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YOLOv8-RD: High-Robust Pine Wilt Disease
Detection Method Based on Residual Fuzzy

YOLOv8
Junchao Yuan, Lina Wang, Tingting Wang, Ali Kashif Bashir, Maryam M. Al Dabel, Jiaxing Wang, Hailin Feng,

Kai Fang, and Wei Wang

Abstract—Pine Wilt Disease (PWD) poses a severe threat to
the health of pine trees and has resulted in substantial losses
to global pine forest resources. Due to the minute size of the
pathogens and the concealed symptoms of PWD, early detection
through remote sensing image technology is essential. However, in
practical applications, remote sensing images are easily affected
by factors such as cloud cover and changes in illumination,
resulting in significant noise and blurriness in the images.
These interference factors significantly reduce the accuracy of
existing object detection models. Therefore, this paper presents
a novel and highly robust methodology for detecting PWD,
termed YOLOv8-RD. We synthesized the benefits of residual
learning and Fuzzy Deep Neural Networks (FDNN) to develop a
Residual Fuzzy module (ResFuzzy), which adeptly filters image
noise and refines background features with enhanced smoothness.
Simultaneously, we integrated a Detail Processing Module (DPM)
into the ResFuzzy module to enhance the low-frequency detail
features transmitted in residual learning. Furthermore, by in-
corporating the Dynamic upSampling operator (DySample), our
model can dynamically adjust the sampling step size based on
the variations in the input feature map during the upsampling
process, thereby effectively recovering detail from the feature
map. Our model exhibited exceptional robustness to severe noise.
When evaluated on a PWD dataset with 100% interference
samples at an intensity of 0.07, our model achieved an average
precision improvement of 4.9%, 6.3%, 7.3%, and 3.0% compared
to four most representative models, making it well-suited for
PWD detection in interfering environments.

Index Terms—Remote Sensing, Interference Environments,
Residual Learning, Fuzzy Deep Neural Networks, Upsampling
Process.
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I. INTRODUCTION

AS an important economic and ecological resource, pine
trees play a crucial role in maintaining the stability of for-

est ecosystems, ensuring a steady supply of wood, sequestering
carbon, and releasing oxygen [1]. However, PWD as one of the
most destructive forestry diseases worldwide, poses a serious
threat to pine resources. Its rapid spread and difficulty in
early detection often lead to extensive damage to pine forests,
causing severe economic losses and ecological consequences
[2, 3]. Advancements in machine vision technology have led
to the increasingly mature application of remote sensing image
object detection in forestry monitoring of pests and diseases,
particularly in the early warning and precise positioning of
PWD [4].

The existing object detection models primarily focus on
addressing issues such as occlusion, low resolution, and
complex backgrounds [5]. Wang X et al. [6] optimized the
YOLOv8 model to improve the detection ability of greenhouse
vegetable pests and diseases under occlusion conditions. They
incorporated an Occlusion-aware Attention Module (OAM) to
endow the model with advanced capabilities for the precise
detection of partially obscured or occluded objects. Addition-
ally, a small object detection layer and HIOU loss function
were introduced to improve the overall detection accuracy
of vegetable diseases. Tian Y et al. [7] proposed a multi-
scale dense detection method, named MD-YOLO, for small
lepidopteran pests on sticky traps. This method utilizes an
Adaptive Attention Module (AAM) to enhance the model’s
attention to image details. Moreover, the feature fusion process
was optimized through the integration of multi-scale feature
maps, thereby augmenting the model’s efficacy in detecting
objects across a range of scales.

However, during the process of remote sensing image ac-
quisition by Unmanned Aerial Vehicle (UAV), atmospheric
scattering, cloud cover, and changes in illumination can in-
troduce noise into the image data [8]. This noise can mani-
fest as random pixel-level fluctuations or larger-scale image
blurriness and distortion, all of which significantly degrading
image quality. Existing object detection models often suffer
from low accuracy, false positives, and missed detection in
noisy conditions. This not only hinders forestry management
personnel from taking timely and effective control measures
but also risks missing the window of optimal prevention due
to misjudgment, further exacerbating the spread of PWD and
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causing severe damage to the growth of pine trees.
Therefore, developing anti-interference detection algorithms

for detecting PWD in remote sensing images and improv-
ing the accuracy of object detection models in interfered
environments is of profound significance for the sustainable
development of modern forestry. Such advancements not only
ensure the rational use and effective protection of forestry
resources and maintain biodiversity, but also enhance the
ability to predict pest and disease outbreaks, reduce economic
losses caused by these issues, and ensure the stability and
balance of ecosystems.

YOLO algorithms, renowned for their efficient detection
speed and powerful feature extraction capabilities, are com-
monly employed in forest pest monitoring tasks. In this study,
we would utilize the YOLOv8 algorithm for pine wilt disease
detection in UAV remote sensing images.

To enhance the model’s robustness to noise, this study
integrates FDNN into the YOLOv8 model. FDNN combine
the learning capabilities of neural networks with the noise
handling capabilities of fuzzy logic [9]. By fuzzifying the input
data, the impact of noise on the model’s prediction results is
reduced, thereby enhancing the model’s robustness to noisy
images [10]. Meanwhile, FDNN offer a promising approach
to plant disease and pest detection. In plant disease and pest
detection, the background features are often complex, while
disease features are relatively small. Therefore, FDNN can
be employed to blur the complex background features and
effectively enhance the disease features [11]. Moreover, the
symptoms of plant diseases and pests often vary depending
on the plant species and the stage of disease development.
FDNN can handle these fuzzy features, enabling them to
make effective judgments even when faced with different
disease symptoms [12]. To extract complex features of tomato
diseases and pests, Tian X et al. [13] improved the fuzzy
inference layer and fuzzy pooling layer of FDNN, enhancing
the model’s detection accuracy. Koshariya A K et al. [14]
analyzed the application of FDNN in plant disease and pest
detection and risk assessment. By optimizing fuzzy rules and
fuzzification processing, they improved feature extraction in
complex environments.

