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Abstract— Scientific analysis of Earth's land surface change 

benefits from well-characterized multispectral remotely sensed 

data for which models estimate and remove the effects of the 

atmosphere and sun-sensor geometry.  Top-of-atmosphere (TOA) 

reflectance in commercial very high resolution (< 5 m; VHR) 

spaceborne imagery routinely varies for unchanged surfaces 

because of signal variation from these effects. To reliably identify 

critical broad-scale environmental change, consistency from 

surface reflectance (SR) versions of this imagery must be sufficient 

to identify and track the change or stability of fine-scale features 

that, though small, may be widely distributed across remote and 

heterogeneous domains. Commercial SR products are available, 

but typically the model employed is proprietary and their use is 

prohibitively costly for large spatial extents. Here we (1) describe 

and apply an open-source workflow for the scientific community 

for fine-scaled empirical estimation of surface reflectance from 

multispectral VHR imagery using reference from synthetic 

Landsat surface reflectance, (2) examine SR model results and 

compare with corresponding TOA estimates for a large batch with 

varying acquisitions in Arctic and Sub-Arctic regions, (3) assess its 

consistency at pseudo-invariant calibration sites, and (4) quantify 

improvements in classification of land cover in a Sahelian region. 

Results show this workflow is best for longer wavelength optical 

bands, identifies poor estimates associated with image acquisition 

variation using context provided from large batches of VHR, 

improves estimates with robust regression models, produces 

consistent estimates for non-varying sites through time, and can 

increase the accuracy of land cover assessments. 

 
Index Terms—Remote Sensing, Surface Reflectance, Very High 

Resolution  

I. INTRODUCTION 

ASA Earth Observing System missions produce 

properly calibrated, science quality remotely sensed 

datasets [1]. This data quality is the result of models 

that estimate and remove atmospheric constituents and account 

for acquisition characteristics [2], [3], [4]. The use of these data 

for a wide range of science and applications has become widely 

accepted [5] because the satellite data are well calibrated, 

documented, understood, and accessible [6], [7], [8], [9], [10].  

The provision of spaceborne remote sensing data is evolving 

as commercial providers serve an increasing role in earth 

observation [11], [12], [13], [14], [15]. These providers collect 

spaceborne imagery at very high spatial resolution (< 5 m; 

VHR). As VHR archives increase, time-series of these data 

can be used for additional scientific purposes beyond 

calibration and validation [15] that include quantifying 

changes in glacier mass balance [16], forest structure [17], 

[18], and land cover [14], and monitoring biodiversity [19] 

and human conflict [20]. However, to do this, scene-to-scene 

VHR image consistency in radiometric fidelity requires a 

conversion from top-of-atmosphere reflectance to surface 

reflectance (SR) [21], due to the routine signal variation of 

unchanged surface features from the combined effects of 

atmospheric constituents, aerosols, and a range of sun-sensor 

geometric scenarios of acquisitions [22], [23]. Consistency 

from this imagery must be sufficient to identify and track the 

change or stability of fine-scale features that, though small, 

may be widely distributed across remote domains, and serve 

as key indicators of critical broad-scale environmental 

variation and change [11], [24]. 

Several atmospheric correction methods and algorithms 

have been developed for a variety of multispectral imagery. 

Two types of these algorithms include those that are (1) 

image-based empirical corrections (e.g., the empirical line 

method [25], dark-object subtraction [26], Quick Atmospheric 

Correction [27]) and (2) physically-based corrections (e.g., the 

Fast Line of Sight Atmospheric Analysis of Spectral 

Hypercubes (FLAASH) [28], the Framework for Operational 

Radiometric Correction for Environmental monitoring 

(FORCE) [29], the Landsat Surface Reflectance Code 

(LaSRC) [30], the multi-angle implementation of atmospheric 

correction for MODIS (MAIAC) [8], and the Simplified and 

Robust Surface Reflectance Estimation Method (SREM) [31]). 

