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Abstract – Thanks to the frequent revisiting, satellite 

microwave radiometers have great potential for surface Soil 
Moisture (SM) monitoring. However, their spatial resolution 
is not sufficient for hydrological studies in small catchments 
as well as applications to precision farming. 

In this study, a disaggregation technique based on machine 
learning is proposed: the technique combines Sentinel-1 SAR 
(S-1) data with SM generated from AMSR2 by the IFAC’s 
HydroAlgo algorithm, with the aim of enhancing the SM 
spatial resolution from the original 10 km to about 30 m. To 
this scope, two machine learning techniques have been 
considered for the implementation, namely Artificial Neural 
Networks (ANN) and Random Forests (RF). Training is 
carried out by aggregating and coregistering S-1 data with 
the HydroAlgo SM at 10 km resolution. After training the 
ANN and RF algorithms are applied pixel by pixel to the 
Sentinel-1 images at full resolution for generating the 
enhanced SM maps. 

The method has been implemented and validated in two 
agricultural areas located in Central Italy, where a series of 
experiments has been carried out between 2019 and 2020 for 
collecting the main soil and vegetation parameters at the 
same time of satellite overpasses.  

To assess the actual resolution of the output SM, the 
validation against in-situ measurements has been carried out 
by aggregating data at 10, 30, 50 and 70m. The results 
confirmed the effectiveness of the proposed method: 
validation carried out at 30m obtained R≃0.82 and 
RMSE≃0.05 m3/m3 that represent a noticeable improvement 
with respect to the results obtained by HydroAlgo at 10 km 
(R≃0.56 and RMSE >> 0.1 m3/m3). Validation results also 
pointed out superior performances of the ANN based with 
respect to the RF based disaggregation. 

 
Index Terms— AMSR2, Sentinel-1, HydroAlgo, Soil 

Moisture, Artificial Neural Networks, Random Forest, 
disaggregation. 
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I.   INTRODUCTION  
The availability of Soil Moisture (SM) products has greatly 

improved with the launch of satellite missions carrying 
onboard microwave radiometers operating at L- band, as the 
NASA’s Soil Moisture Active and Passive (SMAP) [1] and 
the ESA’s Soil Moisture and Ocean Salinity (SMOS) [2] and 
also at higher frequencies, as the JAXA Advanced 
Microwave Scanning Radiometer 2 (AMSR2) [3]. These 
instruments can revisit most of the earth surface daily, 
offering the possibility of frequent SM mapping at a global 
scale with the very high accuracy which is peculiar of this 
kind of technique. However, their spatial resolution in the 
order of dozens of kilometres, although still suitable for 
global scale monitoring, hampers the detection of 
hydrological patterns in small catchments and some potential 
applications as the precision farming, making in fact the SM 
products generated by satellite radiometers unable to meet the 
requirements of most users.   

For this reason, large efforts are being carried out by the 
scientific community to improve the spatial resolution of SM 
products generated by these sensors. Studies on SMOS were 
based on deconvolution techniques taking advantage of the 
multi-angular observations that are a peculiarity of this 
instrument (e.g. [4]-[5]), while the possibility of improving 
the spatial resolution of the SMAP SM has been the subject 
of several studies, especially after the failure of the SMAP 
radar that prevented the generation of SM products at 3 Km 
resolution.  

In [6], post processing of data has been implemented by 
applying deconvolution techniques, to obtain an enhanced 
SM product which has been posted at 9 Km resolution. Other 
techniques have been developed as well, as the routinely 
assimilation into land surface models, for generating SMAP 
Level-4 Soil Moisture product at 9 km resolution [7]. 