The YOLOv8n model was selected as the base network in
this study and has been modified to fulfill the requirements
for anti-interference detection in remote sensing images. The
main contributions of this paper are as follows:

(1) To tackle the challenges posed by cloud cover and illu-
mination variability in PWD images, we propose an innovative
ResFuzzy module that synergistically integrates the advan-
tages of residual learning with fuzzy deep neural networks.
The module effectively filters image noise and suppresses
background features through multiple residual blocks and
fuzzy layers. Moreover, we integrate a DPM module within
the ResFuzzy framework to significantly bolster the model’s
capacity for detecting and discerning small objects in remote
sensing images.

(2) We improved the upsampling process in YOLOv8n
by introducing the DySample module to mitigate detail loss
caused by noise. This module equips the model with the
capability to dynamically modulate the sampling step size in

response to variations in input features, thereby refining the
sensitivity and adaptability of the sampling process to fluctu-
ating input characteristics. Consequently, the robustness of the
object detection model under noisy conditions is boosted.

(3) Our proposed YOLOv8-RD model effectively addresses
the challenges of cloud occlusion and lighting variations in
detecting PWD, thereby transcending the performance con-
straints of conventional detection models. The YOLOv8-RD
model not only performs well on non-interference datasets
but also demonstrates high robustness under various inter-
ference conditions. The employment of this model facilitates
precise detection of infected PWD areas in remote sensing im-
agery, even under challenging conditions, thereby empowering
forestry management personnel to execute timely interventions
and substantially mitigate economic losses attributable to the
disease.

II. RELATED WORK

A. Disease and Pest Detection

The existence of diseases and pests severely harms the
plant health. Liu B et al. [15] proposed DAC-PPYOLOE to
promote the detection accuracy of apple pests in complex
environments. This model utilizes an adaptive feature fusion
strategy with residual connectivity and deep separable convo-
lution to effectively leverage deep and shallow feature maps
for small object detection. Qi J et al. [16] introduced the
improved SE-YOLOv5 network for tomato diseases and pest
detection. The SE attention mechanism enhances key feature
extraction, overcoming the limitations of existing methods
in feature screening and model generalization. Deng F et
al. [17] proposed a Federated Learning (FL) based Faster
R-CNN model to tackle issues concerning data imbalance,
diversity, and complex detection environments in traditional
plant disease and pest detection. This model utilizes FL’s
distributed computing to reduce data storage and communica-
tion costs. Additionally, ResNet-101 replaces VGG-16 in the
convolutional layer, improving multi-scale detection accuracy
for various diseases and pests. Irianto S Y et al. [18] proposed
a corn leaf disease detection method based on Fuzzy C-means
(FCM) and Long Short-Term Memory (LSTM) algorithms
to improve the detection accuracy of corn diseases. After
extracting texture features from disease images using Gray
Level Co-occurrence Matrix (GLCM), they were fed into the
LSTM algorithm for classification and achieved an accuracy
of 80.24%. Chang B et al. [19] addressed the challenges of
complex plant disease features and limited datasets by propos-
ing an Edge Feature Guidance (EFG) module to enhance the
model’s ability to extract local edge features. The EFG module
can be integrated into vision transformers like ViT and Swin,
enabling the model to incorporate multi-scale features and
edge information, thereby improving its overall performance.

B. Small object Detection

Small objects in remote sensing imagery, owing to their con-
strained pixel coverage and attenuated feature intensity relative
to both the background and larger objects, are exceptionally
vulnerable to being obscured by background noise. Hou Q et
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al. [20] proposed RISTDnet, a deep learning-based network
for infrared small object detection. This network addresses
low image contrast and low signal-to-noise ratios in com-
plex backgrounds. It combines manual feature methods with
convolutional neural networks for feature extraction and uti-
lizes likelihood graph thresholds for real object segmentation.
Experiments demonstrate the network’s ability to accurately
detect small objects. Dai Y et al. [21] proposed a network
model for infrared small object detection. The model leverages
a deep, parameter-free, non-linear feature refinement layer
specially designed to extract long-range dependencies between
features. Additionally, it employs bottom-up attention modu-
lation to integrate low-level details into higher-level features,
effectively preserving small object information. Duan H et al.
[22] designed an adaptive mechanism algorithm inspired by
the physiological characteristics of eagle vision. Based on the
physiological structure of eagle vision, this algorithm estab-
lishes a mathematical model capable of adapting to various
environmental interferences, thereby enhancing the model’s
ability to detect small objects in complex and variable marine
environments.

C. Interference Environment Detection

In various object detection tasks, image quality may suffer
due to inclement weather conditions, leading to reduced model
accuracy. This, in turn, can negatively impact production,
safety, and daily activities. To address the challenge of low de-
tection accuracy in low-quality images captured under severe
weather conditions, Liu W et al. [23] proposed an adaptive ob-
ject detection framework IA-YOLO. They introduced the DIP
of the adjustable image processing module in the small convo-
lutional neural network to enhance image quality and improve
object detection accuracy. To confront the dilemma of severe
weather detection, Qin et al. [24] proposed DEnet, a detection-
driven network comprised of three key modules. Splitting
images into low and high-frequency components using the
Laplace pyramid and forming global enhancement components
with various convolution kernels significantly boost detection
accuracy. Cui Z et al. [25] introduced the Multi-task Automatic
Encoding Transformation (MAET) model for nighttime object
detection, effectively enhancing detection accuracy in low-
light conditions.