Image-based corrections work within single image datasets 

without needing external reference and are efficient but lack a 

common frame of reference for reflectance.  Physically-based 

corrections for commercial multispectral VHR (e.g., Maxar 

Worldview-1/2/3), while rigorous, are difficult to implement 

for several reasons. First, these data often lack the necessary 

atmospheric correction bands. Specifically, only Worldview-3 

has 12 cloud, aerosol, vapor, ice, and snow (CAVIS) bands 

(30 m) that can be used to provide spatially explicit 

atmospheric parameters used for correction. Second, the fine 

resolution imposes unique anisotropic effects that, for regions 

with vegetation, depend in part on its vertical and horizontal 

structure [32], [33] that may not be sufficiently characterized. 

Third, existing atmospheric corrections algorithms rely on 

parameterization that is not optimized for fully automated 

workflows often required for processing large volumes of 
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VHR data [33], [34]. Furthermore, previous calibration and 

SR estimation that relate Maxar data to near coincident 

MODIS surface reflectance data [8], [15], [35] rely on coarse 

resolution reference (1 km). While commercial SR products 

are available, they typically employ a model that is proprietary 

and the costs for using these products across large batches of 

VHR imagery over large geographic domains can be 

significant (e.g., Planet Surface Reflectance v.2 [36] and 

Maxar’s AComp [37]). As such, an open-source SR estimation 

approach that overcomes the challenges imposed by the need 

for reference across multiple adjacent VHR images, the lack 

of physically-based correction requirements, and commercial 

proprietary restrictions may be useful to the scientific 

community working with VHR imagery over heterogenous 

land covers spanning broad spatial extents. 

Here, we present a workflow to estimate SR for spaceborne 

VHR imagery using corresponding synthetic Landsat surface 

reflectance data and apply it to sets of VHR imagery across a 

variety of landscapes to assess its performance for fine-scaled 

estimation of surface reflectance. We examine the 

correspondence of SR estimates to source TOA for a large 

batch with varying acquisitions, assess its consistency at 

calibration sites, and quantify accuracy gains in land cover 

classification. 

II. STUDY AREAS 

  In this study we apply a surface reflectance estimation 

workflow (Fig. 1) on three different regions and extents to 

examine and evaluate surface reflectance estimates from VHR 

across a range of conditions. The first region is a broad spatial 

extent over Alaska (Fig. 2) associated with boreal forest and 

tundra land covers. The second region is White Sands, New 

Mexico, USA (Fig. 4), a frequently used area for image 

calibration due to the pseudo-invariant nature of its land 

surface. The third features mosaics of smallholder agriculture 

and natural Sahelian land covers in Senegal (Fig. 6). These 

study areas include primarily natural or human-modified 

vegetation landscapes with little human infrastructure, and 

therefore our methods and analyses are not designed for land 

covers with predominately urban and built features. 

III. METHODOLOGY 

Fig. 1 summarizes the workflow to estimate SR from input 

VHR. This workflow is designed to improve the consistency of 

VHR imagery within large commercial data archives that are 

available to the US Government [38], in particular QuickBird-

2, GeoEye-1, Worldview-1/2/3/4, and enable analysis of fine-

scaled phenomena across broad spatial extents and through 

time. It highlights the two data inputs required for the 

estimation of SR from VHR, that of the source VHR itself and 

the reference SR estimates from synthetic Landsat [39].  

 

(Figure 1 at end) 

 Fig. 1. The workflow for estimating surface reflectance for 

commercial VHR multispectral imagery (SRVHR). 

