow cover in 

China is essential to bolster disaster management initiatives. The 

Medium Resolution Spectral Imager (MERSI-II), aboard the 

FengYun-3D satellite, presents significant capabilities for effective 

snow monitoring. The aim of this study was to enhance the 

multiple endmember spectral mixture algorithm based on 

automatic extraction of endmembers (MESMA-AGE) for 

estimating FY-3D/MERSI-II fractional snow cover (FSC) in 

China. The accuracy of these estimations was corroborated using 

30-m FSC maps derived from Landsat-8/OLI images. This 

validation process resulted in RMSE and R2 values of 0.13 and 

0.88, respectively, across 253 OLI-based FSC scenes. The study 

examined and analyzed the effects of diverse land cover types and 

complex terrain on the FSC estimates, focusing specifically on 

three major snow-covered areas in China. In comparison to areas 

with cultivated land and sparse vegetation, bare surfaces yielded 

the most accurate results, whereas forest regions showed the 

lowest accuracy. The comparative analysis revealed that the 

Tibetan Plateau and Northern Xinjiang achieved high accuracy in 

mapping snow cover. The maps of Northeast China were less 

precise, largely due to the prevalence of forests. Additionally, while 

the MERSI-II FSC is effective in monitoring snow cover on flat 

plains, its performance is less reliable in steep terrain. Moreover, 

the comparison between MERSI-II and MODIS FSC indicated 

that MERSI-II has a marked advantage in areas with substantial 

snow cover. 
Index Terms—fractional snow cover area, FY-3D, spectral 

mixture analysis, validation 

I. INTRODUCTION 

s a notable reflector of solar radiation, snow significantly 

influences the surface radiation and energy balance due 

to its high albedo and low thermal diffusivity [1-4]. 

Moreover, the broad distribution of snow across China in winter 

leads to profound negative impacts of severe snowfall events on 

domestic agriculture, the economy, and society [5]. This 

situation underscores the critical necessity for large-scale, high-

frequency monitoring of snow cover in China, which is vital for 

effective disaster management and response strategies. 
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In recent years, numerous snow mapping algorithms 

have been developed to retrieve fractional snow cover areas. 

Multivariate polynomial regression approaches have been 

established for estimating fractional snow cover (FSC) using 

indicators such as the normalized difference snow index 

(NDSI) [6, 7], the universal ratio snow index (URSI) [8], and 

the normalized difference forest snow index (NDFSI) [9]. The 

method of estimating snow area by relying only on the linear 

statistical relationship formed by the snow index in a local area 

has been proven to have limitations under various conditions. 

These limitations, verified by physical models [10], include 

factors like fluctuating snow grain sizes, the presence of 

impurities, and blockages resulting from forest canopies. 

Additionally, the use of machine learning algorithms for snow-

covered area estimation is an emerging trend [11-14]. However, 

these studies often deal in developing “locally adaptive” 

machine learning algorithms for monitoring snow cover areas, 

rather than exploring their implementation for globally-scaled 

FSC estimation. Spectral mixing analysis (SMA) algorithms, 

rooted in physical theory, have gained increasing attention for 

monitoring snow-covered areas [15-19]. The linear mixture 

modelling technique was initially applied to estimate fractional 

snow cover areas via the use of a unique set of endmembers [17, 

20]. Accounting for different spectral distributions of the same 

geographical object [21]—attributable to varying grain sizes, 

atmospheric, terrain, and surrounding object conditions—

multiple endmember spectral mixture analysis (MESMA) 

model approaches are more suitable for retrieving snow cover 

areas [15, 16, 22-25]. MODIS Snow-Covered Area and Grain 

size (MODSCAG) products involve the use of model 

calculations and hyperspectral reflectance measurements to 

simulate the varying spectra of snow endmembers [15]. To 

enhance the universality and automation degree of the MESMA 

algorithm on a large spatial scale, a variant known as the 

MESMA algorithm based on automatic extraction of 

endmembers (MESMA-AGE) have evolved greatly [16, 22]. 

Over the years, the sophistication and robustness of the 

MESMA-AGE algorithm have improved. This refined 

technique is now extensively employed across an array of 

moderate- to high-spatial-resolution optical remote sensing 
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platforms, encompassing Landsat-8/Operational Land Imager 

(OLI), Moderate-Resolution Imaging Spectroradiometer 

(MODIS), and Advanced Very High Resolution Radiometer 

(AVHRR)-2/3 [15, 16, 22, 23, 25]. 

The current capabilities of FY-3D/MERSI-II snow 

cover products fall short in meeting the temporal frequency and 

spatial resolution prerequisites vital for effective disaster early 

warning systems. FY-3 Multi-Sensor Synergy (MULSS) Snow 

Cover products, provided by the National Satellite 

Meteorological Center (NSMC), are derived from the Medium 

Resolution Spectral Imager-I (MERSI-I) and Visible and Infra-

Red Radiometer (VIRR) sensors on FY series satellites. These 

products categorize pixels into two groups, i.e., snow and snow-

free pixels, by employing a threshold method akin to the 

SNOMAP algorithm [26]. Given the inherent systematic 

discrepancies introduced when applying the above 

classification algorithms to coarser-resolution imagery, the 

resultant precision of these products is compromised. 

The Chinese snow cover products are insufficient to support 

disaster monitoring and early warning in terms of both the 

temporal frequency and spatial resolution. The purpose of this 

study was to fully leverage the high-frequency and wide-

observational capabilities of the FY-3D satellite, applying the 

MESMA-AGE algorithm to estimate FSC in China. We employ 

the Level-2A surface reflectance data products provided by [27] 

as the research data. Then, the results were evaluated via a 

comparison with Landsat-8/OLI snow cover maps. The 

disparities between the MERSI-II FSC (Fractional Snow 

Cover) and MODIS FSC data were quantitatively analyzed to 

evaluate the potential of Chinese optical sensors in the realm of 

snow cover monitoring. 

 The remainder of this paper is organized as follows: in 

Section II, an overview of the study region and materials is 

provided. Section III describes snow cover mapping 

methodologies. Section IV details the validation and 

comparison metrics employed to assess the performance of the 

MESMA-AGE algorithm. In Sections V and VI, a summary and 

conclusions are presented, respectively. 

II. STUDY REGION AND MATERIALS 

A. Study Region 

The performance of the FY-3D MERSI-II fractional 

snow cover mapping was evaluated over all snow-covered areas 

in China. It has been previously shown that China has an 

average annual snow area of approximately 9 million km2 [28]. 

Therefore, three relatively stable snow-covered regions in 

China were selected to evaluate the snow cover map derived 

from FY-3D/MERSI-II images of China. These three stable 

snow-covered areas can be seen in Fig. 1, including Northeast 

China (A), the Tibetan Plateau (B), and northern Xinjiang (C). 

The Tibetan Plateau experiences low temperatures, minimal 

precipitation, and high wind speeds in winter owing to its high 

altitude [29]. This leads to a widespread, patchy distribution of 

thin, quickly melting snow over the internal plateau [30]. 