Existing object detection techniques have made notable
strides in plant disease detection, small object detection, and
interference environment detection. However, these methods
still face several limitations. Current disease and pest detec-
tion models often rely on adaptive feature fusion, attention
mechanisms, and feature guidance to improve performance.
Despite their benefits, adaptive feature fusion can introduce
biases in feature selection, leading to the omission of important
information. Meanwhile, attention mechanisms tend to re-
quire substantial computational resources, which can adversely
affect real-time performance. Feature guidance methods are
usually tailored to specific features and thus lack the adapt-
ability needed for detecting various types of plant diseases. For
small object detection, techniques typically focus on enhanc-
ing image contrast and combining low-level and high-level

features to boost accuracy. However, in complex backgrounds,
excessive contrast enhancement may cause confusion between
the target and the background. Moreover, the process of
aggregating low-level and high-level information is susceptible
to interference from the background, limiting the model’s
ability to accurately detect small objects. Additionally, existing
algorithms designed to operate in adverse weather conditions
generally suffer from low detection accuracy, which restricts
their practical application. Therefore, there is an urgent need
for a highly accurate and robust object detection algorithm that
can effectively reduce the impact of complex interference in
challenging environments.

III. DATASET ACQUISITION AND INTERFERENCE
MECHANISM INJECTION

A. Data Set Acquisition

The study area is situated in Longyou County, Quzhou City,
Zhejiang Province, China, with geographical coordinates of
119.17°E and 29.02°N. The study area comprises four towns
in Longyou County: Hengshan, Shifo, Zhaxi, and Xiaohanhai,
covering a total area of approximately 8 square kilometers.
The main vegetation coverage types, according to China’s
secondary forest resource survey, are masson pine forests,
broad-leaved evergreen forests, and coniferous and broad-
leaved mixed forests. Masson pine forests account for a major
proportion, ranging from 70% to 100% of the trees. The
density of discolored pine trees is highest in Zhaxi Town, as
shown in Fig. 1, which displays the study area and sampling
plots. A total of seven plots were collected, including Plot 1
and Plot 2 in Tianchi Village, Hengshan Town, and Yanglong
Reservoir, Plot 3 in Fengtang Village, Shifo Town, and Plot 4
and Plot 5 in Xihai Village, Hengshan Town, and Baiheqiao
Village. Plot 6 is situated in Zhesi Village, Zhaxi Town, and
Plot 7 is situated in Guiguangyan Village, Xiaonanhai Town.

TABLE I
DATASET SEGMENTATION

Dataset Sampling plots Dead infected pine trees

Training set 1,2,3,6 3,488
Validation set 7 501
Test set 4,5 997

Total 1,2,3,4,5,6,7 4,986

During data collection, we meticulously schedule our ac-
tivities to align with the optimal time window for monitoring
pests and diseases. Most pine trees infected with PWD exhibit
typical reddish brown symptoms [26]. In contrast, the broad-
leaved trees, which constitute a small proportion of the forest,
have not yet changed color. Therefore, they will not be
mistaken for the discolored pine trees. To ensure the accuracy
of labeling and the credibility of testing, we have invited on-
site investigation experts to provide us with guidance during
the labeling process. We labeled the pine line pests in the
images for this dataset using a labeling tool called LabelImg.
Firstly, we selected the corresponding infected objects from
the dataset images using rectangular boxes. Then we selected
the pest marker category from the box and saved the marked
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Fig. 1. Study area and sampling site.

label as a txt format label file. Finally, the labeled dataset was
split into training, validation, and test sets, as detailed in Table
I.

B. Interference With the Injection Mechanism

When remote sensing images are affected by atmospheric
scattering, cloud and fog occlusion, and changes in lighting
conditions, they can introduce random noise and result in
image blurring. We hypothesize that the size and density
of fog droplets follow a uniform distribution, allowing us
to approximate the noise produced by fog interference as
Gaussian noise. Gaussian noise, a well-known type of random
noise with a normal distribution [27], is prevalent in image
processing applications. The formula for generating Gaussian
noise is as follows:

N
(
µ, σ2

)
= µ+ σ × Z (1)

where N
(
µ, σ2

)
represents a Gaussian. The symbols µ and σ2

represent the mean and variance of the Gaussian distribution,
respectively. Notably, the variance σ2, dictates the intensity of
the noise introduced, with larger values indicating stronger
noise corruption. Z is the random number following the
standard normal distribution. The interference sample can be
obtained by superposing the generated Gaussian noise into
the original PWD dataset sample. The interference sample
generation process under Gaussian noise interference is shown
in Fig. 2.

We treat different degrees of fog interference as Gaus-
sian noise interference of different intensities. The variance
of the equivalent Gaussian noise increases as fog intensity
rises in the image. The intensity of Gaussian noise σ ∈
{0.02, 0.03, 0.05, 0.07} corresponds to the interference of light
fog, medium fog, heavy fog, and dense fog on the remote
sensing images.

mist

dense fog

�=0.02

middle fog

thick fog

�=0.03

�=0.05

�=0.07

Fig. 2. Interference sample generation process.

Poisson noise is caused by the randomness of photons dur-
ing the imaging process, and applying Poisson noise can reflect
the random distribution of light under different illumination
conditions. By adjusting the parameters of Poisson noise, it
is possible to simulate infected pine forests under various
lighting conditions. The formula for generating Poisson noise
can be expressed as follows:

P (k;λ) =
λke−λ

k!
(2)

where P (k;λ) represents the probability of an event occurring
k times. λ denotes the mean of the Poisson distribution, e−λ

represents the monotonically decreasing exponential function,
and k indicates the actual number of occurrences of the event.
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Fig. 3. The structure of YOLOv8-RD network.

After generating Poisson noise, it is then superimposed
onto the original PWD images to create a dataset with differ-
ent lighting conditions. We subsequently employed a sample
dataset of PWD with Gaussian noise of varying interference
intensities to train and test the anti-interference performance
of the object detector.

