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DS-SwinUNet: Redesigning Skip Connection with
Double Scale Attention for Land Cover Semantic
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Abstract—In recent years, the development of visual Trans-
former has gradually replaced convolutional neural networks
in the visual domain with attention computation, causing pure
Transformer networks to become a trend. Despite significant ad-
vancements in semantic segmentation models for remote sensing,
a critical gap remains in effectively capturing both local and
global contextual information. Existing models often excel in
either fine-grained local detail or long-range dependencies, but
not both. Our work addresses this research gap by proposing the
DS-SwinUNet model integrating convolutional operations with
Transformer-based attention mechanisms through the novel DS-
Transformer block, which consists of a two-scale attention mech-
anism incorporating convolutional computation and a modified
FFN, and the module is placed in the skip connection section
with Swin-UNet as the backbone. Experiments demonstrate that
the Transformer module proposed in this paper improves the
mIoU by 2.73% and 0.41% over the original Swin-UNet when the
WHDLD and OpenEarthMap dataset are used as the segmen-
tation task. Code is available at: https://github.com/A1ray/DS-
SwinUNet

Index Terms—Deep learning, semantic segmentation, skip
connection, Transformer.

I. INTRODUCTION

REMOTE sensing images, as an important data source for
obtaining the earth’s surface coverage conditions, have

a wide range of applications in the fields of urban planning,
environmental monitoring, and resource management [1], [2].
Accurate semantic segmentation of these images is the key
to understand the surface features, monitor environmental
changes and make accurate decisions. However, traditional
methods often face challenges such as complex feature cat-
egories and fuzzy boundaries when dealing with semantic
segmentation of remotely sensed images, which constrain the
accuracy of image interpretation and precise recognition of
feature objects.

In recent years, the rise of deep learning techniques has
provided new opportunities for solving remote sensing image
semantic segmentation problems. Deep learning architectures
such as convolutional neural network (CNN) and Transformer
show great potential in image processing. CNN is capable of
extracting image features through convolutional operations, but
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has limitations in handling global information and long-range
dependencies [3]–[5]. In contrast, Transformer-like methods
capture the correlation of different regions in an image with a
self-attention mechanism, which is expected to better address
the challenges of scale and boundary information in remote
sensing images. Meanwhile, network structures such as U-Net
fuse different layers of features through skip connection, as
shown in Fig. 1, which improves the efficiency of utilizing
details and contextual information [6].

However, the semantic segmentation of remote sensing
images presents challenges for current deep learning methods.
A key issue is the limited diversity and richness of available
datasets, which constrains the improvement of model perfor-
mance. Specifically, the lack of a large-scale and diverse land
cover dataset hampers the model’s generalization ability, espe-
cially in handling different feature objects and complex scenes.
Remote sensing datasets such as WHDLD and OpenEarthMap
present unique challenges in capturing both local and global
contextual information. For instance, in the WHDLD dataset,
the boundaries of water bodies are often blurred, making it
difficult to distinguish between water and surrounding vege-
tation. Similarly, in the OpenEarthMap dataset, the varying
scales of urban infrastructure such as buildings and roads
introduce complexity in balancing fine-grained local details
and broader spatial relationships. A critical gap persists in
effectively capturing both local and global contextual infor-
mation in semantic segmentation models designed for remote
sensing, despite significant advancements. Existing models
are adept at excelling in either fine-grained local detail or
long-range dependencies, but not both simultaneously. CNN-
based models like U-Net and SegNet excel at extracting local
features but face challenges with capturing global context due
to the inherent locality of convolution operations. On the other
hand, Transformer-based models effectively capture global
relationships but may lack the precision necessary for detailed
segmentation of small or intricate structures. Swin-UNet, as
a Transformer-based U-shaped network, has demonstrated the
ability to capture long-range dependencies through attention
mechanisms [7]. However, its emphasis on global features
can result in the loss of fine-grained local details, which are
essential for tasks such as land cover segmentation. In contrast,
our proposed DS-SwinUNet enhances this architecture by
introducing a Double-Scale Attention mechanism, which not
only captures long-range dependencies through Transformer-
based attention but also integrates convolutional operations to
preserve local details more effectively. The research involves
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comparing and analyzing the performance of different deep
learning models in feature recognition and delving into the
role of skip connections and other mechanisms in semantic
segmentation tasks. Ultimately, the study seeks to provide
new insights and technical support for enhancing semantic
segmentation methods and advancing the field of remote
sensing image processing. The contribution is as follows:

1) We propose a new two-scale attention mechanism, which
preserves the linear relationship while learning the more
complex non-linear one thus improving the precision of
segmentation.

2) We have optimized the FFN in the traditional Trans-
former module to perform forward propagation, obtain-
ing a better accuracy performance as well as a smoother
loss drop during training, and reducing the training time.

3) We design a FPU(Final Processing Unit) at the end
of the network model, which effectively mitigates the
problem of possible information loss caused by decoder
upsampling in the segmentation model and enhances the
robustness of the model.