Further, the Tibetan Plateau is influenced by multiple climatic 

systems, including the Indian Monsoon in summer, the mid-

latitude Westerlies in winter and the East Asian Monsoon in the 

east [31, 32]. In winter, the abundant water vapor is blocked by 

the southern and western boundaries of the Plateau, and gives 

rise to more precipitation over mountains. This sharply differs 

from the snow distribution in Northeast China, which (from 

northwest to southeast) contains the Greater Khingan range, 

Northeast China Plain, and Paektu Mountain. The fractional 

forest cover in these regions is approximately 0.4 [33, 34], 

significantly enhancing the snow storage capacity in this area. 

Here, snow typically falls from the end of November to mid-

March, resulting in a fairly homogenous snow cover [9]. 

Compared to this area, northern Xinjiang exhibits a snow cover 

duration (SCD) of approximately 170 days, with the annual 

cumulative snow depth reaching 5.8 m [35]. Spring floods, 

caused by snowmelt, are important for agricultural irrigation in 

this region. 

 
Fig. 1. Land cover map along with the locations of Landsat-8 OLI image areas (a) and elevations (b) in China. Land cover type is 

obtained from Globeland30 data set (https://www.webmap.cn/mapDataAction.do?method=globalLandCover). The terrain condition is 

represented by SRTM (https://srtm.csi.cgiar.org). A. Northeast China. B. The Tibetan Plateau. C. The Northern Xinjiang. 
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B. MERSI surface reflectance data 

FY-3D is the 4th flight unit of the FY-3 satellite series, 

which was launched at the end of 2017. It can implement all-

weather, multispectral, and three-dimensional observations of 

the global atmosphere and geophysical objects [36]. MERSI-II, 

designed to combine the function of the Medium Resolution 

Spectral Imager-I (MERSI-I) and Visible and Infrared Red 

Radiometer (VIRR), is equipped with a total of 25 channels and 

two spatial resolutions of 250 and 1000 m. Compared with the 

single-width spectral window bands of MERSI-I, the infrared 

detection capability of MERSI-II is substantially enhanced [37]. 

Furthermore, it has been demonstrated that the calibration 

accuracy and sensitivity of MERSI-II surpass those of the 

previous generation [38]. The MERSI-II sensor is notable for its 

high temporal frequency, broad field of view, and superior 

hyperspectral imaging capabilities. These qualities render it an 

exceptional tool for near-real-time retrieval of fractional snow 

cover areas across China. 

The MERSI-II-based surface reflectance data have been 

preprocessed via radiometric calibration, atmospheric 

correction [27], and geometric registration and projected to the 

MODIS sinusoidal grid of 460 nonoverlapping tiles that 

measure approximately 10°×10°. TABLE I presents the spectral 

channel of the FY-3D/MERSI-II surface reflectance products 

alongside those of the MOD09GA products. In this study, we 

developed a snow cover mapping algorithm utilizing the 

reflectance in six bands, namely, bands 1 (0.470 μm), 2 (0.550 

μm), 3 (0.650 μm), 4 (0.865 μm), 6 (1.640 μm), and 7 (2.130 

μm). As shown in Fig. 2, we compared the different spectral 

channels of the MERSI-II and MODIS sensors. The pixels used 

for comparison were randomly sampled from MODIS and 

MERSI-II images. All the results demonstrated that the surface 

reflectance values of MERSI-II and MODIS in the different 

bands are consistent. 

TABLE I 

SPECTRAL CHANNELS OF FY-3D/MERSI-II SURFACE PRODUCTS AND MOD09GA PRODUCTS 

 FY-3D/MERSI-II MODIS 

Band 

ID 

central wavelength 

(μm) 

Bandwidth 

(nm) 

Resolution 

(m) 

SNR 

(K) 

central wavelength 

(μm) 

Bandwidth 

(nm) 

Resolution 

(m) 

SNR 

(K) 

1 0.470 50 1000 100 0.469 20 500 243 

2 0.550 50 1000 100 0.555 20 500 228 

3 0.650 50 1000 100 0.645 50 500 128 

4 0.865 50 1000 100 0.858 35 500 201 

5 1.24/1.03 20 1000 100 1.240 20 500 74 

6 1.640 50 1000 200 1.640 24 500 275 

7 2.130 50 1000 100 2.130 50 500 110 

FOV1 [-49.5°,49.5°] [-55.04°, 55.04°] 

1 FOV: Field of View 

 

 
Fig. 2. Intercomparison between FY-3D MERSI-II surface 

reflectance and Aqua/Terra MODIS surface reflectance. The 

six subplots correspond to six MERSI-II spectral bands used 

for the intercomparison, containing bands 3 (0.470μm), 5 

(0.550μm), 7 (0.650μm), 12 (0.865μm), 18 (1.640μm), and 19 

(2.130μm).  

C. Landsat-8 FSC data 

The fractional snow cover derived from MERSI-II and 

MODIS was validated against Landsat-8 OLI imagery spanning 

China. Previous scholars have suggested that Landsat-8 images 

could be used as the reference dataset, as demonstrated through 

evaluation with Gaofen-2 panchromatic/multispectral (PMS) 

images [22]. Notably, the root mean square error (RMSE) of the 

Landsat-8 FSC was 0.094, underscoring the accuracy of this 

dataset. Fig. 1 shows the geographical spread of the validation 

dataset. Given that the 30-m spatial resolution data still 

contained mixed pixels, we implemented the MESMA-AGE 

algorithm. The Landsat-8/OLI FSC was computed on the 

Google Earth Engine (GEE) cloud computing platform [39]. 

This allowed us to quickly retrieve a total of 253 Landsat-8/OLI 

FSC images across China, of which the observed ground was 

partially or entirely covered with snow and not contaminated by 

clouds (a cloud cover less than 5%).  

The endmember extraction rules for Landsat-8 OLI images 

(listed in TABLE II) proposed by previous research [22] was 

adopted in this study. After obtaining the 30-m OLI FSC images, 

pixels were aggregated and registered to be coincident with 1-

km and 2-km MERSI-II FSC maps. The pixel aggregation has 

been used, and the formula as following: 

𝐹𝑆𝐶𝑐𝑜𝑎𝑟𝑠𝑒 =  
∑ 𝐹𝑆𝐶𝑓𝑖𝑛𝑒𝑟,𝑖 × 𝐴𝑟𝑒𝑎𝑓𝑖𝑛𝑒𝑟,𝑖𝑁

𝐴𝑟𝑒𝑎𝑐𝑜𝑎𝑟𝑠𝑒,𝑖

(1) 

Where 𝐹𝑆𝐶𝑐𝑜𝑎𝑟𝑠𝑒  means FSC at a coarse scale, 𝐹𝑆𝐶𝑓𝑖𝑛𝑒𝑟,𝑖 

represents FSC at a finer scale, N is the amount of fine pixels 
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contained in a coarse pixel, 𝐴𝑟𝑒𝑎𝑓𝑖𝑛𝑒𝑟,𝑖  and 𝐴𝑟𝑒𝑎𝑐𝑜𝑎𝑟𝑠𝑒,𝑖  are 

area of fine pixels and coarse pixels, respectively. 