The VHR surface reflectance workflow compiles an input data 

stack that combines (1) existing procedures that prepare input 

VHR with (2) surface reflectance reference (SRreference) from 

synthetic Landsat for SR estimation from VHR imagery (SRVHR), 

and (3) builds and applies the SRVHR model. First, SRreference from 

synthetic Landsat is compiled for VHR imagery. Next, 

“enhanced” VHR data (eVHR) are produced by processing level 

1B (seamless, geometrically- and radiometrically-corrected 

mosaics of sub-images [40] ) imagery to orthorectified top-of-

atmosphere reflectance (TOAVHR) [15], [41] and then applying 

an automated cloud-masking [42] procedure before using them 

as input to a procedure to model surface reflectance. This SR 

procedure stacks all input layers into a common modeling grid 

(e.g., 30 m; coarser than the input TOA) grid for the input TOA 

spatial extent, derives a mask from invalid data in each of the 3 

input datasets, applies that mask to the input TOA and reference 

SR to remove all invalid pixels, builds an SR model at 30 m 

resolution, and applies that model to the original VHR TOA at 2 

m spatial resolution.  

 

A. Preparing input synthetic Landsat reference and VHR 

imagery 

We compiled SRreference for temporally and spatially 

coincident VHR imagery using an algorithm to synthesize 

Landsat-derived SR [39] based on the archive of Landsat data. 

The model parameters used to create synthetic SRreference are 

generated from the record of all available Landsat 4/5/7/8/9 Tier 

1 Level 2 surface reflectance observations that are masked to 

exclude cloud, cloud shadows, snow, pixels that are saturated 

in any band, and gaps. Then, we use the projection, bounding 

box and acquisition date of the input VHR image to generate a 

synthetic (modeled) map of estimated SR based on the 

harmonic model parameters of the Landsat time-series. These 

model parameters describe variations in surface reflectance 

derived from seasonality, inter-annual trends, and disturbances 

that appear within the Landsat surface reflectance record from 

1984-2020 [43]. 

Next, we computed TOAVHR reflectance using the workflow 

described in Neigh et al. 2019 [15]. This returned an 

orthorectified multispectral stack in cloud-optimized geotiff 

format that is georeferenced to the local Universal Transverse 

Mercator coordinate system in a grid with a resolution native to 

the input TOAVHR (2 m). To identify valid surface pixels, we 

applied a convolutional neural net algorithm to mask cloud 

cover for each TOAVHR [42]. The mask is returned as a binary 

map that separates cloud from non-cloud pixels. In some cases, 

transparent cirrus clouds are not identified as such, while some 

very bright non-cloud surfaces (smooth snow cover or bright 

lichen ground cover extents) may be mis-classified as clouds. 

Therefore, the development of this algorithm continues as new 

training data is acquired. These steps resulted in a set of three 

input datasets (SRreference, input TOAVHR, and cloud cover mask 

of input TOAVHR) for the re-gridding and masking steps, prior 

to model building.  

The input files were re-gridded by reprojecting each to the 

coordinate system of the input TOAVHR and coarsening to the 

30 m pixel resolution of the reference. These re-gridding steps 
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use the mean for the reflectance bands and mode for the cloud 

mask. Re-gridding the 2 m inputs to the coarser spatial 

resolution of the 30 m SRreference at this stage makes for efficient 

model building. After re-gridding, we build a common mask 

that includes all “no data” collected from both SRreference and 

input TOAVHR datasets. This mask is thus a union of all input 

“no data”, however, because we use synthetic Landsat which 

provides valid reference values for all pixels of an extent, the 

“no data” extent for this study represents the just the masked 

cloudcover pixels from the input TOA.  Both SRreference and 

input TOAVHR are masked with this common mask so that the 

same set of pixels are present in each dataset. At this point, each 

input TOAVHR pixel has a corresponding reference pixel, and 

the data is ready for model building. 

B. Building and applying the surface reflectance correction: 

the SRVHR workflow 

We use the re-gridded and masked data stack to build a linear 

model using ordinary least squares (OLS) regression to describe 

the relationship of the input TOAVHR (dependent) to the 

SRreference (independent). The models are applied to bandwise 

pairs for the blue, green, red, and near-infrared bands (Band 7, 

or NIR1, in the case of Worldview-2/3/4), where a given 

TOAVHR band is paired with the closest corresponding SRreference 

band based on the central wavelength. The bandwise model fit 

that is returned based on the model choice (OLS) is then applied 

back to corresponding input TOAVHR band (2 m). This is done 

for each band of the input TOAVHR to return the multi-band 

surface reflectance estimates at 2 m spatial resolution (SRVHR). 