Significant research focused on disaggregating SM based 
on optical/multispectral data. In general, these methods 
exploit the relationship between LST and SM based on the 
evapotranspiration process (e.g. [8]-[9]): most of them 
disaggregate SMAP based on MODIS products (e.g. [10] - 
[11]). Some concerns have been however raised about the 
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disaggregation techniques based on multispectral data, 
because of the lack of direct relationships between the optical 
measurements and the soil moisture. For this reason, the idea 
to replace the SMAP radar with another radar/SAR sensor, 
being more physically based, has gained interest in the 
community, and several studies addressing this possibility 
have been carried out. Among the others, the possibility of 
integrating SMAP with Sentinel-1 (S-1) for improving the 
spatial resolution of the SM retrievals has been exploited. 
Sentinel-1 is a constellation of two (S-1A and S-1B) satellites 
carrying onboard a C-band SAR: it is characterized by a 
revisiting frequency of 6 days, which is significantly higher 
than any other SAR, and it provides observations at 20m 
resolution. Unfortunately, Sentinel 1-B ceased operating at 
the end of 2021 by halving the temporal revisiting. 

The possibility of combining SMAP and S-1 for mapping 
SM at 3 and 1 Km resolution respectively, has been proposed 
in [12]. This study demonstrated that the S-1 C band SAR, 
although operating at a frequency less sensitive to SM than 
L- band, is effective for improving the spatial resolution of 
the SM products. The SM products based on [12] have been 
recently updated and they are currently distributed by NSIDC 
[13]. 

Other efforts have been also made in improving the spatial 
resolution of AMSR2. AMSR2 is a microwave radiometer 
operating in 7 frequency bands between 6.8 and 89 GHz. The 
AMSR2 sampling rate in the first six bands is approximately 
10 km, however the antenna footprint at the lower frequencies 
is significantly larger, by reaching ≃70 km x ≃40 km at C 
band, so that each acquisition is averaged over an area that is 
several times the nominal pixel size. The overlapping of 
acquisitions made it possible to apply an antenna pattern 
matching technique for obtaining brightness temperature 
measurements at a resolution comparable with the sampling 
rate, which are currently delivered by JAXA as operational 
product [14]. 

In this study, an algorithm for disaggregating the AMSR2 
SM generated by the HydroAlgo Algorithm [15] by means of 
S-1 data acquired in Interferometric Wide Swath mode is 
proposed. HydroAlgo is an algorithm aimed at global 
mapping of SM, vegetation biomass (VWC) and Snow depth 
(SD) by taking advantage of the multifrequency AMSR2 
observations, without involving auxiliary data. With respect 
to the model driven approaches for estimating SM from the 
microwave radiometric data, which are in general based on 
the inversion of zero-order approximation of the radiative 
transfer theory, as the τ-ω [16] for the SMAP single and dual 
channel algorithms [17], or the L-MEB [18] for SMOS, the 
HydroAlgo SM retrievals are based on Artificial Neural 
Networks (ANN) trained following an hybrid (model + data) 
driven approach that combines the representativeness of data 
driven retrievals with the physical basis of model driven 
methods [19]. 

HydroAlgo has been developed in the framework of the 

JAXA AMSR science team activities and validated in several 
studies (e.g. [20]-[21]). The disaggregation which reappraises 
and exploits the concepts preliminary presented in [22], has 
been developed and validated in two test areas located in 
central Italy, for which timeseries of satellite data and in-situ 
measurements from long term experiments and SM probes 
were available from January 2019 to October 2020. 

The high-resolution SM is obtained in three steps: 

1. as first, the low-resolution (LR) dataset is generated by 
aggregating and coregistering the S-1 data with the SM 
generated from AMSR2 by HydroAlgo at ≃ 10 km. 

2. The machine-learning (ML) algorithms, namely 
Artificial Neural Networks (ANN) and Random Forests 
(RF), are trained and tested on the LR dataset by 
considering the aggregated backscattering as input and 
the HydroAlgo SM as target. The concept is that the 
algorithms learn the relationship between 
backscattering and SM from the LR data.  

3. After training, the algorithms are applied to the full 
resolution S-1 data to generate the SM maps at S-1 
resolution, which are then validated against the in-situ 
measurements. To assess the actual resolution of the 
maps, the validation has been carried out at four 
different resolutions, by aggregating data at 10m, 30m, 
50m and 70m. 

The paper is organized as follows: section II describes the 
test area, the data involved and their organization for 
implementing the algorithms and validating the results. The 
ANN and RF based retrieval concepts are described in section 
III, the results are described in section IV and discussed in 
section V. 