TABLE II 

RULES FOR EXTRACTING ENDMEMBERS FROM LANDSAT-8 OLI IMAGERY AND FY-3D MERSI-II IMAGERY [22] 

Class 
Rules (Rλ— surface reflectance at wavelength λ) 

Landsat-8 OLI FY-3D MERSI-II 

Snow NDVI1 < -0.035, NDSI2 > 0.75, R0.55μm> 0.7 
NDVI < -0.01, NDSI > 0.7, R0.55μm > 0.8, 

R0.65μm > 0.8, R0.865μm > 0.75 

Vegetation NDVI > 0.7, NDSI < -0.4, R0.86μm > 0.20 NDVI > 0.78, NDSI < -0.45, R0.865μm > 0.30 

Soil/Rock 0 < NDVI < 0.15, NDSI < -0.4 -0.1 < NDVI < 0.15, NDSI < 0.15 

Water NDWI3 > 0.2, R0.86μm < 0.2 NDWI > 0.4, R0.865μm < 0.3 
1 Normalized difference vegetation index (NDVI) is (RNIR-RRED)/(RRED+RNIR). 
2 NDSI is (RGREEN-RSWIR)/(RGREEN+RSWIR). 
3 Normalized difference water index (NDWI) [39] is (RGREEN-RNIR)/(RGREEN+RNIR). 

 

D. MODIS FSC data 

The Terra/Aqua MODIS instruments offer a daily global 

coverage of the Earth's surface [40], with equatorial crossings at 

10:30 and 13:30, while the MERSI-II instrument aboard FY-3D 

operates at 14:00. In this study, we used MOD09GA version 6 

and MYD09GA version 6 as the MODIS inputs, which are 

available on the GEE cloud computing platform. TABLE I lists 

the spectral channel provided by MOD09GA. We fully 

leveraged the parallel computing capability of the GEE to 

calculate the MODIS FSC from January to February 2020, 

contemporaneous with the MERSI FSC. Although the daily 

Aqua overpass is temporally aligned with the FY-3D overpass, 

it lost 75% of its detectors for band 6 (1.640 μm), a crucial band 

for snow retrieval, shortly after its launch [41]. As a strategy for 

retrieving the MODIS-based FSC, Terra MODIS data were 

primarily considered, supplemented by Aqua MODIS data. The 

MESMA-AGE algorithm was implemented to generate 500-m 

snow cover maps from these MODIS datasets. And the 

endmember extraction rules for MODIS images are the same as 

those for MERSI-II images, which will be exhibited in section 

III. 

E. The auxiliary data 

The effects from different land-cover types and topography 

were considered when assessing snow fraction products. The 

GlobeLand30 product [42], provided by the Ministry of Natural 

Resources, was utilized as auxiliary data to account for the 

impact of various underlying surfaces on the generated FSC 

maps. In this work, the land cover types were consolidated into 

six categories, namely, water bodies, forests, grasslands, 

permanent snow and ice, croplands, and barren land. In 

addition, the Shuttle Radar Topography Mission (SRTM) 

digital elevation dataset spatially overlapping the study area 

was incorporated to conduct its topography effect on the snow 

fraction mapping method [43]. Fig. 1 shows the Land cover map 

and topographic relief in the study area. 

III. SNOW COVER MAPPING ALGORITHM 

Linear spectral mixing analysis that incorporates 

automatic extraction of endmembers was utilized to map FSC 

in China. The entire process of snow cover mapping can be 

divided into two parts: automatic endmember selection and 

multiple endmember spectral mixing analysis. 

A. Endmember Selection Based on the Vector Length 

According to previous research [16, 23], it is clear that even 

when all observed objects are confirmed to pertain to the same 

geophysical object, spectral reflectance discrepancies can still 

arise due to factors such as illumination and elevation. It is 

reasonable to implement spectral mixture analysis (SMA) based 

on multiple endmembers. In contrast to other MESMA 

algorithms, such as MODSCAG, the MESMA-AGE algorithm 

can be employed to automatically retrieve multigroup pure 

pixels, represented by different geophysical objects, from the 

whole image. The extraction rules for pure pixels are detailed 

in TABLE II. The optimization of the selection of endmembers 

for each land cover class must strike a balance between the 

computational efficiency and inversion accuracy. Cluster 

analysis was employed to extract representative endmembers 

from massive pixels. The method developed by [22, 44], which 

is based on the vector length of spectra, was adopted to retrieve 

representative endmembers. The vector length for spectral 

reflectance channels can be defined as follows: 

‖𝑟‖ = √( ∑ 𝑟𝑘
2

𝑁

𝑘 = 1

) (2) 

where r𝑘 is the reflectance of band 𝑘, and 𝑁 is the number 

of bands. By arranging each group of endmembers in ascending 

order, we extracted typical endmembers at regular intervals 

from the sequence. In our study, we considered the research 

area as a complex field composed of vegetation, soil/rock, water, 

and snow cover parts. The extracted endmembers were 

accordingly classified into these four types. 
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B. Multiple Endmember Spectral Mixture Analysis 

The MESMA-AGE algorithm operates under the 

assumption that each mixed pixel is a linear combination of the 

radiance reflected from individual surfaces, such as pure snow, 

vegetation, soil/rock, and water. Spectral mixture analysis can 

be implemented through a set of simultaneous linear equations 

that are solved to identify these individual components [21]. 

𝑅𝑚𝑖𝑥,𝜆 = ∑ 𝐹𝑖

𝑁

𝑖=1

⋅ 𝑅𝑖,𝜆 + 𝜀𝜆 (3) 

∑ 𝐹𝑖

𝑁

𝑖=1

= 1, 𝑖 = 0,1, … , 𝑁 (4) 

0 ≤ 𝐹𝑖 ≤ 1, 𝑖 = 0,1, … , 𝑁 (5) 

where 𝐹𝑖  is the fraction of endmember 𝑖 ; 𝑅𝑖,𝜆  is the 

reflectance of endmember 𝑖 at wavelength 𝜆; 𝑁 is the number 

of bands; and 𝜀𝜆 is the residual error at wavelength 𝜆 for the fit 

of the N endmembers. 

This set of simultaneous linear equations can be 

effectively solved using the fully constrained least-squares 

fitting method. The precision of the mixture model, composed 

of various groups of endmembers, was quantified by the root 

mean square error (RMSE). Subsequently, the optimal group of 

endmembers is identified based on the minimum RMSE, 

enabling the determination of the fraction corresponding to 

each endmember. 

IV. VALIDATION AND COMPARISON METRICS 

In this work, the 1-km FSC aggregated from 30-m OLI 

images was considered the ground reference dataset to evaluate 

the precision of the calculated MERSI-II FSC. Considering that 

the MODIS fractional snow cover products produced by the 

MESMA-AGE algorithm have been demonstrated to be of high 

quality, we assessed the MERSI FSC against the MODIS FSC 

at the same spatial resolution. In this section, we introduce the 

evaluation metrics and comparison process. 