II. RELATED WORK

A. Semantic Segmentation

Semantic segmentation is a critical computer vision task
with a wide range of applications in fields such as autonomous
driving, robotics, and medical image analysis. Long et al. pro-
posed the full convolutional neural network (FCN), an end-to-
end neural network model for semantic segmentation [8]. The
FCN model achieves state-of-the-art performance on semantic
segmentation tasks by replacing the last convolutional layer of
the convolutional neural network (CNN) with a transpositional
convolutional layer, allowing for segmentation of the image
into segmentation maps of arbitrary sizes. Chen et al. presented
the Deep Hollow Convolutional Network (DeepLabV3), a

deep neural network model for semantic segmentation [9].
The DeepLabV3 model employs hollow convolution to expand
the receptive field, enabling the capture of a wider range of
contextual information in an image [10]. He et al. developed
the Mask R-CNN model, a deep neural network model for
instance segmentation and semantic segmentation [11]–[13].
The addition of a segmentation branch to the Faster R-CNN
model enables the Mask R-CNN model to perform target
detection and semantic segmentation simultaneously. Wu et al.
proposed the SETR model, an end-to-end Transformer model
for semantic segmentation [14]. Applying the Transformer
model to the semantic segmentation task and utilizing a
new attention mechanism to aggregate features at different
locations in the image has enabled the SETR to achieve a
good performance. Cao et al. proposed Swin-UNet, the first
U-Net shaped medical image segmentation network based on
pure Transformer [7]. Labeled image chunks are fed into a
Transformer-based U-shaped encoder-decoder architecture via
skip connections for local global semantic feature learning.

B. Mutual attention

Mutual attention is a mechanism utilized in machine learn-
ing models, particularly in computer vision and natural lan-
guage processing (NLP), to facilitate dynamic interaction
among multiple input sources or different sections of the
same input [15], [16]. This mechanism enables the model to
prioritize the most pertinent aspects of the inputs, enhancing
comprehension and information integration [17]. By dynami-
cally adjusting its focus on varying sections of the input data
based on their task-related relevance, mutual attention crucially
aids tasks with components of fluctuating importance. Notably,
in multi-modal learning scenarios involving various input
sources such as text and image, mutual attention permits the
model to interconnect information across these sources [18].

Fig. 1. The U-Net architecture and its variants. (a) uses skip connections to directly pass feature maps from encoder to decoder, aiding in spatial information
recovery. (b) enhances U-Net by adding dense connections between convolutional layers, improving detail capture. (c) replaces CNN blocks with Transformer
blocks while retaining skip connections for spatial information. (d) connects CNN blocks using Transformer layers to combine local and global feature extraction.
(e) utilizes Transformer blocks exclusively, connected through additional Transformer layers for long-range dependencies. (f) combines Transformer blocks
with both Transformer and CNN connections, leveraging strengths of both architectures.
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Mutual attention mechanisms have been employed in image
classification to capture dependencies between various parts
of an image, thereby enhancing the accuracy of classification.
Vision Transformers (ViTs), as introduced by Dosovitskiy et
al., utilize self-attention mechanisms across image patches
to more effectively capture the global context compared to
traditional CNNs [19]. Through the attention mechanism,
the model can determine the significance of different image
regions, consequently boosting classification performance. In
the context of image segmentation, mutual attention mech-
anisms play a crucial role in accurately delineating objects
within an image by incorporating contextual information from
diverse regions of the image. An illustrative instance is the
Dynamic Dual Attention Network (DDAN) presented by Chen
et al., where both spatial and channel attention mechanisms
are leveraged to improve segmentation [20]. While spatial
attention focuses on pertinent image regions, channel attention
captures dependencies among different feature maps, thereby
enhancing segmentation accuracy. Liu et al. proposed S2MA,
by combining self-attention and mutual attention, long-range
contextual dependencies are enhanced, allowing for more pre-
cise learning and propagation of contexts with the integration
of multi-modal information [21].

C. Transformers and CNNs for remote sensing applications

Recent advancements in remote sensing applications have
significantly benefited from the integration of Transformer
models and Convolutional Neural Networks (CNNs). Trans-
former models such as Swin Transformer proposed by Liu
et al., have shown remarkable capabilities in handling the
vast and complex data typical in remote sensing, providing
enhanced accuracy and efficiency in various tasks such as land
cover classification, object detection, and change detection
[22]. The Swin Transformer incorporates a hierarchical feature
extraction process that significantly improves the efficiency
and accuracy of remote sensing image analysis. Its ability
to handle different scales of features makes it particularly
suitable for high-resolution satellite imagery, where objects
can vary greatly in size. On the other hand, CNNs have
long been the cornerstone of remote sensing image analysis
due to their proficiency in capturing local spatial features
through convolutional operations [23]–[25]. Current state-of-
the-art CNN models such as ConvNeXt provide comparable
performance to Transformer while maintaining a clean design,
and in some cases are more efficient [26].

III. METHOD

A. Model Architecture

The model proposed in this paper enhances the Swin-UNet
model, which is depicted in Fig. 2. The green and orange
rectangles in the figure represent the encoder and decoder in
Swin-UNet respectively. Specifically, both the encoders and
decoders consist of 4 layers of Swin Blocks, with 2, 2, 6 and
2 blocks in each layer respectively [27], [28]. It is important to
note that the skip connection between encoders and decoders
in each layer only performs the concat operation [29]. To better
preserve the linear feature relationship between the encoders

and decoders in the same layer, this paper introduces a new
Double Scale Attention(DS-Attention) mechanism designed to
achieve this purpose. DS-Attention combines the features of
two neighboring layers of encoders of different dimensions,
and the attention computation is done separately by these
two layers of features, so that the same input learns its own
semantic information at different scales, and provides richer
and more accurate semantic information for the subsequent
splicing with the output of the decoder. We designed the
final processing unit at the output position of the network
to minimize the loss of image position information resulting
from up-sampling. In addition, we implemented a module with
depth-separable convolution to reduce the number of parame-
ters added to the network, thereby lowering the computation
load. This design choice maintains the expressive power of
the convolutional layer while minimizing the overall parameter
count.