We applied this workflow in a distributed manner on NASA 

Goddard Space Flight Center’s computational platform Explore 

to a sample of hundreds of VHR image strips at sites in Alaska, 

New Mexico, and Senegal. This large sample provided 

opportunities to examine and evaluate the performance of the 

workflow where (1) acquisition sun-sensor geometry can vary 

significantly (Alaska), (2) where surface reflectance variation 

is effectively absent (pseudo-invariant calibration site near 

White Sands, New Mexico, USA), and where on-going studies 

require VHR reflectance precision through time to distinguish 

subtle patterns of land-use change (Senegal). These sites span a 

range of environmental conditions, disturbance histories, 

physiographic regions, and land covers across boreal, tundra, 

desert, and Sahel landscapes. 

C. Assessing estimates of surface reflectance from VHR 

We assessed estimates of SRVHR in three ways. First, using 

VHR in Alaska, we examined the correspondence of SRVHR 

estimates to TOAVHR and SRreference for a large batch for which 

there was important variation in sun-sensor geometry of 

acquisitions. To do this, we randomly sampled 0.1% of the 2 m 

pixels to build a database of corresponding input TOAVHR, 

SRreference, and output SRVHR estimates. Next, to examine the 

consistency at pseudo-invariant calibration sites we compared 

SRVHR and TOAVHR pixels at 50 randomly selected sites for 

which we acquired a decadal-scale time series of VHR. Finally, 

to quantify accuracy gains in land cover classification, we 

compared the accuracy of tree, crop, and other vegetation 

classifications derived from SRVHR and TOAVHR across 

landscapes dominated by anthropogenic land-use and land 

cover changes in the Sahel region of Senegal. 

The land cover classes were derived from a UNet-based 

convolutional neural network classification model [44] applied 

to both SRVHR and TOAVHR. Training data was built through a 

combination of semi-supervised and manual iterations for label 

enhancement [45] and divided using a 70/30 split into training 

and test sets. An additional set of independent validation points 

were produced following land cover evaluation best practices 

[46]. Three different observers were assigned to each scene 

using a collaborative tool designed for earth observation 

validation [47], which enabled the rapid generation of randomly 

stratified observations to be validated by each observer. 

Independent models were trained for both SRVHR and 

TOAVHR, where input and label tiles come from the same exact 

locations, with the only difference being the SRVHR and 

TOAVHR input values. These models were then trained until 

convergence using the cross-entropy loss function and the 

Adam optimizer, with early stopping monitoring based on the 

minimization of the loss function [45]. Geometric data 

augmentation was performed during model training to increase 

the dataset size, while retaining the spectral information of the 

training tiles [42]. Inference was performed using the best 

output from each model to produce end-to-end land cover maps 

using the tensorflow-caney software framework [44], [48]. 

IV. RESULTS 

The results we present and discuss below were produced with an 

open-source containerized version of the SRVHR workflow [49] 

designed and evaluated for routine use across large volumes of 

VHR data on high performance compute platforms. Our results are 

derived from the application of this workflow across hundreds of 

individual Maxar images. Results are divided into three 

subsections on the variation of VHR imagery, assessing the 

consistency of SRVHR through time, and quantifying the 

improvements in land cover classification from SRVHR. 

 

A. Assessing variation to optimize VHR image selection 

The first set of results highlights the variation of VHR imagery, 

where bandwise relationships between image types provide a 

performance evaluation for assessing which images benefit most 

from this empirical SR estimation. Results from a batch (n=170) of 

VHR imagery in Alaska (Fig. 2a) draws on comparisons between 

SRVHR, TOAVHR, and SRreference in Arctic and Sub-Arctic regions. 