IV. YOLOV8-RD

In this study, we adopted the YOLOv8n version as the
basis of our detection model due to its well-balanced trade-off
between detection speed and accuracy. To achieve robust de-
tection of PWD in remote sensing images under various inter-
ference conditions, this paper proposes an improved YOLOv8n
model, named YOLOv8-RD, as shown in Fig. 3. We combine
the advantages of residual learning with FDNN, designed a
ResFuzzy module to effectively learn image residuals and sup-
press noise over-expression. Meanwhile, the ResFuzzy module
integrates a DPM feature enhancement module to strengthen
global information extraction, consequently improving the
model’s ability to detect small objects. Additionally, the con-
ventional nearest neighbor interpolation is replaced with a
DySample module in this study. By dynamically adjusting the
sampling points, DySample module enhances the sensitivity
and adaptability of the sampling process to input feature
variations, thereby improving the robustness of the object
detection model under noise.

A. Residual Fuzzy ResFuzzy

During remote sensing image capture, UAV can be influ-
enced by atmospheric scattering, cloud and fog occlusion, and
fluctuations in lighting conditions. These factors can lead to

image blurring and markedly impair the detection capability
of object detection models.

To raise the anti-interference ability of object detection
models in complex interference environments, this study pro-
poses ResFuzzy module, as shown in Fig. 4. This module can
effectively suppress the over-expression of noise and improve
the robustness of the object detection model.

The ResFuzzy module consists of two sub-residual blocks, a
DPM module [28], and a Fuzzy layer [29]. In Fig. 4, the input
features x are transmitted through the first sub-residual block
to obtain residual feature values y1. Through the DPM module,
the low-frequency detail information transmitted in residual
learning is effectively enhanced, and high-frequency noise is
filtered out, resulting in the output y2. Next, the output y2 is
input into the second sub-residual block to obtain the residual
feature value y3, which is then input into the fuzzy layer. By
smoothing the feature map values using the Gaussian function,
the blurred output y4 is obtained. Finally, the obtained fuzzy
output is input into the C3 module and fused with the input
noisy image through residual connection to obtain a high-
resolution image while filtering out image noise. We renamed
the improved C3 module CRF, as shown in Fig. 5.

During the convolution process, the noise will propagate
downwards with the convolution, resulting in a decreased
image resolution and an increased difficulty in detection [30].
Therefore, this study introduces residual learning to directly
transfer shallow information to deep layers to filter out image
noise [31, 32]. The two residual blocks of the ResFuzzy
module are composed of a 1× 1 convolutional layer, a linear
rectification activation layer, and a 3× 3 convolutional layer.
This design helps extract image features through skip layer
connections and suppress over-expression of noise [33, 34].
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The output of two sub-residual blocks can be represented as:

y1 = w1(x) + λx (3)

y3 = w2 (y2) + λy2 (4)

where w1(x) represents the residual mapping learned by the
first sub-residual block, λ represents the degree of preservation
of the original input, and w2 (y2) represents the residual
mapping learned by the second sub residual block.

The DPM module can capture long-range dependencies,
obtain contextual information, and enhance the low-frequency
detail information transmitted in residual learning [35, 36]. Its
model is defined as:

DPM(y1) = y1 + γ (F (ŷ1)) (5)

where y1 represents the input features. ŷ1 = σ (F (y1)) × y1,
F is the convolutional layer with kernel 1 × 1, γ is the
LeakyReLU activation function, and σ is the Softmax function.

After the input features y1 enter the DPM module, they go
through a 1×1 convolutional layer and a Softmax activation
layer to obtain a normalized spatial attention mask. This mask
is then multiplied with the input features to obtain global
context information. The obtained global context information
is then input into a sub-network consisting of a 1×1 convolu-
tional layer and a ReLU activation function to obtain channel
attention features. The input features y1 are then added to the
obtained channel attention features via a residual connection
to get the enhanced detailed features.

FDNN can significantly suppress excessive noise expression
through the processes of fuzzification and defuzzification,
thereby providing neural networks with stronger robustness
and generalization ability [37]. To further bolster the robust-
ness of object detection networks in complex interference
environments, we incorporate a fuzzy layer in our improved
residual network.

In this study, we introduce trainable fuzziness parameters
d and standard deviation parameters σ into the fuzzy layer to
compute the difference between each channel and the fuzziness
parameter. The generated differences are then fuzzified using
a Gaussian function to smooth out noise in the input data,
ensuring that variations in input features within a certain
range do not significantly affect the output results [38]. The
fuzzification process is described in Equation 6.

fuzzy−out = exp

(
−

c∑
i=1

(yi − di)
2

σ2
i

)
(6)

where fuzzy−out represents the fuzzy output. exp represents
the exponential function. c denotes the number of channels.
yi is the output of the i− th channel in the improved residual
block. di is the fuzziness parameter for the i−th channel, and
σi is the standard deviation parameter for the i− th channel.
Upon processing the feature map through the fuzzy layer, it
is subjected to element-wise multiplication with the output
of the refined residual block. This ensures that each channel
undergoes noise suppression and smoothing, thus enhancing
the robustness of the model against complex interference
environments.

B. Dynamic Upsampling Operator DySample

Feature upsampling plays a crucial role in progressively
restoring feature resolution in dense prediction tasks [39].
Nearest neighbor interpolation is often used for feature upsam-
pling in YOLOv8n. However, this upsampling method copies
the values of the nearest pixels to restore the feature resolution
[40]. If the image itself contains noise, the noise will be
amplified after upsampling. To more effectively restore image
features under noise interference, we replace the upsampling
method of nearest neighbor interpolation with the DySample
module [41].

The DySample module is an upsampling method based
on point sampling, which differs from traditional fixed-rule
and kernel-based dynamic upsampling techniques. By learning
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the offset of input feature points, the DySample module
dynamically determines the upsampling position, thereby re-
alizing content-aware upsampling behavior. The DySample
module mitigates noise amplification issues inherent in nearest
neighbor interpolation and effectively reduces the impact of
image noise during the upsampling process, thereby enhancing
the quality of the upsampled feature map [42].