II. TEST AREAS AND DATASETS 

A. TEST AREAS 
The two test areas are located in the Tuscany region, central 

Italy. The weather characteristics are typical of 
Mediterranean climates, with a strong seasonality 
characterized by dry conditions in summer and moist 
condition in spring and autumn (Fig. 1).  

The first area extends for about 30 km x 30 km and is 
centred on a hydroelectric basin (Pontecosi) on the Serchio 
river. The central coordinates are 44°7’37” N; 10°23’34” E. 
The area is characterized by a heterogeneous landscape, 
including agricultural areas, forests and urban, that set 
important constraints to the AMSR2 observations for SM 
monitoring. For the scopes of this study, three SM probes 
have been installed in the surrounding of the hydrological 
basin. Each probe sampled an area of about least 50m x 50m, 
characterized by uniform vegetation cover and surface 
conditions, providing continuous recordings of SM and air 
temperature. In total, 125 SM samples have been collected in 
correspondence to the satellite overpasses. The second test 
area selected for the experimental activities is an agricultural 
area along the Elsa River, close to the Ponte a Elsa town. 
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Fig. 1. The Pontecosi and Val D’Elsa test areas in Tuscany, central Italy.  

The area extends for about 270 hectares, with centre 
coordinates 43°41′20.37′′N and 10°53′42.38′′E. It is 
characterized by rather large homogeneous fields with 
various crops, including wheat, corn, sorghum, alfalfa, colza, 
fava bean, pastures, vineyards, and olive- groves. Dedicated 
experiments have been carried out in correspondence with the 
S-1 overpasses to acquire the main parameters of soil (SM 
and soil roughness) and vegetation (plant density, geometry, 
and vegetation biomass). In detail, SM was sparsely sampled 
within each field of the area and each sample has been 
associated to the coordinates of the sampling point. In total, 
175 SM measurements have been collected in 
correspondence to the satellite overpasses, by following the 
sampling strategy described in [23]. The SM values recorded 
in the area during the experiment ranged between ≃0.1 m3/m3 
and ≃0.55 m3/m3, the corresponding vegetation biomass, 
expressed as Plant Water Content (PWC) was between 0 and 
≃8 kg/m2. The in-situ investigations included soil surfaces 
with roughness from smooth (Height Standard Deviation – 
HSTD ≃ 0.5 cm) to rough (HSTD ≃ 4 cm). 

A. SENTINEL-1 SAR DATA 
Sentinel-1 (S-1) covered the two areas in the orbits 15 and 

168: a total of 64 ground range detected (GRD) in 
interferometric wide swath mode (IW) images have been 
selected for which colocated AMSR-2 acquisitions were also 
available. The images have been downloaded from the 
Copernicus Open Access Hub in the time frame January 2019 
- October 2020, calibrated radiometrically, multilooked and 
geocoded for obtaining the georeferenced and calibrated 
backscattering values (σ°) at 10m resolution. The σ° 
calibration accounted for the local incidence angle (LIA) 
obtained by terrain correction using a DEM of the area 
derived from SRTM. It should be mentioned that S-1 B was 
still operating at the time of the experiment, so that the 
revisiting was ensured every 6 days. 

B. AMSR2 AND SMAP DATA 
The AMSR2 L1R V2.1 brightness temperatures [14] 

acquired on both areas have been downloaded from the 
JAXA’s GCOM data portal. AMSR2 overpasses the area at 
approximately 2:00 PM (local time) in Ascending orbit and 
2:00 AM in Descending orbit. Only the AMSR2 overpasses 
covering entirely the areas and acquired within the same day 
of S-1 acquisitions have been considered, to prevent any 
problem due to partial coverage and excessive temporal 
distance between S-1 and AMSR2 data. This dataset served 
as input to generate the SM data at 10 km resolution by using 
the IFAC’s HydroAlgo algorithm for AMSR2 [15].To assess 
the HydroAlgo SM, the SMAP radiometer enhanced 9km SM 
product [6] has been also downloaded from the NSIDC data 
portal for the same dates of AMSR2 acquisitions.  