There are three key results from these comparisons: 

 

● SRVHR vs TOAVHR comparisons vary across multi-

spectral bands, 

● SRVHR model results can vary significantly according 

to input VHR sun elevation angles, and 

● SRVHR model estimation choice can optimize SRVHR 

estimation. 

 

The results of these comparisons guide the selection of specific 

VHR images from within a large archive in which variation in 
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acquisition characteristics can affect image consistency across 

a broad spatial extent. Fig. 2b,c,d, highlights the variation in 

band performance. The slopes from linear models of TOAVHR 

versus SRreference (Fig. 2b) along with their SRVHR counterparts 

(Fig. 2c) show bands corresponding to longer wavelengths 

result in better correspondence with reference reflectance due 

to lower atmospheric scattering. The SRVHR yield the strongest 

relationships bandwise with SRreference, where the relationships 

of the blue bands improve from R2 = 0.29 (TOAVHR) to R2 = 

0.57 (SRVHR). Overall, the NIR bands from SRVHR show the 

highest level of agreement with SRreference (R2 = 0.83). 

  The skyplot in Fig. 2a and the plots in Fig. 2d,e highlight the 

potential sensitivity of SRVHR results to solar elevation angle. 

This sensitivity is important because it provides a means to 

identify outlier VHR acquisitions within large groups for an 

area of interest. Fig. 2a features a cluster of frequent acquisition 

solar geometries in the southern portion of the skyplot, as well 

as outlier solar geometries in the northwestern section 

associated with summer evening acquisitions during low light 

conditions in the high northern latitudes. These outlier solar 

elevation angles from VHR acquisitions (<15°) feature linear 

model slopes from the comparison of SRVHR to TOAVHR that are 

significantly less than 1 (< 0.6), providing a quantitative flag of 

VHR acquisitions associated with poor SR models that 

contribute to the scatter observed in Figure 2b,c. 

 

(Figure 2 at end) 

Fig. 2. (a) Surface reflectance was estimated for a set of 170 

VHR images across Alaska with a range of acquisition solar 

(orange dots) and sensor view positions (black dots) 

summarized in the inset skyplot below the map. This range 

helps explain the variation shown in the evaluation of SRVHR 

results (b-e). 

 

Fig. 3 indicates the potential to optimize the normalization of 

SR estimates from VHR images across a broad and 

heterogenous extent using robust regression model choices 

other than ordinary least squares (OLS). Results show the 

distributions of model slopes grouped by regression model 

choice across each multispectral VHR band form the set of 

Alaska imagery. Here, the distribution of model slopes across 

each band feature median slope values closer to 1 for longer 

wavelength bands. Similarly, median slope values are closer to 

1 for the robust regression model choices from reduced major 

axis (RMA) and Huber relative to OLS.  These robust 

regression model choices account for error in the dependent 

variable and are less sensitive to outliers than OLS, 

respectively. They offer an improvement in the adjustment of 

pixels across a broader range of reflectance values over the OLS 

method, which is important for calibrating surface reflectance 

for bright and dark targets such as lichen understories, bright 

bare surfaces and soils, and inundated herbaceous vegetation. 

(Figure 3 at end) 

Fig. 3. The regression model choice can optimize the 

normalization of surface reflectance estimates. Boxplots 

summarize the distribution of model slopes across the set of 

VHR images for 3 linear model options. Robust regression 

model choices using RMA and Huber result in model slopes 

closer to 1 than OLS. These robust regression model choices 

improve the adjustment of pixels across a broader range of 

reflectance values over that from ordinary least squares 

regression, which is important for calibrating bright and dark 

targets. 