The DS-Transformer block integrates the strengths of CNNs
and Transformers to enhance multi-scale feature extraction for
image segmentation, as depicted in Fig. 1. The block starts
by normalizing the input feature maps zl and zl+1 using
Layer Normalization (LN) [30]. These normalized feature
maps are then fed into the DS-Attention module, which
combines convolutional operations for local feature extraction
with Transformer attention for capturing global dependencies.
The output from the DS-Attention module is normalized again
through another LN layer and passed through a Multi-Layer
Perceptron (MLP) for further feature transformation [31], [32].
Finally, a residual connection adds the MLP output back
to the original input, enhancing the feature representation.
This mixed connection of convolutional and Transformer
operations enables the DS-Transformer block to effectively
capture both local and global features, improving segmentation
performance.

B. DS-Attention

Traditional skip connections in U-shaped networks help fuse
low-level and high-level features by directly passing feature
maps from the encoder to the decoder. However, these methods
often result in the loss of fine details or fail to accurately
capture long-range dependencies in complex scenes, particu-
larly when there are significant scale variations or ambiguous
boundaries, such as in the case of water bodies or bare soil
in remote sensing images. While skip connections assist in
retaining spatial information, they do not explicitly account
for the varying scales of features within the same image. This
inadequacy motivates the development of our DS-Attention
mechanism, which integrates multi-scale feature extraction
within the skip connections to better preserve both local and
global information, ensuring a more robust segmentation [33],
[34]. The cross-attention mechanism facilitates the comparison
and fusion of two sequences from different sources, enabling
the model to establish associations between them and derive
comprehensive insights [35], [36]. Specifically, the approach
discussed in the paper involves using the output of the current
encoder and the next encoder layer as inputs to DS-Attention,
facilitating the relationship between the two sequences and
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enabling the extraction of information from one sequence
to enhance understanding of the other, as shown in Fig. 3
[37]. The methodology involves utilizing the output of the
lth layer of the Swin encoder block as the Query, and the
output of the l + 1th layer of the Swin encoder block as
the Key and Value for attention calculation. Subsequently, the
l + 1th layer is used as the Query, and the lth layer as the
Key & Value, with the resultant attention computation being
concatenated with the earlier result. The inclusion of multi-
scale features ensures that both fine and coarse details are
preserved, leading to more accurate segmentation outcomes.
This process allows the two sequences to effectively learn
and comprehend each other’s sequential information, resulting
in the acquisition of features with enriched semantic content.
Traditional self-attention mechanisms, such as those used in
ViT, operate on a single scale, which may not be sufficient
for tasks requiring multi-scale feature aggregation while DS-
Attention enhances this by incorporating multiple scales [19].

In contrast to traditional attention modules, where the in-
put undergoes linear layer processing to compute correlation
between all features, the proposed method replaces the lin-
ear layer with a convolutional layer. This adaptation local-
izes correlation computation, thereby reducing computational
complexity. Moreover, the translation invariance property of
the convolutional layer ensures model robustness to image
translation.

Specifically, given an input zl and its next layer of features
zl+1, it is first transformed into the corresponding sequence
Query, Key and Value with the following formula:

Q̃ = zlWQ̃ +BQ̃ Q̂ = zl+1WQ̂ +BQ̂ (1)

K̃ = zl+1WK̃ +BK̃ K̂ = zlWK̂ +BK̂ (2)

Ṽ = zl+1WṼ +BṼ V̂ = zlWV̂ +BV̂ (3)

where Q̃(Q̂), K̃(K̂) and Ṽ (V̂ ) is transformed from the
input and into a learnable linear mapping matrix, WQ̃(WQ̂),
WK̃(WK̂) and WṼ (WV̂ ) represents the weight matrix.
BQ̃(BQ̂), BK̃(BK̂) and BṼ (BV̂ ) represents the bias of the

Fig. 2. The proposed model architecture. Our model comprises an encoder, bottleneck, and decoder. Initially, the input image is transformed into feature
maps of size W

4
× H

4
×C through linear embedding. The encoder utilizes Swin Encoder Block to process these feature maps, gradually reducing the spatial

dimensions to W
32

× H
32

× 8C. Subsequently, the bottleneck stage employs DS-Transformer to ensure continuous connections with the decoder. Within the
decoder, Swin Decoder Block reverses the process, increasing the dimensions back to W

4
× H

4
× C. Ultimately, the Final Processing Unit (FPU) merges

the final feature maps to generate the segmentation map. Additionally, the diagram illustrates various connection types: Patch Expand, Patch Merge, and Skip
Connection, elucidating the feature transfer mechanisms operating within the model.
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linear mapping [38]. Then, the attention scores of the two are
calculated separately with the following formula:

S̃ = softmax(
Q̃K̃T

√
dk

)Ṽ (4a)

Ŝ = softmax(
Q̂K̂T

√
dk

)V̂ (4b)

S = S̃ ⊕ Ŝ (4c)

Where dk represents the dimension of the input, ⊕ represents
the final score is spliced from the results of two attention
calculations in the channel dimension. Since the length of V
is half of the input dimension, the output dimension is the
same size as the input, which facilitates the encoder part of
the channel splicing and reduces the computational complexity
while effectively avoiding overfitting.