C. DATA ORGANIZATION  
Two datasets at different spatial resolution have been 

generated from the 64 combined S-1 and AMSR2 
acquisitions: a low resolution (LR - ≃10 km) dataset, which 
served for training and testing the ML algorithms, and a High 
resolution (HR ≃ 10m) HR dataset, which served to generate 
the disaggregated SM which is then validated against in-situ 
measurements. 

The LR dataset is composed of temporally and spatially co-
located AMSR2 Tb and SM data, SMAP SM, and S-1 σ° 
downscaled and aggregated at the same resolution of AMSR2 
SM and reprojected on the AMSR2 SM grid. To address the 
not easy task of aggregating at AMSR2 resolution the S-1 
data having an original resolution of 10 m each, S-1 image 
has been low-passed and resampled at half resolution until the 
10 km resolution is reached. This was done since the single-
pass aggregation initially attempted was found causing 
artifacts and anomalies in the nonuniform areas of the 
aggregated images, mainly because of the anomalous 
propagation of the not valid values, either zeros or NaN, 
through the aggregation process.  
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Fig. 2. Example of the iterative aggregation of S-1 data at 10 km resolution. Axes values are the number of pixels. 

An example of the iterative S-1 aggregation is shown in Fig. 
2 for one of the 64 images involved in this study, the example 
refers to VV polarization, an identical processing has been 
applied to the VH polarization. As a final step, each S-1 
image aggregated at 10km is reprojected on the AMSR2 SM 
grid. The LR dataset output of this processing is composed of 
66000 coregistered values of S-1 σ°, LIA, and SM. 

The HR dataset is composed of the S-1 calibrated and 
coregistered σ° at VV and VH polarization and LIA at 
original (10m) resolution. The HR dataset also contains the 
in-situ SM measurements that have been georeferenced with 
Sentinel-1 and aggregated at pixel scale. The total amount of 
coregistered and aggregated SM samples was ≃300 samples, 
including 175 samples collected in the Ponte ad Elsa test area 
and 125 samples collected in Pontecosi. These measurements 
served for validating the ANN and RF algorithm outputs.  

III. METHODS 
The SM disaggregation proposed in this study is based on 

ML techniques that, with respect to model based methods, 
have a well proven ability in modelling highly dimensional 
datasets with non-linear relationships and missing values 
[24]. The disaggregation is composed of three steps: 
generation of the LR dataset, ML algorithms implementation, 
training and test, and generation of HR SM: Fig. 3 shows the 
flowchart of the entire process. 

A. LR DATASET GENERATION 
In the first step, the LR SM dataset (10 km resolution) is 

generated by combining the 10 Km aggregated σ° from S-1 
with SM estimated at the same resolution by the IFAC’s 
HydroAlgo for AMSR2. HydroAlgo is an algorithm based on 
multifrequency AMSR2 data that attempts simultaneously 

the retrieval of SM, VWC and SD. It is based on pre-trained 
ANNs, and it does not make use of any other data than 
AMSR2 brightness temperature at C, X, Ku, and Ka bands. 
HydroAlgo also includes a spatial resolution enhancement 
algorithm based on the Smoothing Filter Based Intensity 
Modulation (SFIM - [25]) that allows estimating SM at 10 
km spatial resolution. Although HydroAlgo has been largely 
validated in previous publications (e.g. [26]-[27]), a further 
verification of the HydroAlgo SM used in this study has been 
carried out against the SMAP enhanced SM product.  

B. ALGORITHMS’ IMPLEMENTATION, TRAINING AND TEST 
In the second step, two different ML algorithms, are 

implemented, trained, and tested by considering the 10 Km 
aggregated S-1 σ° in both VV and VH polarizations and the 
LIA as algorithm inputs and the HydroAlgo SM as output. 
The assumption behind the proposed implementation is that 
the algorithms can learn from the LR dataset the mechanism 
driving the backscattering from vegetated surfaces, which is 
supposed not to change when passing from low to high 
resolution, thus keeping the σ° relationship with SM, soil 
roughness, vegetation parameters and observation geometry. 