 

B. Consistency in surface reflectance time-series at a pseudo-

invariant site 

  We quantified the consistency of estimates from TOAVHR and 

SRVHR versions of multispectral acquisitions at a pseudo-

invariant site. These sites experience little change through time 

and are assumed to have consistent surface reflectance. Fig. 4 

shows a map of 50 randomly distributed locations for which 

multiple acquisitions span a decadal-scale time series of 

multispectral TOAVHR and corresponding SRVHR within a 

pseudo-invariant site area near White Sands, NM. Using one of 

the 50 points as an example, the plot tracks reflectance values 

for each multispectral band of each image type across a time-

series of 6 June-September VHR images (QuickBird-2 and 

Worldview-2) from 2002-2013. Fig. 5 shows the distributions 

of the band-wise slopes calculated from a time-series at each of 

the 50 locations within a 12.63- year time span at the pseudo-

invariant analysis site. Together, these time-series results 

confirm that the SRVHR estimates maintain the expected 

consistency of reflectance estimates through time at a site of no 

significant change, where distribution of time-series slopes 

even indicate a marginal improvement in consistency in SRVHR 

over TOAVHR across all bands. 

 

(Figure 4 at end) 

Fig. 4. Decadal-scale time-series of VHR observations explains 

the stability of the derived SRVHR from the source TOAVHR 

reflectance. Here, overlapping extents of VHR imagery produce 

a dense time-series of observations within the analysis extent of 

this pseudo-invariant calibration area near White Sands, New 

Mexico, USA. A set of 50 randomly sampled time-series 

analysis sites were collected and mapped in this analysis extent 

to form a consistent calibration sample. The plot (right) shows 

an example from a single analysis site of a time-series of SRVHR 

and TOAVHR reflectance across 11 years (2002-2013) with 6 

seasonal (June-September) VHR images from both QuickBird-

2 (QB02) and Worldview-2 (WV02). 

 

(Figure 5 at end) 

Fig. 5. The distributions of the slopes of each of the 50 analysis 

site time-series across the full (12.63 year) time span at the 

calibration site in White Sands, New Mexico, USA. While both 

SRVHR and TOAVHR slope distributions yield median values 

near 0, indicative of no change in reflectance at the site, the 

SRVHR distributions return a marginally more accurate no-

change estimate than do the corresponding TOAVHR estimates 

across each of the multispectral bands. 

 

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2024.3456587

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



5 

1459 

C. Quantifying land cover classification improvements 

The consistency presented above in SRVHR is particularly 

valuable when data are used for land cover assessments. We 

quantified improvements in land cover classification from SRVHR 

relative to their TOAVHR counterparts. To do this, we report 

classifications of 3 land cover types at a variety of study sites 

distributed across 3 biogeographic regions (Senegal River Valley, 

Casamance, Eastern Transition Zone) in Senegal. We summarize 

these classification improvements using 2-4 classification accuracy 

statistics (user accuracy, producer accuracy, recall, precision, and 

accuracy) from each set of input to the reference validation set for 

individual classes of ‘crop’, ‘tree’, and ‘other’ (non-tree or crop 

vegetation) and a combined class (‘overall’) [42]. Generally, 

accuracy gains were achieved using the SRVHR in place of the 

corresponding TOAVHR as input into the classification model both 

overall and across the 3 individual classes ‘crop’, ‘tree’, and 

‘other’. Here, improvement from SRVHR is demonstrated with 

generally higher median classification accuracy values and smaller 

ranges of accuracy statistic distributions. 

 

(Figure 6 at end) 

Fig. 6. Classification accuracy rates across classification sites 

in three Sahelian regions in Senegal. This comparison of 

accuracy rates for land cover classes from SRVHR show smaller  

distributions than TOAVHR imagery. 

 

V. Discussion 

  The concept of ‘science-ready’ or ‘analysis-ready’ VHR 

spaceborne data refers to imagery that has undergone formatting 

and calibration in preparation for rigorous geospatial analysis. This 

study presents a workflow that performs cloud-optimized 

formatting and an empirical surface reflectance estimation, and 

evaluates image outputs from this SR modeling workflow for 

application across large volumes of VHR imagery.  