C. SwiGLU for FFN

The FFN, or feed-forward neural network layer, is an
integral component of the Transformer block, tasked with
reshaping the inputs of the Transformer block to create new
representations.

As a critical element within the Transformer model, the FFN
serves to enhance the model’s representation capability and
overall performance. Typically, the FFN’s structure involves
two fully-connected layers, linked by an activation function
placed between them, such as GeLU. While GeLU is effective,
SwiGLU’s combination of Swish and GLU offers a superior
balance between non-linearity and model capacity. Traditional
activation functions like ReLU and its variants (e.g., Leaky
ReLU) are simpler but often insufficient for capturing the
complex patterns required for high-performance segmentation
tasks. SwiGLU provides a more sophisticated alternative [39].
SwiGLU, which combines the Swish activation function with
the Gated Linear Unit (GLU), provides enhanced flexibility
by allowing the model to adaptively control the information

flow through gating mechanisms. This property is particu-
larly beneficial in deep networks, as it helps mitigate the
vanishing gradient problem commonly associated with deeper
architectures. SwiGLU introduces a more complex non-linear
relationship compared to GeLU, enabling the model to capture
more intricate patterns in the data. By incorporating gating
mechanisms, SwiGLU increases the representational capacity
of the FFN layer, leading to improved performance. The
formula for SwiGLU is depicted as follows:

Swishβ(x) =xσ(βx) (5)
SwiGLU(x,W, V, b, c, β) =Swishβ(xW + b) (6)

⊗ (xV + c)

=(xW + b)σ(β(xW + b))

⊗ (xV + c)

FFNSwiGLU(x,W, V,W2) =(Swish1(xW )⊗ xV )W2 (7)
=(xWσ(xW )⊗ xV )W2

where β is a hyperparameter, taken as 1 in this experiment.
σ denotes the sigmoid activation function, W , W2 and V
represents the 3-layer weight matrix in the modified FFN (the
original FFN has only 2 layers), b and c represents the bias
of the weight matrix [40]. The modified FFN usually does a
scaling of the size of the hidden layers due to the introduction
of more weight matrices, thus ensuring that the overall number
of parameters remains the same.

D. Final Processing Unit

In this section, a final processing unit (FPU) is developed
with the aim of preserving the semantic feature information
of the input data and minimizing the loss of accuracy, as
depicted in Fig. 4, the FPU consists of several stages designed
to achieve these objectives [41]. FPU plays a crucial role
in maintaining the integrity of semantic feature information
during upsampling, where traditional methods often suffer
from information loss due to the spatial resolution increase.

Fig. 3. Structure of DS-Attention. DS-Attention starts with convolutional layers to capture local features, followed by a Transformer encoder to integrate global
context. The figure highlights the mixed connection approach, where convolutional operations are seamlessly combined with Transformer-based attention.
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In contrast to conventional bilinear or deconvolution-based
upsampling, FPU leverages depthwise separable convolutions
to minimize the number of parameters while preserving fine-
grained details. This operation allows the model to focus on
critical semantic features during the upsampling process, re-
ducing the potential for blurring or misclassification of smaller
objects. First, the input data undergoes a Depth Separable
Convolution(DWConv), which is a specialized convolution
operation [42]. This operation applies a separate convolution
kernel to each input channel, thereby reducing computational
complexity and the number of parameters in the convolution
layer while maintaining its expressive power. Subsequently,
the output of the depth convolution is convolved using a 1x1
convolution kernel, resulting in the generation of the final
output feature map. Unlike the final patch expand of Swin-
UNet, the FPU does not solely enlarge the resolution of the
data before outputting the final result; it focuses on preserving
the semantic feature information of the input data throughout
the process of enlargement. This distinctive approach aims to
restore the output to the same size as the input data, while also
ensuring the preservation of important details. The equation for
FPU is as follows:

y =DWConv2D(x, kDW )

+PWConv2D(DWConv2D(x, kDW ), kPW )
(8)

where x is the input feature map, kDW and kPW is the
number of deep convolutional kernels and dot convolutional
kernels, both set to 6 in this experiment, while the size
of the deep convolutional kernel is 3 and the size of the
dot convolutional kernel is 1. y is the output feature map.
The semantic richness of the data is positively correlated
with the length of the data, where longer sequences tend to
contain richer semantic information. As such, in both PW
convolutions, the number of channels is scaled up by a factor
of 2 in order to capture more information about the data
before applying finer processing. Subsequently, the scaled-up
channels are then scaled back to their original size to enable
finer processing of this enriched information. This approach
enables the model to better capture the semantic nuances
within the data, particularly in longer sequences.