For better matching the daily SM dynamics, depending on 
the temporal changes in vegetation biomass and surface 
features other than SM affecting the scattering mechanism, 
the training is repeated for each couple of Sentinel and 
AMSR2 images thus obtaining a different ML 
implementation for each day available in the dataset.  

The two ML algorithms are based on ANN and RF, 
respectively. Feed-forward artificial neural networks (FF-
ANN, hereafter ANN) have been considered in this study 
because of their well proven capability of solving nonlinear 
problems [28]-[29].  
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Fig. 3 – Flowchart of the proposed algorithm for estimating SM at high resolution by integrating AMSR2 and S-1 

data.  

 
ANN are composed of one or more hidden layers with a 

given number of fully interconnected perceptrons [30], an 
input and an output layer. ANN training is based on the back 
propagation learning rule (BP), and an iterative process 
derived from the one proposed in [31] is applied to systematic 
search for the “optimal” number of neurons and hidden layers 
and for the most appropriate transfer function, with the aim 
of minimizing underfitting and overfitting problems. For the 
same scope, the so called “early stopping” rule is also applied 
[32]. 

The architecture resulting from the iterative optimization 
and training was composed of two hidden layers with 8 
neurons each and a transfer function of type tangent sigmoid 
(tansig [28]). Another SM disaggregation algorithm based on 
RF has been implemented in this study. RF belong to the 
ensemble learning methods [33], which base the prediction 
on an average of the results from several predictors called 
decision trees. Each decision tree is trained by a subset of data 
created by random sampling with replacement (bagging) of 
the training set. The number of decision trees is a parameter 
to be defined when implementing the RF model [34]: in this 
study, the number of trees was set to 50 after some iterations, 
this value was shown as the best trade-off between training 
accuracy and computational cost. For training and testing the 
ML algorithms, the LR dataset has been divided by sequential 
sampling in two subsets composed of 50% of data each. 

Training is carried out by considering aggregated S-1 σ° at 
both polarizations and LIA as inputs and the HydroAlgo SM 
as a target. It is worthy noticing that, in the ANN training 
process, the training set is further subsampled for applying 
the early stopping rule. The trained ANN and RF are then 
tested on the remaining 50% of the LR dataset that have not 
been involved in the training process, to keep training and test 
as independent as possible.  

C. GENERATION OF SM HR MAPS 
In the third step, after training and testing on the LR dataset, 

the ANN and RF algorithms are finally applied to the 10 m 
HR Sentinel-1 dual polarization data to generate the HR SM 
maps representing the final output of the processing. The SM 
HR maps at 10m are then masked for open water, dense 
forests and urban areas based on cartography, aggregated at 
30, 50 and 70 m resolution, and validated against in-situ SM. 

IV. RESULTS 

A. HYDROALGO SM ASSESSMENT 
As previously stated, HydroAlgo has been largely validated 

against SMAP and other SM products in previous studies. 
Anyway, the reliability of HydroAlgo SM on the selected test 
areas has been verified in comparison with the corresponding 
SM enhanced data product generated by SMAP. The 
comparison has been carried out by re-gridding the SMAP 
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SM on the AMSR2 grid: the results are shown in the density 
plot of Fig. 4, which represents HydroAlgo SM as a function 
of SMAP SM. 

The two SM products appear highly correlated, as pointed 
out by the correlation coefficient R = 0.91, although the 
HydroAlgo SM shows a slight underestimation of the higher 
SM values, which can be attributed to the intrinsic sensitivity 
limitations of the C- band onboard AMSR2 when compared 
to the L- band onboard SMAP.  

 

 
Fig. 4. AMSR2 SM as a function of SMAP SM. 

B. S-1 SENSITIVITY TO SM 
The S-1 sensitivity to SM has been verified on LR data by 

plotting the aggregated S-1 σ° as a function of the HydroAlgo 
SM. The results are shown in Fig. 5, where both VV 
(magenta) and VH (cyan) are plotted against the SM values 
generated by HydroAlgo. The logarithmic regressions are 
also shown in the figures along with the correlation 
coefficients that are R≃0.4 for VV and R≃0.35 for VH 
polarization. 