0.25 O

GsH

sW

sH

sW

2g

2g

� H

W 2��2

�pixel
shuffle

O

G

0.5�

�
2g

2g

sH

sW

sW

sHpixel
shuffle

H

W 2��2

2��2
W

H

H

2��2W

�

Grid sample

Sampling Point  
Generator

Sampling 
Set

�

�′

H

W
C

sH

sW

2g

sH

sW
c

Static Scope Factor

Dynamic Scope Factor

linear

linear

linear

Sampling based dynamic upsampling(a)

(b) Sampling Point  Generator

W 2��2

Fig. 6. The structure of DySample module.

Fig. 6(a) shows the process of dynamic upsampling using
DySample. The feature map x with dimensions H ×W × C
is input into the DySample module. x is processed by the
sampling point generator to learn feature offsets. These offsets
are then used to create a sampling set with dimensions sH ×
sW ×2g. The grid sampling function then resamples the input
feature x using these offsets, resulting in an upsampled feature
map x′ with dimensions sH×sW×C. To effectively learn the
offsets for different feature points, we designed two sampling
point generators, as shown in Fig. 6(b). Here, s represents
the scale factor for upsampling, g represents the number of
groups respectively, and x represents the input feature. linear
denotes the linear layer, and σ denotes the sigmoid activation
function. O represents the generated offset, G represents the
original sampling grid, δ represents the generated sampling
set, and s2 represents the number of repetitions of the offset
in each dimension.

Fig. 6(b) illustrates two methods for generating sampling
points, static scaling factor and dynamic scaling factor. The
static scaling factor uses a fixed factor of 0.25 to limit the
range of offsets, and combines a linear layer and pixel shuffle

to generate the offset O. The offset O is then added to the
original sampling grid G to obtain the sampling set δ. The
static sampling point generator can limit the local spatial
range that each upsampled point can traverse, ensuring that
the sampling positions do not overlap excessively, avoiding
blurred boundaries and error propagation in the output feature
map.

The dynamic scaling factor is generated dynamically based
on the input features, allowing it to offer varying offset ranges
for each sampling point [43]. The input feature map x enters
the dynamic sampling point generator and is processed through
two branches. The first branch is processed by a linear layer
linear1, which maps each channel of the feature map to a
new feature space, thereby converting each feature point into
an offset. Then, the Sigmoid function is used to map the
offset to the interval [0,1], and the obtained value is multiplied
by 0.5 to derive a dynamic scaling factor centered at 0.25.
The second branch is processed by a linear layer linear2
to directly generate the offset O. The generated dynamic
scaling factor is used to adjust the offset produced by linear2,
thereby enabling dynamic adjustment of the offset. The offset
adjustment process can be represented by Equation 7.

O = 0.5Sigmoid (linear1(x)) · linear2(x) (7)

The dynamic range factor allows for adaptive adjustment of
the step size in the sampling point movement based on content
variations of the input features. This enhances the sensitivity
and adaptability of the sampling process to changing features,
paving the way for a more robust object detection model
against noise.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setup

TABLE II
TRAINING PARAMETERS

Training Parameters Details

Epochs 130
Image size (Pixel) 640×640
Batch size 16
Workers (Number of Threads) 16
d (Fuzziness Parameters) [0,1]
σ (Standard Deviation) 1
Initial learning rate 0.01
Final OneCycleLR learning rate 0.1
Optimization algorithm and parameters Adam(0.937)
Weight decay 0.0005

In the experiments, we initialized the parameters of the
YOLOv8n network before training on the PWD dataset. The
hyperparameters of the experimental model are detailed in
Table II. Additionally, Table III outlines the software and hard-
ware configurations used throughout the experiments. Both the
original YOLOv8n and the YOLOv8-RD network models pro-
posed in this paper were trained based on the pre-trained model
(YOLOv8n.pt). During the training process, the convergence
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TABLE III
EXPERIMENTAL ENVIRONMENT

Experimental Environment Details

Programming language Python 3.8
Operating system Windows 10
Deep learning framework Pytorch 1.11.0
CPU 22 vCPU AMD EPYC 7T83 64-Core
GPU NVIDIA GeForce RTX 3090

point of each model was recorded at its peak performance,
and its efficacy was assessed using a dataset with varying
levels of interference strength and different interference ratios.
In this study, Precision (P), Recall (R), and mean Average
Precision (mAP) are used as evaluation metrics for the model.
Higher P indicates a lower false positive rate, which reflects the
model’s ability to mistakenly detect background interference
as diseased objects. High R means the model can detect
as many objects as possible in a noisy environment. mAP
provides a more comprehensive reflection of the robustness
of the object detection model in noisy environments. A higher
mAP indicates a superior anti-interference capability of the
model. The P, R and mAP calculation formula is as follows:

P =
TP

TP + FP
(8)

R =
TP

TP + FN
(9)

AP =

∫ 1

0

PdR (10)

mAP =
1

n

n∑
i=0

APi (11)

where P represents the detection accuracy, which is the
proportion of correctly detection PWD relative to the total
number of objects the model detected as PWD. R represents
the recall rate, which is the proportion of correctly detected
PWD compared to the total number of PWD present in the
dataset. TP denotes the number of correctly detected PWD.
FP denotes the number of falsely detected PWD. FN denotes
the number of falsely detected non-PWD. AP denotes the
average highest precision for different object categories. mAP
denotes the mAP across all object categories. n denotes the
number of detected objects, and i denotes the object currently
being detected.

B. Ablation Experiments

To assess the impact of the two additional modules in the
YOLOv8-RD model on the original YOLOv8n model, we
conducted four groups of ablation experiments. The follow-
ing modifications are made on the basis of YOLOv8n. We
integrated the ResFuzzy module into the backbone network
and implemented the DySample module in the neck network.
We used training samples with a Gaussian noise intensity of
0.02 for adversarial training and applied the resulting model
weights in ablation experiments. The ablation experiments

were conducted using a test set with 100% noisy samples, and
the experimental results are presented in Table IV. Addition-
ally, the changes in the model parameters are shown in Table
V. Where, Parameters refers to the number of parameters in the
model during training, measured in Millions (M). Increment
indicates the increase in the number of parameters after adding
different modules to the model.