  The SR modeling that we present and evaluate represents a simple 

and straightforward method for estimating surface reflectance. It 

does not involve image-specific parameterization that is part of 

physically-based atmospheric compensation models. As such, this 

method is not as rigorous as existing methods (e.g., MAIAC, 

FLAASH), where specific atmospheric components are accounted 

for individually. In fact, it is more similar to image-based methods 

that use look-up table approaches to evaluate surface reflectance. 

However, the ‘look-up table’ approach that we use here is 

location-specific yet features a consistency across continuous 

spatial extents. In this work, for any given 30 m location, we 

“look-up” (predict) a pixel’s expected bandwise surface 

reflectance by leveraging the per-pixel history of reflectance 

captured in the Landsat record that is available for all land 

surfaces. The existing (pre-built) calculation of the harmonic 

patterns, linear trends, and identification of breakpoints within 

this record [39] provides the basis for prediction of SRreference. 

Furthermore, it enables on-demand prediction of per-pixel 

SRreference given what is expected based on the intra- and inter-

annual patterns captured for a given location within the Landsat 

record. This allows for precise (daily) matching of SRreference with 

TOAVHR at 30 m resolution and is a key component to our SR 

estimation.  

  Noteworthy is the source of the SRreference and its potential 

effect on the SRVHR results. The synthetic SRreference are based on 

30 m data and are thus likely more appropriate for reflectance 

standardization in land covers where biophysically relevant 

variation occurs at patch scales (~ 10 m2 – 100 m2), often across 

rapid seasonality gradients. However, Landsat-derived reference 

will be less robust in routinely cloudy regions, particularly when 

cloudiness is unevenly distributed through seasonal cycles. 

Furthermore, because we use the Landsat record up through 2020, 

VHR data post-2020 may feature changes (e.g., disturbance from 

fires) that are not accounted for in the Landsat record we used to 

create our reference.   

  This simpler approach is designed to be used across hundreds to 

thousands of VHR images. Primarily, it provides a means for 

efficient standardization of VHR images. This step is critical a-

priori step before detailed vegetation structure and land cover 

analyses,  where optimizing the across-image standardization is 

important for a few reasons. First, it can improve the 

consistency of image mosaics needed for robust analyses of 

regional extents at meter-scales. Second, it can improve the 

consistency of a time-series, reducing the differences in 

reflectance among non-changing features. Finally, the use of 

synthetic Landsat SR as reference leverages a globally available 

reflectance history catalog for which, when used to standardize 

VHR, may enable powerful cross-scale time-series analyses 

and detailed biophysical modeling opportunities. A meta-

analysis to compare our SRVHR results to those from other 

methods was not performed as part of this study but would be 

an important to quantify the spatial uncertainties of this SR 

method and clarify key trade-offs.  

 

VI. Conclusions 

We assembled a workflow to estimate surface reflectance for 

2 m resolution multispectral VHR imagery based on synthetic 

reference derived from the full Landsat record. We applied this 

workflow to hundreds of VHR images across a wide range of 

geographic domains and time periods and examined the 

variation of SR image results within large batches across multi-

spectral bands, acquisition characteristics, and SR model 

estimation choices. We assessed the consistency of SR results 

across a time-series, and the accuracy of classified land cover. 

Results show that this SR workflow is best for longer 

wavelength optical bands, identifies poor estimates associated 

with VHR image acquisition variation using context provided 

from large batches of VHR, improves estimates with robust 

regression models, produces consistent estimates for non-

varying sites through time, and can increase the accuracy of 

land cover assessments. This workflow, and its open-source 

container deployment, extends the accessibility and utility of 

spaceborne VHR data for scientists, because it is designed to 

improve standardization within large batches of imagery. It 

provides a means to routinely prepare otherwise difficult-to-

handle datasets for analysis of land cover and vegetation 

structure patterns across space and time at sub-decameter 

spatial scales and is particularly useful for work in areas of high 

environmental heterogeneity that are experiencing subtle yet 

significant changes.    
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