 

 
Fig. 5. Aggregated S-1 backscattering at both VV and 
VH polarization as a function of SM generated by 

HydroAlgo.  

Despite the coarse resolution and the heterogeneity of the 

surface features in the areas, the increasing trend of σ° when 
SM increases is confirmed, with a dynamic range of ≃2.5 dB 
in VV pol. and ≃2.2 in VH pol for SM ranging between 0.01 
and 0.6 m3/m3. Such relatively small dynamic and the evident 
saturation for SM higher than 0.3 – 0.4 m3/m3 can be 
explained by considering the effect of vegetation, which is 
not negligible at C- band. In fact, the growing vegetation 
increasingly attenuated the measured signal, reaching a 
maximum during the rainy season in spring, when also the 
higher SM values have been recorded. 

C. ANN AND RF ALGORITHMS TEST (LR DATASET) 
The results obtained by applying both ANN and RF to the 

LR S-1 dual pol + LIA test dataset, composed of the 50% data 
not involved in the training, are represented in Fig. 6 a) for 
ANN and Fig. 6 b) for RF.  

Fig. 6 show the density plots of the SM estimated by the 
algorithms as a function of the reference SM derived from 
AMSR2.  

 

 
a) 

 
b) 

Fig. 6. Test of the ANN on the test set (50% of the 
entire LR dataset not involved in training), b) the same 

for RF. 

The obtained statistics, also reported in the diagram, are 
correlation coefficient R=0.81 and RMSE=0.04 m3/m3 for 

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2024.3445111

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



7 
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <  
 

ANN and R = 0.9 and RMSE = 0.03 for RF. Bias is negligible 
in both cases. From this comparison, the RF algorithm seems 
outperforming the ANN; however, the validation at high 
resolution against in-situ measurements reverted these 
results, by pointing out some limits in the generalization 
capabilities of RF. 

D. ANN AND RF ALGORITHMS VALIDATION (HR DATASET) 
The validation has been obtained by comparing the HR SM 

output with the in-situ SM collected in the January 2019 – 
October 2020 timespan in both Pontecosi and Ponte ad Elsa 
areas. SM measurements in the two areas ranged from ≃ 0.1 
m3/m3 to ≃0.55 m3/m3, PWC was in the 0-8 kg/m2 range and 
HSTD was in the 0.5-4 cm range. Four different validation 
attempts have been carried out at different spatial resolutions: 
at 10m, by associating the in-situ SM with the closest in space 
and time SM derived from the HR maps and at 30, 50 and 
70m, by averaging the data over a window increasing from 
3x3 to 5x5 and 7x7 pixels, respectively. The result obtained 
at 10m is shown in Fig. 7 a), while the results obtained at 30, 
50 and 70m are shown in Fig. 7 b) – d).  

 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 7. Algorithm validation vs in-situ data: a) closest 
pixel at 10m, b) 30m average, c) 50m average, d) 70m 

average. In all plots, red dots indicate the ANN SM and 
green dots indicate the RF SM. The HydroAlgo 

validation at 10 km is also shown.  

The comparison between HydroAlgo outputs at 10 km and 
in-situ measurements aggregated at AMSR resolution is also 
shown in all plots as a reference. 
The results shown in Fig. 7 point out the effectiveness of the 
disaggregation technique: the results at 10, 30, 50 and 70m 
are all improved with respect to the HydroAlgo validation at 
10 km. 

The validation at 10m (Fig. 7 a) is characterized by a larger 
data dispersion, that can be attributed to the speckle affecting 
the input S-1 data. The comparison at 30m (data averaged 
over a 3x3 window) shows the better performances, with R= 
0.82 and RMSE = 0.053 m3/m3 for ANN and R=0.81 and 
RMSE=0.062 m3/m3 for RF. Increasing the averaging 
window size to 5x5 and 7x7 pixels does cause a worsening of 
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the results, and a more pronounced underestimation of the 
highest SM, thus suggesting that the 30m resolution is the one 
actually reached by the proposed method. 