TABLE IV
RESULT OF ABLATION EXPERIMENTS

ResFuzzy DySample P(%) R(%) mAP(%)

- - 84.3 78.9 87.2√ - 86.7 83.4 90.4
- √ 83.6 82.1 88.2
√ √ 86.5 85.9 91.1

TABLE V
MODEL PARAMETERS

Model Parameters (M) Increment (M)

YOLOv8 3.011 0
YOLOv8+ResFuzzy 3.065 0.054
YOLOv8+DySample 3.023 0.012
YOLOv8+ResFuzzy+DySample 3.077 0.066

As shown in Table IV, before adding the anti-interference
module, the average precision of the YOLOv8n model was
only 87.2%. With the introduction of the ResFuzzy module,
the accuracy, recall, and average precision of the model in-
creased by 2.4%, 4.5%, and 3.2%, respectively. This indicates
that the ResFuzzy module can effectively filter out noise in
images through multi-level residual blocks and fuzzy layers
under Gaussian noise interference, thereby improving the
model’s detection accuracy in noisy environments. In noisy
environments, recall may decrease as the model might over-
look some objects whose features are obscured by interference.
Nonetheless, with the incorporation of the DySample module,
while accuracy undergoes a minor decline, both recall and
average precision exhibit a subtle enhancement. This indicates
that the DySample module can adjust the sampling point
step size according to the changes in the input image noise,
effectively restoring the object features of the input feature
map and improving the quality of the upsampled feature map.
With the addition of both modules, the number of parameters
of the model only increases slightly, nevertheless, the accuracy,
recall, and average precision of the model are significantly
improved. This fully demonstrates that the two modules we
added can effectively resist noise and achieve high-precision
detection in noisy environments.

C. Comparative Analysis of Different Interference Intensities

When a UAV captures images of a vast pine forest along a
designated path, noticeable cloud and fog occlusion may occur
in certain regions, leading to the blurring of disease features in
some datasets. Therefore, we created test sets with interference
sample proportions of 10%, 30%, 50%, 80%, and 100% to
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simulate the situation where different numbers of samples in
the dataset are affected by fog. At the same time, we used
a Gaussian noise intensity of σ ∈ {0.02, 0.03, 0.05, 0.07} to
simulate the interference of different fog intensities.

We conducted preliminary comparisons between our pro-
posed YOLOv8-RD model and traditional models such as
YOLOv5s, YOLOv6, YOLOv7-tiny, and YOLOv8n. Addition-
ally, to investigate the superiority of our model, we further
compared YOLOv8-RD with four most representative mod-
els: YOLOv9-t, YOLOv10n, RTDETR-r18, and SC-RTDETR.
Among them, the SC-RTDETR model is the latest object
detection model proposed by Feng H et al. [44], which
features strong interference robustness. Tables VI-IX present
the mAP variations of different models on the training and
test sets under interference intensities of 0.02, 0.03, 0.05, and
0.07, respectively. Where Tr-Ac represents the accuracy of
the training set, and Te-Ac represents the accuracy of the
interference-free test set. The entire experiment adopts an
adversarial training method to train the weights of different
models under different interference intensities, and then uses
the trained weights to test the anti-interference ability of the
test set without interference and the test set with samples of
different interference proportions.

TABLE VI
INTERFERENCE INTENSITY σ=0.02

Model Tr-Ac Te-Ac 10% 30% 50% 80% 100%

YOLOv5s 92.0 89.1 88.7 88.3 87.4 86.9 86.7
YOLOv6 85.3 84.1 83.5 82.0 81.9 81.5 80.9
YOLOv7-tiny 89.4 88.7 87.9 86.9 86.2 85.6 85.2
YOLOv8n 90.5 89.7 89.1 88.8 88.5 87.6 87.2
YOLOv9-t 90.7 90.5 90.2 89.7 88.4 87.9 87.4
YOLOv10n 86.2 83.2 82.5 83.6 83.8 85.3 85.2
RTDETR-r18 91.8 88.6 87.9 86.9 86.8 87.1 87.3
SC-RTDETR 92.3 91.5 91.3 90.3 89.8 89.5 87.9
YOLOv8-RD 92.5 92.2 92.0 91.9 91.7 91.3 91.1

TABLE VII
INTERFERENCE INTENSITY σ=0.03

Model Tr-Ac Te-Ac 10% 30% 50% 80% 100%

YOLOv5s 89.5 88.5 88.3 87.8 86.9 85.8 85.4
YOLOv6 83.4 82.9 82.5 81.7 80.6 79.5 77.6
YOLOv7-tiny 88.9 88.3 87.7 86.4 85.1 84.7 84.0
YOLOv8n 89.8 88.7 88.2 87.5 87.3 86.5 85.2
YOLOv9-t 91.6 91.0 90.1 89.4 89.0 87.5 86.9
YOLOv10n 85.8 82.4 82.8 82.4 84.7 85.2 84.9
RTDETR-r18 87.7 82.7 81.5 81.6 83.6 84.6 86.3
SC-RTDETR 91.4 85.5 85.8 86.1 87.9 88.8 87.1
YOLOv8-RD 92.0 91.5 91.3 91.1 90.8 90.4 90.2

Without interference, the average precision of the YOLOv8-
RD model on the test sets with various interference intensities
has consistently remained above 90%, with a maximum preci-
sion of 92.2%. This signifies that the YOLOv8-RD model not
only effectively detects object features amidst interference but
also maintains exceptional detection accuracy in unobstructed
environments, thereby providing a robust solution for the
efficient detection of PWD.