The evaluation metrics used in previous validations of 

MODAGE, MOD10A1, and MODSCAG have been proven to 

be valuable for verifying the accuracy, overestimation, 

underestimation, and misestimation characteristics of these 

snow cover products [22]. 

To facilitate the comparison of reference and estimated 

data, we used a set of binary and fractional metrics. Assuming 

Landsat 8 snow cover maps to be the truth, pixels were 

classified into four possible outcomes for determining whether 

a pixel is snow or not: true positive (TP), true negative (TN), 

false-positive (FP), and false-negative (FN). The definitions of 

these four possible outcomes are provided in TABLE III. Given 

that the FSC exhibits a continuous value from 0 to 1, 

representing the ratio of the snow cover area in each pixel, the 

threshold for distinguishing snow pixels from snow-free pixels 

was defined as FSC = 0.15 [40]. If the FSC is less than 0.15, the 

pixel was classified as a snow-free pixel; otherwise, the pixel 

was regarded as a snow pixel. 

TABLE III 

CONTINGENCY TABLE OF BINARY SNOW IDENTIFICATION 

Estimation FSC 

dataset 

Reference FSC dataset 

Snow Snow-free 

Snow TP FP 

Snow-free FN TN 

 

Common measures of the classification algorithm 

performance, calculated using the abovementioned four metrics 

(TP, TN, FP, and FN), include the following: 

𝑂𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(6) 

𝑈𝐸 =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
(7) 

𝑂𝐸 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
(8) 

 

where the overall accuracy (OA) indicates the overall 

detection precision, which is the probability that a pixel is 

correctly identified. The underestimation error (UE) measures 

the ratio of snow pixels that are mistakenly identified as non-

snow pixels. The overestimation error (OE) measures the ratio 

of non-snow pixels mistakenly identified as snow pixels, with 

larger OE values indicating a more severe commission error. 

Previous research [16, 22] has proposed the utilization 

of root mean square error (RMSE) as a metric to measure the 

performance of Snow cover mapping algorithms. The 

statistical measures were extended then with the addition of 

R2, MAE, and Bias [40]. We utilized the root mean square error 

(RMSE), mean absolute error (MAE), R2 and bias to estimate 

the accuracy of fractional snow cover estimation, which is a 

mathematically continuous variable. The metrics are defined as: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝐹𝑆𝐶𝑒𝑠𝑡 − 𝐹𝑆𝐶𝑟𝑒𝑓)

2
𝑁

𝑖=1

(9) 

𝑀𝐴𝐸 =
∑ |𝐹𝑆𝐶𝑒𝑠𝑡 − 𝐹𝑆𝐶𝑟𝑒𝑓|

𝑁

𝑖=1

𝑁
(10) 

𝑅2 = 1 −

∑ (𝐹𝑆𝐶𝑒𝑠𝑡 − 𝐹𝑆𝐶𝑟𝑒𝑓)
2𝑁

𝑖=1

∑ (𝐹𝑆𝐶𝑟𝑒𝑓 − 𝐹𝑆𝐶𝑟𝑒𝑓
̅̅ ̅̅ ̅̅ ̅̅ ̅)

2
𝑁

𝑖=1

(11) 

𝐵𝑖𝑎𝑠 = 𝐹𝑆𝐶𝑒𝑠𝑡 − 𝐹𝑆𝐶𝑟𝑒𝑓 (12) 

where 𝑁 is the total number of observations; 𝐹𝑆𝐶𝑒𝑠𝑡  and 

𝐹𝑆𝐶𝑟𝑒𝑓 denote the FSC values of pixels from the estimation and 

reference datasets, respectively, that share the same geolocation; 

and 𝐹𝑆𝐶𝑒𝑠𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅  is the mean value of 𝐹𝑆𝐶𝑟𝑒𝑓 . The RMSE is a 

measure of the deviation between the reference and estimated 

values but is sensitive to outliers. In addition, R2 represents the 

goodness of fit, of which the value ranges from -1 to 1. The 

smaller the RMSE value is, along with a higher R2 value, the 

higher the accuracy of the results. 

To quantify the differences between paired observations of 

the MERSI and MODIS FSC results across different fractional 

snow cover values, we also introduced the bias box plot to offer 

a visual representation of misestimation (both overestimation 

and underestimation) for each interval. 

V. RESULTS 

In this study, we focused on mapping FSC from January 

to February since this period is the stable snow season and other 

seasons have less snowfall. Daily snow cover maps of China for 
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the period from January 1, 2020, to February 28, 2020, were 

generated. The MERSI-II FSC product can be considered as a 

near real-time product, for which the time for generating China 

FSC may be up to 3 min. Fig. 3 provides an overview on the 

behavior of daily FSC maps in the entire China region. In these 

daily contingency figures, the spatial consistency of FSC 

prediction is visually analyzed by comparing it with MERSI-II 

true-color RGB composite images. This band combination 

shows ice and snow in bright white, where water bodies and 

vegetations appear dark. As is shown in Fig. 3, the spatial 

distribution of snow is estimated precisely. To analyze the 

strengths and limitations of the FSC data, we used Landsat-

8/OLI FSC as “Ground Truth”. The evaluation dataset was then 

compared to this truth dataset at spatial resolutions of 1km and 

2km, respectively. This aggregation at a coarser scale of 2km, 

as opposed to the 1-kilometer scale corresponding to MERSI-

II's pixel size, aimed to minimize the uncertainty arising from 

spatial discrepancies in the imagery. Recognizing the unique 

characteristics of snow in areas with stable snow cover, it was 

deemed necessary to separately assess the snow cover maps of 

different regions. Additionally, the impact of underlying 

surfaces on the MERSI-II FSC was investigated in this study. 

The comparison of the MODIS and MERSI-II FSC results was 

also a significant part of this analysis.

 
Fig. 3. Daily snow cover maps of the China retrieved from MERSI-II imagery on January 25, 2020. (a). FY-3D MERSI-II images. 

(b). The FSC map.

 

A. Fractional snow cover in China 

TABLE IV presents a summary of the evaluation findings 

for the MERSI-II FSC, organized by different types of 

underlying surfaces. Research concluded that the aggregation 

process can eliminate the effect of geolocation error [15]. So, 

validation datasets at the 1-kilometer and 2-kilometer 

resolutions were generated. 