E. Loss Function
Both the WHDLD and Xuanwu Lake datasets exhibit class

imbalance, with certain classes (e.g., water bodies and vehi-
cles) having significantly fewer examples compared to more
prevalent classes like vegetation or buildings. To mitigate the
impact of class imbalance, we employed a combination of
Cross-Entropy Loss and Dice Loss with the following formula:

Loss =0.4 ∗ CrossEntropyLoss (9)
+ 0.6 ∗DiceLoss

CrossEntropyLoss =−
N∑
i=1

yi log(pŷi
) (10)

DiceLoss =1− 2 |X ∩ Y |+ Smooth

|X|+ |Y |+ Smooth
(11)

where yi and ŷi denote the true label and predicted label
respectively, pŷi denotes the probability value of correct
prediction. |X| and |Y | represents the mask values of the
true and predicted targets respectively, |X ∩ Y | represents
the intersection of the two, and Smooth as a hyperparameter
is set to 1 in this experiment. We set weights for the two
loss functions, a weight of 0.4 was set for CELoss, while
DiceLoss accounted for 0.6. This loss function ensured that the
model paid more attention to underrepresented classes during
training, reducing the likelihood of bias towards the dominant
classes.

IV. EVALUATION INDICATORS AND DATASETS

A. Evaluation Indicators

We use five evaluation metrics for evaluating the perfor-
mance of the model, which are OA, AA, Kappa, F1, and mIoU,
each formula will be explained below. OA, AA and F1 are
the metrics to measure the performance of the classification
model. OA calculates the correct prediction rate for all samples
and AA calculates the average of the accuracy rates for all
categories. Given the TP(True Positive), TN(True Negative),
FP(False Positive) and FN(False Negative) for all categories,
metrics for OA, AA, and F1 scores can be derived with the
following formulas:

OA =
TP + TN

TP + FN + FP + TN
(12)

AA =

N∑
i=1

Accuracyi

N
(13)

F1 =
2 · TP

2 · TP + FP + FN
(14)

where N is the number of categories and i is the current
category. The mIoU is one of the most commonly used
evaluation metrics for segmentation models, which calculates
the average of the ratio of the intersection and concatenation
of all categories with the following formula:

mIoU =
1

N

N∑
i=1

TP

FN + FP + TP
(15)

Kappa coefficient is a statistic that measures the consistency
of a classification model. It can be used to compare the
performance of different classification models, and it is more
robust to sample imbalance, while other metrics such as
accuracy are susceptible to sample imbalance. The formula
is as follows:

K =
p0 − pexp
1− pexp

(16)

where p0 represents the proportion of the number of samples
correctly predicted by the classification model to the number
of all samples, pexp represents the probability that a sample
will be correctly classified without taking into account the
predictions of the classification model.
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B. Wuhan Dense Labeling Dataset

The WHDLD dataset, derived from a large RS image of
the Wuhan urban area, comprises 4940 RGB images, each
manually labeled with six classes, namely building, road,
pavement, vegetation, bare soil, and water [43]. The images
have a spatial size of 256 × 256 and a resolution of 2m. In
Fig. 5(a), sample images along with their pixelwise labeling
results are depicted, providing a visual representation of the
dataset.

C. OpenEarthMap Dataset

OpenEarthMap presents a major advance over existing data
with respect to geographic diversity and annotation quality
[44]. It consists of 2.2 million segments of 5000 aerial
and satellite images covering 97 regions from 44 countries
across 6 continents, as shown in Fig. 5(c), with manually
annotated 8-class land cover labels at a 0.25–0.5m ground
sampling distance. Semantic segmentation models trained on
the OpenEarthMap generalize worldwide and can be used as
off-the-shelf models in a variety of applications.

D. Xuanwu Lake Dataset

The Xuanwu Lake Dataset is a private dataset produced
by our research group, as shown in Fig. 5(b), and we plan
to make it public in the future. It was collected by a drone
from Xuanwu Lake and its surrounding area in Nanjing,
Jiangsu Province, China. The dataset has a total of 2869
256 × 256 images in seven categories, which is one more
category of vehicle than WHDLD. Due to the complexity of
real-world environments, the images captured by our drones
could not be more accurately segmented into vegetation and
soil categories, and the categorization of soils and roads was
problematic in certain shaded environments. Since our dataset
still suffers from a small amount of labeling, it is only used
as an evaluation of the effect of generalization in subsequent
experiments.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setup

In the training process of DS-SwinUNet, we used the
following hyperparameters:

• Learning rate: An initial learning rate of 1e-4 with a co-
sine annealing schedule to gradually reduce the learning
rate as the training progressed.

• Batch size: 16.
• Optimizer: Adam optimizer with default parameters β1 =

0.9, β2 = 0.999, and an epsilon value of 1e-8 to ensure
stable convergence.

• Weight decay: 5e-5.
• Epochs: 150 epochs, and early stopping was applied if

the validation loss did not improve for 10 consecutive
epochs.

To enhance the model’s generalization ability, various prepro-
cessing and data augmentation techniques were employed on
the training datasets. Initially, each image was standardized

by subtracting the dataset’s mean and dividing by its standard
deviation, ensuring consistent input values. To further increase
the diversity of the training data and mitigate overfitting,
several augmentation methods were applied. These included
random rotations, horizontal and vertical flipping, random
cropping and resizing, as well as color jittering.