Under interference conditions, all models experienced vary-
ing degrees of accuracy decline, especially when the interfer-
ence ratio in the test set reached 100% and the interference

TABLE VIII
INTERFERENCE INTENSITY σ=0.05

Model Tr-Ac Te-Ac 10% 30% 50% 80% 100%

YOLOv5s 87.6 86.9 85.2 84.3 83.1 82.2 80.2
YOLOv6 82.8 81.7 81.2 80.6 77.8 75.1 74.3
YOLOv7-tiny 87.4 86.3 84.5 83.2 81.5 80.8 79.6
YOLOv8n 89.2 87.5 85.6 84.9 83.5 81.7 80.4
YOLOv9-t 92.3 91.5 90.3 87.9 85.3 84.1 83.3
YOLOv10n 84.8 84.5 83.5 83.5 81.7 81.4 79.1
RTDETR-r18 89.7 85.9 84.6 83.8 83.6 83.4 79.5
SC-RTDETR 91.8 89.4 88.4 87.2 86.6 83.7 83.3
YOLOv8-RD 91.8 91.5 91.0 90.2 90.1 89.1 87.2

TABLE IX
INTERFERENCE INTENSITY σ=0.07

Model Tr-Ac Te-Ac 10% 30% 50% 80% 100%

YOLOv5s 86.2 84.8 84.2 82.6 81.1 78.3 77.2
YOLOv6 80.6 78.7 77.5 76.9 75.3 73.4 72.3
YOLOv7-tiny 86.5 84.8 84.1 82.0 80.8 76.6 75.3
YOLOv8n 87.2 85.2 84.8 83.5 80.6 78.9 77.8
YOLOv9-t 91.5 90.8 87.2 86.5 84.6 82.9 81.1
YOLOv10n 85.4 82.6 82.6 82.5 82.8 79.6 79.7
RTDETR-r18 88.8 82.0 81.3 79.6 78.4 80.4 78.7
SC-RTDETR 90.5 88.6 87.5 85.7 86.2 83.3 83.0
YOLOv8-RD 90.8 90.7 90.4 90.2 88.2 87.3 86.0

intensity reached 0.07, where the accuracy of each model
dropped most considerably. The YOLOv6 model exhibited
the most pronounced average accuracy fluctuations, whereas
the YOLOv8n and YOLOv10n models demonstrated com-
mendable robustness under lower interference intensities. The
YOLOv9-t model exhibited high accuracy in both the training
set and the interference-free test set, but its detection accuracy
dropped rapidly when exposed to noise. Both the SC-RTDETR
and YOLOv8-RD models showed strong robustness under
various interference conditions. However, the YOLOv8-RD
model performed significantly better than the SC-RTDETR
model under various levels of interference, with a maximum
accuracy improvement of 5.5%. These results indicate that the
YOLOv8-RD model exhibits greater robustness and higher de-
tection precision in complex interference environments. Such
phenomenon occurs when Gaussian noise obscures the details
and texture information in images, leading to an increase
in image blurriness, which in turn makes it challenging to
detect and extract features from the image, thereby affecting
detection accuracy. In contrast, the proposed YOLOv8-RD
model shows significant advantages in this perspective. On the
one hand, the ResFuzzy module filters and smooths the image
when encountering noisy images, thereby mitigating the im-
pact of noise on the model. On the other hand, the DySample
module adjusts the sampling points in real-time according to
changes in input feature noise intensity, enhancing the model’s
robustness in complex interfering environments.

D. Comparative Analysis of Different Interference Methods

When using UAV to monitor pine forests for pests and
diseases, two main environmental disturbances emerges: cloud
cover and variations in lighting. Cloud cover can cause image
blurriness and reduced contrast, while changes in lighting can
lead to shadows and non-uniform brightness in images [45].
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Fig. 7. Comparative experiment of different interference methods.

These disturbances significantly impact the feature extraction
process of object detection models, making it difficult for
the algorithm to accurately locate diseased areas, resulting in
false positives and false negatives. To address these issues, we
employ Gaussian noise to simulate cloud cover and Poisson
noise to simulate variations in lighting.

In the experiments, we selected a Gaussian noise intensity
of σ ∈ {0.02, 0.03, 0.05, 0.07} and a Poisson noise intensity
of λ ∈ {80, 100, 120, 140}. To verify the effectiveness of
our proposed YOLOv8-RD for both types of interference,
we selected three of the most representative models for
comparison, YOLOv8n, YOLOv9-t, and SC-RTDETR. At
the same time, the entire experiment adopts an adversarial
training method, with an adversarial sample ratio of 30%
in the training set. We use the trained model weights to
test the anti-interference ability of the test set with different
interference proportions. The test results are shown in Fig.
7. Specifically, Figs. 7(a), 7(b), and 7(c) display the results
of different models’ anti-interference tests on the test sets
with Gaussian noise interference proportions of 30%, 50%,
and 100%, respectively. Figs. 7(d), 7(e), and 7(f) show the
results of different models’ anti-interference tests on the test
sets with Poisson noise interference proportions of 30%, 50%,
and 100%, respectively.

As shown in Figs. 7(a), 7(b), and 7(c), when subjected
to Poisson noise, the proposed YOLOv8-RD model exhibits
significantly better anti-interference performance than the tra-
ditional YOLOv8n model in tests with various interference
ratios. Moreover, in most cases, the YOLOv8-RD model out-
performs the state-of-the-art YOLOv9-t model in terms of anti-
interference performance. Finally, the YOLOv8-RD model is
compared to the SC-RTDETR model, which also has an anti-
interference module. The proposed YOLOv8-RD model has a

slightly lower mAP than the SC-RTDETR model in the test
sets with interference ratios of 30% and 50%. However, when
the interference sample ratio is 100%, the YOLOv8-RD model
exhibits higher mAP under different interference intensities.
This indicates that the proposed YOLOv8-RD model can
effectively resist interference caused by changes in lighting,
reducing false positives and false negatives caused by factors
such as exposure and reflection.

By observing Figs. 7(d), 7(e), and 7(f), it can be deduced
that the proposed YOLOv8-RD model has significantly higher
mAP in detecting objects under Gaussian noise interference
compared to the other three models. This indicates that
YOLOv8-RD can effectively filter out Gaussian noise and
accurately detect diseased objects. In contrast, the performance
of the other three models decreases significantly when sub-
jected to Gaussian noise interference of different intensities
and proportions.