TABLE IV 

THE VALIDATION METRICS TO ASSESS FSC IN CHINA ACROSS DIFFERENT UNDERLYING SURFACES 

Spatial Resolution 1 km 2 km 

Validation metrics R2 RMSE MAE R2 RMSE MAE 

MODIS 

FSC 

Forest 0.62 0.18 0.14 0.70 0.16 0.11 

Barren land 0.89 0.13 0.07 0.90 0.12 0.06 

Grassland 0.73 0.16 0.09 0.80 0.14 0.08 

Cropland 0.73 0.17 0.11 0.75 0.15 0.10 

All 0.80 0.16 0.10 0.84 0.14 0.08 

MERSI-

II FSC 

Forest 0.42 0.23 0.16 0.48 0.20 0.15 

Barren land 0.93 0.11 0.05 0.94 0.10 0.05 
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Grassland 0.88 0.12 0.06 0.90 0.11 0.06 

Cropland 0.83 0.16 0.09 0.86 0.14 0.09 

All 0.86 0.15 0.08 0.88 0.13 0.07 

The validation metrics revealed that the MESMA-AGE 

algorithm performs best in estimating FSC over barren land, 

with grasslands and croplands following closely. However, it 

encounters difficulties in accurately determining FSC over 

forested areas. The subpar performance in forest regions is 

likely due to a significant underestimation error. This 

inaccuracy may stem from the interference of forest canopies, 

which obstruct the view of snow on the ground. As a result, in 

alpine forest regions during winter, the primary electromagnetic 

information captured tends to emanate from the canopies and 

branches, rather than the snow-covered ground.  

Furthermore, as is shown in TABLE IV, MODIS FSC 

outperforms MERSI-II FSC in forested regions. The reasons are 

as follows: First, variability in view geometry of MODIS and 

MERSI-II results in different accuracy in forested regions. 

Owing to obstruction of canopies, the viewable gap fraction 

(VGF) decreases.  As view zenith decreases, the projected area 

of crown should decrease (i.e., you are seeing less of the side of 

a tree). Although similarity in scanning technology, the swath 

of MERSI-II (scanning angle ranges from −55.04° to 55.04°) is 

wider than MODIS (scanning angle ranges from -49.5° to 

49.5°). More severe geometric distortion exists at the edges of 

the MERSI-II image, which might exacerbate MERSI-II’s poor 

performance in forested areas. Second, spatial resolution is one 

of main impact factors that caused better performance of 

MODIS in the forested areas. MODIS, which has a 500 m nadir 

resolution is finer than MERSI-II. To eliminate the influence of 

view geometry and analyze only the effect due to spatial 

resolution, we compared FSC at nadir (View zenith angle varies 

from 0° to 5°) at the same resolution (1 km) by aggregating 

MODIS pixels. daily FSC maps from January to February 2020 

were utilized. Only pixels from the Greater Khingan Range, 

where the forest is covered with snow, are analyzed. Landsat-8 

OLI FSC is still chosen as the reference data. Fig. 4 shows the 

difference between accuracy of MODIS FSC and MERSI-II 

FSC at nadir. It demonstrates that spatial resolution plays an 

important role in explaining why MODIS outperforms MERSI 

in forested areas. 

 
Fig. 4.  Scatter plots of the MERSI-II (Left) and MODIS FSC 

(Right) versus Landsat-8 OLI FSC in the forested areas at 

nadir (View zenith angle varies from 0° to 5°) 

 

The snow cover maps of China derived from MERSI-II 

imagery generally align well with the reference dataset, as 

evidenced by high R2 values and low RMSE scores. 

Specifically at the grid-cell scale of 2-km, the FSC over barren 

land shows the lowest RMSE value of 0.10, with grasslands and 

croplands exhibiting similar accuracy. However, the accuracy 

diminishes in snow-covered forest areas, where the RMSE 

value reaches 0.20 and the R2 value falls below 0.48. Slight 

improvement could be observed while spatial scale increased. 

It could be explained that coarser scale can decrease uncertainty 

arising from spatial discrepancies in the imagery. A comparison 

between the MODIS FSC and MERSI-II FSC data highlighted 

performance variations. While both datasets demonstrated 

comparable overall precision, they diverged in their accuracy 

across different FSC value ranges. This comprehensive analysis 

sheds light on the distinct advantages and limitations of 

different sensors, providing valuable insights for future 

enhancements and practical uses in snow cover mapping. 

 

B. Fractional snow cover in Northeast China 

This section illustrates the spatial distribution of FSC in 

Northeast China. Fig. 5(a) displays a remarkably homogenous 

and extensive snow cover across the southern-central Greater 

Khingan Range (A) and the Northeast China Plain (C). The 

Northeast China Plain is predominantly characterized by barren 

lands and grasslands. Since the radiance reflected from a 

combination of snow, grassland, and barren land surfaces can 

be effectively modeled as a single scattering system, which is 

apt for linear analysis [2], the FSC estimated in these spatial 

contexts exhibits high accuracy. 

In Northeast China, the forest cover fraction is 

approximately 0.4. This widespread forest coverage introduces 

significant uncertainty in the retrieval of Fractional Snow Cover 

(FSC). A common issue in this study area is the underestimation 

of FSC at higher values. This inconsistency arises from the 

complexities inherent in forest environments, where the canopy 

can obscure the spectral information reflected by the snow-

covered ground. As a result, mixed pixels in forested regions 

tend to represent the electromagnetic information from the 

canopies and branches more than the actual snow cover. This 

limitation highlights a challenge in using the MESMA-AGE 

algorithm for snow cover assessment in forested areas, 

underscoring the need for methodological refinements or 

additional data sources to improve accuracy in such areas [9, 35]. 

As is shown in Fig. 5, Regions I, II, and III are predominantly 

alpine forest areas. In these regions, the optical detectors of the 

MERSI-II satellite failed to accurately capture the 

electromagnetic information of the snow. 
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Fig. 5. True color map (a), FSC spatial distribution map (b) in 

the Northeast China on January 25, 2020. In subplot (a), the 

letters A to E represent Greater Khingan, Lesser Khingan, the 

Northeast China Plain, the Paektu Mountain, and the Horqin 

Sandy Land, respectively. 

 

TABLE V details the validation metrics of FSC across 

varied underlying surfaces in Northeast China. Although the 

MERSI-II-based FSC demonstrates excellent capability in 

monitoring snow cover over barren lands, grasslands, and 

croplands, it notably underperforms in estimating snow cover 

within forested areas, indicated by a low R2 value and a 

relatively high RMSE. Given the extensive spread of forests in 

Northeast China, this underestimation significantly impacts the 

overall effectiveness of the FSC assessment, resulting in less 

satisfactory outcomes. 