B. Performance Comparison of Different Models on WHDLD

We compared the proposed model’s overall segmentation
performance with that of six state-of-the-art methods. The
experimental results, detailed in Table I, indicated that our
model slightly outperformed the other methods across various
metrics, each evaluation metric is expressed as a percentage,
with higher numbers indicating better performance. Mean-
while, we also compared the loss convergence of our model
with various types of U-shaped networks during training, the
comparison is shown in Fig. 8(a). Our model exhibits more
stable convergence and smoother curves compared to Swin-
UNet. This observation underscores the effectiveness of our
network optimization strategies. This success was the result
of a series of optimizations and enhancements made to the
original model, which ultimately led to a 2.726% increase
in the mIoU. Fig. 8(b) shows the number of parameters and
flops of various types of segmentation networks compared to
ours, where all the remaining ones are CNN-based networks
except Swin and ours. It is obvious and well recognized that
the number of parameters of the Transformer-based networks
is much larger than that of CNN, but the flops are smaller
than that of CNN. Compared with Swin, our network has an
increase in both the number of parameters and the FLOPs, but
this small increase is acceptable in exchange for an increase in
accuracy. The DS-Attention mechanism enhances the model’s
ability to capture both fine local details and global contextual
information, which is particularly beneficial in classes such as
water and bare soil. For instance, in the water class, the ability
to attend to broad, uniform areas while maintaining sharp
boundaries at the water’s edge contributes to higher accuracy.
Similarly, in the bare soil class, DS-Attention’s focus on
intricate textures and edges helps differentiate between soil and
similar surrounding categories. This dual-scale attention allows
the model to outperform Swin-UNet, which may struggle with
balancing fine detail preservation and long-range dependencies
in these classes.

Class imbalance can have a noticeable effect on certain
evaluation metrics, particularly F1-score and mIoU, where
underrepresented classes might receive lower scores due to
fewer correctly predicted examples. However, our model
demonstrated relatively stable performance even in categories
with fewer examples, such as water bodies and bare soil,
thanks to the loss function. As shown in Table I, the F1-score
and mIoU for these classes, although slightly lower than for
majority classes, were still competitive, indicating the model’s
ability to generalize well across imbalanced datasets.
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Fig. 4. Structure of FPU. The input feature maps, denoted as (N,H,W), where N represents the number of feature maps, H the height, and W the width,
undergo a splitting operation. The split feature maps are processed by depthwise convolution (DWConv) layers with a 3×3 kernel and LayerNorm. These
processed features are then concatenated to form feature maps of size (1,H,W)×N. Subsequently, pointwise convolutions (PWConv) with a 1×1 kernel and
Gelu activation function are applied, followed by another PWConv without Gelu activation. The resulting feature maps are of size (2N,H,W). Finally, a feature
addition operation integrates these feature maps back into the original dimensions (N,H,W), completing the FPU processing pipeline.

In Fig. 6, we present the segmentation results obtained from
the comparable U-Net family models. Notably, the black boxes
in these figures delineate areas where our model demonstrates
superior performance compared to the other methods. The
box demonstrates our model’s ability to effectively segment
various classes of small objects among a wide range of
similar objects. Our findings indicate that DS-SwinUNet yields
segmentation results that closely align with the ground truth,
surpassing those produced by the baseline model. Specifically,
our proposed method effectively identifies the correct salient
regions while mitigating the occurrence of false positive le-
sions, resulting in the creation of coherent boundaries.

C. Performance Comparison of Different Models on Open-
EarthMap

To comprehensively evaluate the performance of our pro-
posed DS-SwinUNet model, we compared it with several
state-of-the-art semantic segmentation models using the Ope-
nEarthMap dataset. The quantitative results are presented in
Table III, while Fig. 7 offers a visual comparison of the
segmentation outputs. Table III demonstrates that our DS-
SwinUNet model achieves superior performance across mul-
tiple key metrics, including Intersection over Union (IoU) for
various land cover classes and mean Intersection over Union
(mIoU). Specifically, our model achieves an impressive mIoU
of 67.49%, improving a little bit over the original Swin-
Unet in all classes of IoU, mIoU improves by 0.41%, and
comparing to the other models in the table it is also at the
top of the list. Our DS-SwinUNet model excels in multiple
classes, particularly in challenging ones like ”Bareland” and
”Developed,” where it significantly reduces misclassification
and captures finer details compared to other models. The
integration of convolutional operations and Transformer-based
attention in the DS-Attention block is a pivotal factor in our
model’s performance. The convolutional layers effectively cap-
ture local spatial details, while the Transformer layers provide

a global context, leading to more precise and coherent seg-
mentations. This hybrid approach allows our model to leverage
the strengths of both techniques, resulting in enhanced feature
extraction and robust performance across diverse land cover
types.

D. Pure CNN Networks with DS-Transformer

We conducted experiments involving the integration of the
DS-Transformer module into three distinct CNN networks
[45]–[47]. Specifically, we introduced the module in the cross-
layer feature reconstruction section of each network. The
resulting experimental outcomes are presented in Table II,
pure CNN means the original model and with DST means the
concat opreation of the original model with DS-Transformer.
Overall, the evaluation metrics for each model exhibited a
slight improvement, with the exception of the mIoU metric
of PSPNet, which instead displayed a minor decrease. We at-
tribute this finding to the distinction between the local attention
mechanism of CNN and the global attention mechanism of the
Transformer. Consequently, it is plausible that PSPNet may
have learned an incorrect local feature, leading to our proposed
module unintentionally amplifying this erroneous feature.