Two sets of comparative experiments both point out that
the proposed YOLOv8-RD model can maintain high detection
accuracy and strong robustness in the case of cloud and fog
occlusion and changes in lighting. On the one hand, this is
due to the fact that the ResFuzzy module can use multi-level
residual blocks to filter image noise and combine a fuzzy layer
to suppress excessive noise expression. On the other hand,
the DySample module effectively improves the quality of the
upsampled feature map by dynamically adjusting the sampling
points. The combination of the two modules significantly
improves the anti-interference performance of the YOLOv8n
model.

E. Analysis of Grad-CAM
To better demonstrate the advantages of the YOLOv8-RD

object detection model on the interfered dataset, the Gradient-
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weighted Class Activation Mapping (Grad-CAM) technique
is used to visualize the regions of interest of the model in
the image and enhance the interpretability and reliability of
the model [46]. Grad-CAM generates a coarse heat map by
multiplying the gradients of the output class with the outputs
of a specific convolutional layer and then averaging the results
to show the areas of the image the model is focusing on [47].
By analyzing the generated heat maps, we can detect potential
shortcomings where the model might focus on irrelevant image
areas or miss crucial features for accurate object detection. Its
formula can be simply expressed as:

Lc
Grad-CAM = ReLU

∑
i

∑
j

∂Yc

∂Aij
Aij

 (12)

where Y c represents the output score of the model for a
specific class, ∂Yc

∂Aij
represents the gradient of that class score

with respect to the feature map A, and Aij represents the
element at the i-th row and j-th column of feature map A.
By summing up the weights of each channel and applying the
ReLU activation function, a non-linear mapping is obtained.

We selected the 15-th layer of the model for backpropaga-
tion and generated heat maps by applying Grad-CAM to two
images with Gaussian noise intensity of 0.02. The heat maps
allow us to observe the changes in the regions of interest of the
YOLOv8n and YOLOv8-RD models in noisy environments.
The comparison are shown in Fig. 8.
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Fig. 8. Gradient-weighted class activation mapping comparison.

In the generated heat maps, deeper red shadows indicate
regions of high attention from the model. Yellow regions
represent diseased object areas with lower attention, and
blue regions indicate areas with redundant and interfering
information. In the heat map generated using the YOLOv8n

model weights, there are obvious blue interference regions,
and the key red object regions are fewer. This suggest that
the traditional YOLOv8n model have difficulty filtering out
noise in noisy environments, thereby impeding its ability
to effectively differentiate between object and background
features. However, with the addition of the ResFuzzy module,
the blue regions in the heat map are significantly reduced,
and the color of the key red object regions is significantly
deepened. This demonstrates that the ResFuzzy module can
markedly improve the resolution of object detail features while
effectively mitigating noise. After incorporating the DySample
module, the blue regions in the heat map are further reduced,
and the red and yellow regions are further enhanced. This
indicates that the DySample module has a certain inhibitory
effect on noisy environments, making the model more sensitive
to changes in noise in the feature map.

F. Anti Interference Test Results

To straightforwardly demonstrate the effectiveness and ad-
vantages of the YOLOv8-RD model in interfering environ-
ments, we conducted four adversarial training experiments on
datasets with two different levels of Gaussian and Poisson
noise. The trained model weights were then used to evaluate
the detection performance of both YOLOv8n and YOLOv8-
RD on single images. In our experiments, we selected test
samples with two different noise levels from both Gaussian
and Poisson noise datasets to assess the models’ robustness to
noise. The detection results are shown in Fig. 9.
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Fig. 9. Anti interference test results.

As shown in the figure above, under the interference of
Gaussian noise, the original YOLOv8n model encountered
issues with missed detection and false positives. In environ-
ments with substantial noise, the features of small objects may
become obscured, thereby impeding the YOLOv8n model’s
capacity to discern these minute details with precision. Ad-
ditionally, similar ground features were mistakenly detected
as disease objects by the YOLOv8n model. In contrast, the
proposed YOLOv8-RD model was able to accurately detect
nearly all object features under the simulated cloud and fog
interference from Gaussian noise.
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When exposed to the interference of illumination changes
simulated by Poisson noise, the detailed features and edge
contours of the objects in the image became blurred. In such
environments, the YOLOv8n model struggled to accurately de-
tect disease features, often resulting in missed detection. How-
ever, our proposed YOLOv8-RD model effectively resisted
the interference from illumination changes and cloud cover.
By leveraging the ResFuzzy module, image noise induced by
cloud cover was effectively mitigated, while the DySample
module facilitated the restoration of disease features that were
compromised due to variations in illumination. The incor-
poration of these two anti-interference modules substantially
bolstered the robustness of the YOLOv8n model, markedly
decreasing both missed detection and false positive rates in
challenging, noisy environments.

VI. ACKNOWLEDGMENT

This work was partly supported by the National Natural
Science Foundation of China under grant no. 62403433,
62102366, and Natural Science Foundation of Zhejiang
Province under grant no. LQ22F020010, LQ23F020001,
LTGS24F020001.

VII. CONCLUSION

This study simulates cloud occlusion and lighting variations
using Gaussian and Poisson noise. By designing the ResFuzzy
module to suppress the interference of image noise and
background features, we significantly improved the model’s
robustness in various noisy environments. In addition, we
integrated the DySample module into the Neck part, effec-
tively enhancing the adaptability of the upsampling process to
changes in input features, further strengthening the model’s
resistance to interference.

Through extensive experiments, our proposed YOLOv8-
RD model achieves a maximum detection accuracy of 92.2%
in noise-free conditions. Under Gaussian and Poisson noise
interference, the YOLOv8-RD model significantly outperforms
four state-of-the-art models. This illustrates that the YOLOv8-
RD model adeptly counters noise interference, facilitating
precise detection of PWD in intricate and obstructive envi-
ronments when deployed via UAV systems.
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