TABLE V 

THE VALIDATION METRICS TO ASSESS FSC IN THE NORTHEAST CHINA ACROSS DIFFERENT UNDERLYING SURFACES 

Spatial Resolution 1 km 2 km 

Validation metrics R2 RMSE MAE R2 RMSE MAE 

MODIS 

FSC 

Forest 0.56 0.20 0.14 0.64 0.17 0.11 

Barren land 0.90 0.14 0.08 0.90 0.13 0.08 

Grassland 0.73 0.16 0.09 0.77 0.14 0.08 

Cropland 0.59 0.18 0.12 0.61 0.16 0.11 

All 0.77 0.17 0.11 0.82 0.15 0.10 

MERSI-

II FSC 

Forest 0.20 0.11 0.17 0.23 0.21 0.16 

Barren land 0.94 0.11 0.10 0.94 0.10 0.05 

Grassland 0.88 0.11 0.05 0.90 0.10 0.05 

Cropland 0.75 0.17 0.10 0.79 0.15 0.10 

All 0.81 0.17 0.10 0.84 0.15 0.09 

 

C. Fractional snow cover on the Tibetan Plateau 

The Tibetan Plateau, often termed the "Third Pole," 

exhibits a distinct and intricate snow cover pattern. Positioned 

at an average altitude surpassing 4000 meters, snow cover in 

this region is characteristically sporadic in the mountainous 

zones and sparse in the inland plateau areas [24]. Research such 

as [45] has shown that snow cover tends to be more persistent 

in the southeastern, western, and southern parts of the Tibetan 

Plateau. Despite the frequency of snowfall in winter, 

atmospheric conditions like low vapor content leads to a patchy 

and thin snow layer on the plateau. Nevertheless, numerous 

studies have effectively utilized the MESMA-AGE algorithm 

for precise estimation of FSC in this region [22-24]. In this study, 

we evaluated the performance of the FY-3D MERSI-II FSC on 

the Tibetan Plateau and validated it against 70 Landsat-8 OLI 

FSC scenes. This comparative analysis reinforces the notion 

that the MERSI-II and MESMA-AGE algorithm are valuable 

tools for detailed snow cover analysis in this geographically 

complex and critically important region. 

The MERSI-II FSC assessment of the Tibetan Plateau has 

yielded encouraging results in mapping its complex snow cover 

patterns. As shown in TABLE VI, MERSI-II has an RMSE of 

0.10 and an R2 value of 0.95 at 2 km resolution. FSC 

measurements in barren land areas showed the most accurate 

results. However, the extraction of FSC in forested areas 

remains challenging, aligning with findings in previous sections 

that emphasized the interference of forest canopies in snow 

detection. In areas where snow cover is spatially extensive and 

forest coverage is minimal, MERSI-II effectively provides 

precise FSC estimations. The accuracy of results for croplands 

and grasslands falls in the intermediate range, positioned 

between the performances in barren and forested terrains. 

 

TABLE VI 

THE VALIDATION METRICS TO ASSESS FSC OVER THE TIBETAN PLATEAU ACROSS DIFFERENT UNDERLYING SURFACES 
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Spatial Resolution 1 km 2 km 

Validation metrics R2 RMSE MAE R2 RMSE MAE 

MODIS 

FSC 

Forest 0.85 0.13 0.06 0.88 0.12 0.06 

Barren land 0.89 0.11 0.05 0.91 0.10 0.05 

Grassland 0.82 0.15 0.09 0.88 0.12 0.07 

Cropland 0.86 0.11 0.04 0.89 0.08 0.02 

All 0.90 0.13 0.07 0.93 0.11 0.06 

MERSI-

II FSC 

Forest 0.73 0.18 0.09 0.78 0.16 0.09 

Barren land 0.95 0.08 0.03 0.95 0.08 0.03 

Grassland 0.94 0.11 0.04 0.95 0.10 0.04 

Cropland 0.81 0.11 0.04 0.85 0.10 0.04 

All 0.94 0.11 0.04 0.95 0.10 0.04 

In conclusion, the snow cover maps generated from 

MERSI-II images for the Tibetan Plateau demonstrate 

remarkable consistency across various underlying surfaces, 

surpassing the performance observed in other regions with 

stable snow cover. 

D. Fractional snow cover in northern Xinjiang 

Xinjiang, located in the arid and semi-arid regions of 

Central Asia, grapples with a notable scarcity of freshwater 

resources. In this area, surface runoff predominantly originates 

from the melting of mountain glaciers and snow cover [46]. 

Notably, Northern Xinjiang stands as China's most abundant 

region in terms of seasonal snow-water resources, contributing 

about one-third of the country's snow resources [47]. With an 

average annual precipitation of 244 mm [48], Northern Xinjiang 

extends from 42° to 50°N and from 79° to 92°E, as depicted in  

Fig. 6 (a)), and is flanked by the Tianshan and Altai Mountains. 

TABLE VII reveals that, according to the validation 

metrics, the MERSI-II Fractional Snow Cover (FSC) surpassed 

the performance of MODIS FSC. Among various underlying 

surfaces, the FSC in forested areas showed the least favorable 

results, with an R2 value of 0.51 and an RMSE of 0.20 at the 

grid-cell scale of 2-km. In contrast, the FSC over barren land 

demonstrated the most accurate performance, featuring an R2 

value of 0.94 and an RMSE of 0.10. 

 

 
Fig. 6. True color map (a), FSC spatial distribution map (b) in 

the Northeast China on January 6, 2020.  

 

TABLE VII 

THE VALIDATION METRICS TO ASSESS MERSI-II FSC OF NORTHERN XINJIANG ACROSS DIFFERENT UNDERLYING SURFACES 

Spatial Resolution 1 km 2 km 

Validation metrics R2 RMSE MAE R2 RMSE MAE 

MODIS 

FSC 

Forest 0.49 0.18 0.12 0.58 0.15 0.10 

Barren land 0.87 0.14 0.08 0.89 0.13 0.07 

Grassland 0.59 0.18 0.10 0.76 0.13 0.08 

Cropland 0.36 0.17 0.09 0.58 0.12 0.07 

All 0.79 0.16 0.09 0.85 0.13 0.08 

MERSI-

II FSC 

Forest 0.46 0.23 0.16 0.51 0.20 0.15 

Barren land 0.93 0.12 0.06 0.94 0.10 0.05 
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Grassland 0.80 0.15 0.09 0.83 0.14 0.08 

Cropland 0.86 0.12 0.06 0.89 0.11 0.06 

All 0.89 0.13 0.07 0.90 0.12 0.07 

Researchers have reported that the mapping accuracy is 

influenced by the variable illumination, which is caused by the 

complex topography [28, 49]. Fig. 6 and Fig. 7 highlight that the 

Altai Mountains, Junggar Basin, and Tianshan Mountains are 

the primary geographical subregions in this context. In this 

study, 41 Landsat-8/OLI FSC images were categorized into 

three groups corresponding to these geographical subregions. 

Fig. 7 illustrates the distribution of Landsat-8/OLI scenes and 

the validation metrics for these areas. The boxplots of RMSE 

and R2 values indicate that the suboptimal performance of FSC 

over the Tianshan Mountains was a significant contributor to 

the increased overall error in snow cover mapping across 

northern Xinjiang. Among these three subregions, the snow 

cover maps for the Junggar Basin exhibited the most accurate 

results. 

 
Fig. 7. Validation metrics calculated from MERSI-II FSC 

imagery over different terrain areas of the Northern Xinjiang. 

 

In conclusion, the accuracy of snow cover mapping over 

northern Xinjiang is notable, demonstrating a considerable 

level of success for the different underlying surfaces. We 

conducted an extensive evaluation of FSC across varied 

landscapes. The FSC accuracy was highest over barren land 

areas, while forest regions displayed the lowest accuracy. 