E. Ablation Study

Table IV displays the results of individual experiments con-
ducted for each proposed module, providing evidence of the
effectiveness of our designed DS-Attention. We reevaluate the
role of feedforward neural networks in the Transformer block
by incorporating the latest activation functions, introducing
additional weight matrices, and scaling the size of the hidden
layer in order to maintain a constant overall number of param-
eters. This modification enables DS-Attention to capture more
intricate relationships and enhance the expressive capacity
of this attention mechanism. Incorporating the strengths of
both the Swish and GLU activation functions, SwiGLU offers
several advantages. The Swish function is known for its ability
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to generate smoother gradients compared to ReLU, thereby
addressing issues related to gradient vanishing and explosion.
By leveraging the combined form of SwiGLU, models are
empowered to capture more intricate non-linear relationships.
This increased expressiveness results in the model being able
to more effectively fit the training data, thus leading to
improved performance across a range of tasks. To verify the
effectiveness of SwiGLU, it was imperative to conduct exper-
iments in conjunction with DS-Attention. In order to compare
and demonstrate the effectiveness of SwiGLU, traditional Gelu
and SwiGLU were included as components of DS-Attention.
Empirical results from our experiments indicated that using
SwiGLU led to a more stable training process and improved
performance, as evidenced by a smoother loss curve and better
convergence compared to models using GeLU.

F. Performance of Generalization on Xuanwu Lake Dataset

In our private dataset, we relabeled some images to align
the number and types of categories with those in WHDLD,
and ensured that their masks correspond one-to-one with the
masks used for training in WHDLD. The same class (e.g.,

vegetation) can appear very differently in various parts of
the dataset due to differences in seasonal conditions, lighting,
and vegetation density. This variability makes it difficult for
models to generalize and accurately segment the entire class.
As depicted in Fig. 9, both Swin-UNet and our enhanced
model were tested for generalization in an untrained dataset.
Remarkably, our proposed model demonstrated superior per-
formance compared to SwinUNet in accurately segmenting
target edges. The dataset features many complex and irreg-
ular boundaries, especially between natural and man-made
structures. Accurately capturing these boundaries is crucial for
precise segmentation, but it is challenging for models that rely
solely on local context. The presence of mixed scenes with
both urban infrastructure and natural elements requires the
model to be versatile and capable of distinguishing between
different types of features accurately.

(a) WHDLD (b) Xuanwu Lake Dataset

(c) OpenEarthMap Dataset

Fig. 5. Example images and labels of WHDLD, Xuanwu Lake Dataset and OpenEarthMap Dataset.
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Fig. 6. Visualization of various UNet-like networks on WHDLD. The visualisation in the black box highlights that the output of our model is much closer
to the segmentation similarity of Ground Truth than to the other models.

Fig. 7. Visual comparison of land cover mapping results of some of the baseline models presented in Table III.

adds to the complexity as the model must adapt to different
contexts within the same image. Notably, out model excelled
particularly in delineating the edges of regular-shaped targets
like circular plazas encompassing sidewalks, square buildings,
and road edges. In the second row of Fig. 9, our model
accurately segments out six boats in the lake, and although it
was not labeled with that species during training, it was also
able to separate out tiny non-water objects in the water of just

a few pixels, which can indicate that our model performs well
in segmenting small objects as well.
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(a) (b)

Fig. 8. Training loss curves and the number of parameters and FLOPs of the models.

VI. DISCUSSION

In urban planning, this method could assist in accurately
identifying and segmenting buildings, roads, and green spaces,
providing valuable insights for infrastructure development.
In agriculture, the model could be applied to monitor crop
health and detect land use changes, which are critical for
precision farming. Environmental monitoring is another po-
tential domain, where the model could be used to track
deforestation, water bodies, and natural resource depletion
with high accuracy. The model’s ability to generalize across
diverse datasets suggests that it could be adapted to various
tasks where both fine details and broader context are es-
sential for decision-making. The key factor contributing to
this performance improvement is the integration of a two-
scale attention mechanism within the skip connections. This
mechanism includes mutual attention mechanisms working at
varying scales, enabling the model to better capture both fine
and coarse features. By adopting this dual-scale approach,
the model can effectively utilize detailed local information
and broader contextual cues simultaneously, resulting in more
accurate segmentation results.

While the DS-SwinUNet model demonstrates strong overall
performance across various land cover types, there are specific
conditions where it struggles. For instance, in shadowed areas,
the model often has difficulty accurately segmenting features
due to reduced contrast and lack of distinct visual cues. This
is particularly evident in urban environments where buildings
create significant shadow effects, leading to misclassification
of adjacent features like roads and vegetation. Additionally, in
regions with highly mixed land cover, such as transitional areas
between urban and rural environments, the model may face
challenges in distinguishing between similar classes (e.g., bare
soil versus constructed surfaces). In these cases, the overlap-
ping characteristics of different land cover types can confuse
the model, resulting in lower accuracy for specific classes.

These limitations highlight the need for further refinement and
possibly additional training data focused on these challenging
conditions to enhance the model’s robustness.

VII. CONCLUSION

In this paper, we present DS-SwinUNet, a novel semantic
segmentation network developed specifically for the land cover
remote sensing dataset. DS-SwinUNet focuses on optimizing
the hopping connections within the U-shaped network to ad-
dress the challenge of effectively integrating low-dimensional
features from the encoder part with high-dimensional features
from the decoder part. Our evaluation of DS-SwinUNet was
conducted using the publicly available land cover remote sens-
ing dataset WHDLD. The experimental findings demonstrate
that DS-SwinUNet achieves superior segmentation accuracy
on this dataset.

Our model introduces substantial improvements over exist-
ing models by effectively combining local and global feature
extraction capabilities. The increase in segmentation accuracy
demonstrates the effectiveness of the DS-Attention. While
the DS-Attention adds some complexity, the significant per-
formance improvements justify this addition. Future research
could focus on optimizing the computational efficiency of the
DS-Attention, potentially by reducing parameters and FLOPs.
Extending the model to other computer vision tasks, such as
object detection, and evaluating its performance on larger and
more diverse datasets would be valuable. The balanced trade-
off between computational efficiency and accuracy makes
our model a valuable contribution, especially for applications
requiring high accuracy.
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TABLE I
EVALUATION METRICS OF DIFFERENT MODELS ON WHDLD

Model OA(%)↑ AA(%)↑ K(%)↑ mIoU(%)↑ F1 score(%)↑
Building Road Pavement Vegetation Bare Soil Water

SegNet [48] 80.229 63.787 71.403 52.940 63.253 54.649 51.466 86.473 47.682 95.649
U-Net [6] 81.830 67.724 74.422 55.706 70.752 58.668 52.609 89.185 48.097 97.089
Tiramisu [49] 82.188 65.712 74.903 58.167 68.918 70.047 53.576 88.206 50.313 96.598
FGC [50] 82.975 68.855 75.927 57.368 72.642 57.931 53.842 89.651 50.282 97.294
MSFCN [51] 84.168 72.081 77.558 60.366 74.499 68.797 55.176 90.024 52.178 97.511
EfficientNet-B4+FCN [52] 82.019 68.675 75.019 56.895 72.714 63.226 54.515 89.341 50.398 96.843
UNetFormer [53] 83.633 71.514 77.118 58.453 73.957 65.590 54.211 89.717 51.027 96.483
Swin-UNet [7] 82.290 69.388 76.529 57.944 72.508 64.104 53.759 89.809 50.255 96.915
Ours 84.446 72.629 77.934 60.670 75.486 69.471 55.314 90.228 52.790 97.415

TABLE II
THE PERFORMANCE OF DS-TRANSFORMER IN DIFFERENT MODELS

OA(%)↑ AA(%)↑ mIoU(%)↑
Method pure CNN with DST pure CNN with DST pure CNN with DST

U-Net [6] 81.830 82.037 67.724 67.940 55.706 56.034
U-Net++L3 [54] 82.040 82.159 68.117 68.291 56.610 56.933

PSPNet [55] 82.227 82.304 68.227 68.454 56.785 56.763

TABLE III
EVALUATION METRICS OF DIFFERENT MODELS ON OPENEARTHMAP

Model Backbone IoU(%)↑ mIoU
Bareland Rangeland Developed Road Tree Water Agriculture Building (%)↑

U-Net VGG-11 40.69 56.76 53.99 62.16 72.44 82.81 73.14 77.77 64.97
U-Net ResNet-34 40.35 57.75 54.92 62.87 72.65 82.24 74.06 78.58 65.43
U-Net EfficientNet-B4 50.63 58.17 56.27 64.83 73.20 86.02 76.28 80.20 68.20
U-NetFormer ResNeXt101 46.09 60.67 58.12 65.07 73.77 86.34 76.98 79.96 68.37
FT-U-NetFormer Swin-B 50.19 60.84 57.58 65.85 73.33 87.44 77.50 80.29 69.13
DeepLabV3 ResNet-50 39.11 56.16 52.28 60.57 71.25 79.32 70.75 75.83 63.16
HRNet W48 39.71 55.50 53.49 59.22 71.10 79.03 71.38 75.12 63.07
UPerNet ViT 34.39 54.45 50.64 54.57 69.73 79.24 66.22 74.92 60.52
UPerNet Swin-B 44.52 58.98 54.78 63.43 72.20 83.71 72.97 78.11 66.09
SegFormer MiT-B5 36.84 57.94 53.53 63.60 70.51 80.11 72.21 77.35 64.01
SETR PUP ViT-L 45.35 55.72 51.31 55.47 67.63 73.12 67.14 75.48 61.40
UPerNet Twins 37.29 57.62 53.83 60.23 72.32 81.93 71.71 77.49 64.05
UperNet ConvNeXt 40.61 54.94 51.76 58.47 70.44 75.95 68.94 74.30 61.93
K-Net Swin-B 44.02 57.81 54.85 62.91 71.76 85.18 73.41 78.91 66.11
Swin-UNet - 48.13 58.59 56.91 64.11 72.17 84.83 73.24 78.67 67.08
Ours Swin-UNet 48.45 58.94 57.16 64.19 72.35 84.06 76.25 78.57 67.49
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