Furthermore, the study identified terrain-induced errors specific 

to this area. By analyzing FSC performance across the three 

distinct geographical subregions, it was concluded that the 

complex terrain of the Tianshan Mountains played a significant 

role in increasing the overall error in northern Xinjiang. This 

outcome highlights the complex interaction between 

topography, land cover, and remote sensing technologies. It 

emphasizes the necessity of accounting for these factors to 

achieve more precise snow cover mapping in diverse 

geographical settings. 

VI. DISCUSSION 

In this study, we showcased the robust capabilities of the 

MERSI-II instrument aboard the FY-3D satellite for monitoring 

snow cover throughout China's snow season. This section 

delves into evaluating the performance of FSC estimation 

across different snow regions. Additionally, we scrutinize the 

challenges faced in snow cover mapping, especially in forested 

regions and areas with complex terrain. Moreover, we offer a 

comparative analysis of the MERSI-II FSC, MODIS FSC, and 

MULSS Snow Cover products, highlighting their respective 

strengths and areas for improvement. We focused on mapping 

FSC from January to February since this period is the stable 

snow season and other seasons have less snowfall. 

 

A. Performance of FSC estimation in various snow regions 

Fig. 8 illustrates the bias distributions in coarse-scale FSC 

datasets (MERSI-II and MODIS) compared to the Landsat-

8/OLI FSC datasets across China and three primary stable 

snow-covered areas. The FSC pixels were categorized into 11 

groups, ranging from 0 to 1, and evaluated based on bias. The 

biases in the MERSI-II FSC are more widely spread than those 

in the MODIS product, particularly in the range of [0.15, 0.75]. 

This suggests that MERSI-II is less consistent with the Landsat-

8/OLI FSC, indicating higher uncertainty. In other FSC ranges, 

the MERSI-II FSC shows minor systematic misestimation. 

Additionally, the MERSI-II FSC demonstrates a slight negative 

bias in the range of [0.05, 0.35] and a positive bias in the range 

of [0.65, 0.95]. This pattern indicates a tendency to 

underestimate in areas with low FSC values and overestimate 

in those with high FSC values. Conversely, the biases in the 

MODIS FSC are negatively concentrated for FSC values 

greater than 0.8, implying systematic underestimation in 

MODIS-derived FSC retrieval. Overall, the MERSI-II 

instrument is more effective for extracting FSC in areas with 

high FSC values, whereas MODIS is better suited for low or 

moderate FSC values. The differing performance levels can be 

attributed to two main factors: firstly, the aging MODIS 

instruments experience detector and optical system degradation 

[50] , while MERSI-II remains more effective in snowfields. 

Secondly, the atmospheric correction method [27, 51] used in 

MERSI-II surface reflectance products is better suited for bright 

surfaces like snow, enhancing the accuracy of FSC extraction 

in stable snow-covered areas compared to darker surfaces. 
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Fig. 8. Different behaviors of snow cover maps retrieved from 

MODIS and MERSI-II imageries of China, compared with 

Landsat-8 OLI FSC 

 

B. Limitations of snow cover mapping in forested areas 

The validation results for the FSC in forest areas across all 

geographical regions varied, particularly in Northeast China. 

The complexity of the three-dimensional structure of forests 

results in challenges in detecting snow cover. Owing to 

obstruction of canopies, widespread underestimation could be 

observed in the alpine forests.           Diffuse radiation reaching 

the snow surface is reduced, which is caused by trees shielding 

the sky hemisphere [52, 53]. At the level of tree stands, previous 

research [54] has demonstrated differences between snow 

across forest edges of different distances and orientation.  Also, 

snow distribution is strongly correlated to open fraction of 

canopies at the grid-cell level (20-200m scale). with coarser 

spatial resolution, optical sensors with medium and coarse 

resolutions are designed to have the oblique perspective and 

large field of view. At the coarse grid-cell level, the viewable 

gap fraction (VGF) decreases and the pixels are stretched as the 

viewing zenith angle (VZA) decreases because vertical features 

like trees become projected [55]. Hence, accurate monitoring of 

the snow cover requires highly sensitive sensors that can detect 

details through gaps in the forests. However, MERSI-II 

detectors are hindered by their coarse resolution, making it 

difficult to capture the spectrum of snow.  

 

C. Limitation of snow cover mapping in complex terrain 

The complex topography results in varying illumination 

conditions, which in turn impacts the accuracy of mapping. For 

example, the intricate terrain of the TianShan Mountains, as 

shown in Fig. 7, contributes to an increased overall error in the 

northern Xinjiang region. This scenario highlights the influence 

of topographical elements on the precise retrieval of Fractional 

Snow Cover (FSC), demonstrating how terrain complexity can 

pose challenges to accurate snow cover mapping. 

The use of multiple endmembers in spectral mixture 

analysis, despite its advancements, still faces challenges in 

mitigating the adverse effects of complex terrain  [11]. This 

section focuses on presenting statistical accuracy metrics for 

FSC in relation to terrain slope. The slope data was derived 

from the Shuttle Radar Topography Mission (SRTM) Digital 

Elevation Model (DEM) dataset. Fig. 9 displays the R2 and 

RMSE values for the MERSI-II FSC across China and the three 

major stable snow-covered areas. In China, FSC shows optimal 

performance in areas with slopes ranging from 0° to 30°, as 

evidenced by high R2 values and low RMSE values. However, 

beyond a 30° slope, a significant drop in accuracy could be 

observed. Steep terrain introduces factors like altered 

illumination and shadowing, which greatly increase the 

uncertainty in spectral mixture analysis. For Northeast China 

and the Tibetan Plateau, as illustrated in Fig. 9, both R2 and 

RMSE values exhibit a notable increase with steeper slopes. 

Despite Northeast China's relatively flat topography, the 

accuracy metrics display significant variability. This is largely 

attributed to forested areas in high-altitude regions like the 

Greater Khingan, Lesser Khingan, and Paektu Mountain, which 

add to the complexity of accurately retrieving snow cover data. 

In Northern Xinjiang, R2 values show relative consistency for 

slopes between 0° and 25°, but lower values occur over 26°. 

While RMSE values generally remain low across different 

slopes, there is a pronounced increase between 26° and 30°, 

indicating heightened uncertainty in steep areas. In summary, 

the statistical validation metrics quantitatively demonstrate that 

while the MERSI-II FSC is effective in monitoring snow cover 

in flat terrains, its performance is significantly compromised in 

steep terrains. This highlights the importance of considering 

terrain slope as a critical factor in snow cover mapping and the 

need for algorithmic improvements or complementary methods 

to enhance accuracy in complex terrains. 

 
Fig. 9. The statistic validation metrics of MERSI-II FSC as they 

vary with terrain slope 

 

D. Differences between MERSI-II FSC and MULSS snow 

cover products 

The accessible MULSS daily maximum Snow Cover 

(SNC) products provided by the NSMC offer daily 

identification and integration of VIRR and MERSI multiorbit 

maximum snow cover data retrieved from FY-3A and FY-3C 

satellites with a resolution of 0.01°. In contrast to the more 

detailed fractional snow cover products, SNC products employ
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 a binary classification, dividing images into snow and snow-

free pixels. This resolution of 0.01° (approximately 1 km) 

indicates that mixed pixels are present, and the binary 

classification algorithm of the SNC products lacks the capacity 

to provide finer-scale snow cover information. In this study, 

performances of three different snow-cover maps (MERSI-II 

FSC, MODIS FSC, and SNC products) on classifying pixels as 

snow or non-snow, were compared with Landsat-8 OLI FSC, 

respectively. The OA, OE, and UE metrics were used to assess 

the precision of these three products. Given that the fractional 

snow cover retrieved from MERSI-II and MODIS is a 

continuous value from 0 to 1, representing the snow cover 

fraction in each pixel, the threshold for classifying a pixel as a 

snow or snow-free pixel was defined as FSC = 0.15. TABLE 

VIII provides a summary of the binary assessment results. At 

the grid-cell scale of 2km, the overall accuracy (OA) of the 

MERSI-II FSC, MODIS FSC and MULSS SNC was 0.93, 0.96, 

and 0.91, respectively. MODIS FSC and MULSS SNC 

overestimate the results and lead to generate high OE values. 

According to effects of different underlying surfaces, all of 

three products perform well for snow cover over barren land, 

grasslands and, croplands. These OA values indicate that the 

MODIS product could identify snow pixels most accurately. 

However, larger deviations can be observed in results over 

forests. While underestimation is prominent for MERSI-II FSC 

and MODIS FSC, MULSS SNC shows an underestimation of 

distinguishing snow and snow-free pixels. It can be explained 

that the strategies adopted in the MULSS algorithm which are 

similar to the SNOMAP algorithm [26] lead to significant 

overestimation of the product in forest areas. This observation 

highlights the inherent limitations of binary classification in 

capturing the nuanced variation in the snow cover, especially 

on finer scales. While binary classification provides a more 

straightforward representation of snow presence, it may lack the 

detail and accuracy needed for certain applications. The 

comparison between the MERSI-II FSC and MULSS SNC 

products emphasizes the importance of considering the methods, 

algorithms, and resolutions used in snow cover mapping to 

achieve the desired level of accuracy and detail in various 

environmental and climatological studies. 

TABLE VIII 

SUMMARY OF THE BINARY STATISTICS 

Spatial Resolution 1km 2km 

Validation metrics OE UE OA OE UE OA 

MERSI-II FSC Forest 0.16 0.27 0.78 0.12 0.28 0.79 

Barren land 0.02 0.06 0.95 0.01 0.06 0.95 

Grassland 0.04 0.03 0.97 0.02 0.03 0.97 

Cropland 0.04 0.04 0.96 0.02 0.05 0.96 

All 0.07 0.07 0.93 0.05 0.07 0.93 

MODIS FSC Forest 0.06 0.3 0.85 0.06 0.22 0.88 

Barren land 0.02 0.03 0.97 0.01 0.03 0.97 

Grassland 0.08 0.01 0.98 0.02 0.01 0.99 

Cropland 0.06 0.01 0.98 0.02 0.01 0.98 

All 0.02 0.15 0.96 0.10 0.02 0.96 

MULSS SNC Forest 0.38 0.17 0.75 0.35 0.17 0.76 

Barren land 0.03 0.11 0.91 0.02 0.10 0.92 

Grassland 0.08 0.08 0.91 0.06 0.07 0.93 

Cropland 0.04 0.06 0.94 0.04 0.05 0.95 

All 0.13 0.09 0.89 0.11 0.08 0.91 

 

E. Performance of MERSI-II FSC during the snowmelt season 

In this study, we focused on mapping FSC only during the 

winter season because little snowfall is observed within China 

during the other seasons. But the performance of MERSI-II 

during the snow-melt season is discussed in this section. We 

retrieved FSC in China from March 1 to May 7, 2020 as a 

supplement. Another 85 Landsat-8/OLI FSC images were 

retrieved as a reference dataset.  Fig. 10 shows RMSE and R2 

of MERSI-II FSC from January, 2020 to April, 2020. Slight 

reduction of accuracy can be seen when comparing RMSE 

during the snowmelt season (March, 2020 and April, 2020) with 

that during the snowfall season. It is owing to the fragmented 

and thin snow distribution exacerbating the uncertainty of 

retrieval in this period. Nevertheless, the performance of the 

MESMA-AGE algorithm during this period is very similar to 

that in the snow season. 

 
Fig. 10. Monthly statistic validation metrics of MERSI-II FSC  
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VII. CONCLUSION 

The MERSI-II sensor aboard the FY-3D satellite has been 

utilized for snow cover monitoring across China. The MESMA-

AGE algorithm was applied for snow cover mapping with the 

FY-3D/MERSI-II sensor. Four surface types including soil, 

snow, vegetation, and water are considered in estimate of snow 

area in each pixel. In this study, daily MERSI-II snow cover 

maps from January 1, 2020, to February 28, 2020, were 

produced and validated against finer-scale OLI-derived FSC. 

The results demonstrate the MERSI-II instrument's capability 

for daily, extensive-scale snow cover monitoring. Enhanced by 

improved endmember representation and automated processing, 

this FSC mapping method shows commendable performance in 

China. Notably, MERSI-II achieved an RMSE of 0.13 and an 

R2 value of 0.88 when validated versus 253 OLI-based FSC 

scenes. It exhibits a slight edge over MODIS, partly due to the 

aging of MODIS instruments leading to reduced performance 

in monitoring variations over snowpacks. Additionally, the 

atmospheric correction method used for MERSI-II surface 

reflectance datasets [51] is particularly effective for bright 

surfaces like snow. Further assessments revealed consistent 

accuracy in estimating FSC in barren land areas across all 

geographical subregions. Grasslands and croplands, however, 

showed less optimal results compared to barren lands. A 

significant concern is the underestimation of FSC in forested 

areas, where canopy cover can hinder the detection of spectral 

information from snow. This issue leads to notable uncertainties 

in FSC mapping. In this work, forest as the main vegetation type 

in winter was considered on a horizontal scale.  However, in the 

vertical direction, the impact of forests on mapping OLI FSC 

was not considered. The study also evaluated snow cover 

mapping accuracy in three major snow cover regions: the 

Tibetan Plateau, northern Xinjiang, and Northeast China. The 

Tibetan Plateau and northern Xinjiang, with their extensive bare 

surfaces and alpine meadows, showed superior precision in 

snow cover mapping. In contrast, Northeast China, with a 

fractional forest cover over 0.4, exhibited the least accuracy. 

Terrain impacts were also observed, indicating that MERSI-II 

FSC is effective in flat terrains but less so in steep areas. Future 

efforts will aim to enhance the snow cover mapping algorithm 

for alpine forests and steep terrain.  
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