The comparison also reverses the test results: the ANN 
algorithm shows better generalization capabilities by slightly 
outperforming the RF that, in turn, showed better results in 
training and test.  

ANN also compensated the higher computational cost for 
training with a faster application to HR data, while RF is 
faster in training but takes more time to be applied to the full 
resolution S-1 images. In both cases anyway, the SM 
computation from an S-1 image at full resolution takes only 
few minutes. 

A. SM MAPS 
After the validation against in-situ SM, the algorithms have 

been applied to the entire S-1 frame for generating the SM 
maps. Examples of maps generated by the ANN are shown in 
Fig. 8 for some dates chosen as representative of the seasonal 
cycle in December, May, and September. The HR maps at 30 
m resolution are shown in the right panels while the LR maps 

at 10 km resolution generated by HydroAlgo are shown for 
comparison in the left panels. Some coverage of the LR SM 
is missing along the coast because the pixels are 
contaminated by the sea and they have been therefore 
removed, based on the land/ocean flag delivered with 
AMSR2 data. 

The HR maps are masked (grey colour) for open water and 
urban areas, which conversely are not detectable in the LR 
images. The location of the in-situ measurements is also 
shown in the maps as red dots for Pontecosi and blue dots for 
Ponte ad Elsa. The qualitative comparison between LR and 
HR maps points out some agreement between the coarse scale 
SM patterns identified by HydroAlgo and those appearing in 
the disaggregated maps, which in addition show small-scale 
patterns not detectable in the LR SM maps because of the 
coarse resolution. Notably, the proposed disaggregation 
keeps the average, as it is confirmed by the almost coincident 
SM averaged values over the entire image in the LR and HR 
maps shown in Fig. 8.  
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Fig. 8 left column: HydroAlgo SM at 10km resolution for 4 dates chosen as example, right column: corresponding 
disaggregated SM (≃30m) generated by the ANN algorithm. The average SM value and the ubRMSE from the 

comparison with in-situ SM are indicated in each map. 

An attempt to quantify these results has been carried out by 
computing the unbiased RMSE (ubRMSE) of the comparison 
between SM estimated by the algorithms and corresponding in-
situ values at the locations highlighted in the maps. The 
obtained results, are summarized in Tab. 1: although limited to 
the areas covered by the experimental campaigns, they seem 
confirming the improvement when moving from LR 
(HydroAlgo vs. in-situ aggregated at 10 km) to HR (ANN vs. 
in-situ aggregated at 30m). 

Tab. 1. ubRMSE from the comparison with in-situ for 
the three maps shown in Fig. 8. 

date ubRMSE LR (m3/m3) ubRMSE HR (m3/m3) 
15/12/2019 0.103 0.068 
07/05/2020 0.050 0.040 
28/09/2020 0.072 0.063 
 
Similar results have been obtained for the other maps not 

shown here with an average ubRMSE ≃ 0.049 m3/m3 for 
HydroAlgo LR SM and ubRMSE ≃ 0.037 for HR 
disaggregated SM. Further assessment of the maps outside the 
areas covered by the experimental campaigns was not possible 
since no other source of distributed SM data covering the S-1 
frame with comparable resolution was available.  

V. DISCUSSION 
The validation results shown in the previous section 

demonstrate, in the limits of the relatively small test areas, a 
promising potential of the proposed disaggregation in 
increasing the spatial resolution from dozens of kilometres to ≃ 
30m. The need of having temporally and spatially co-located 
SAR and radiometric data certainly represents the main 
constraint of this technique. The satellite microwave 
radiometers as the AMSR2, thanks to the acquisition geometry 
and the sun synchronous orbit, are capable of daily revisiting 

about 80% of the Earth surface, while Sentinel-1 temporal 
frequency is more limited, especially after the abovementioned 
failure of Sentinel-1B. The revisiting frequency is therefore 
mainly dependent on the availability of SAR acquisitions: 
combining different SAR sensors might therefore represent a 
suitable strategy for improving revisiting and coverage. In this 
respect, although it has been tested with S-1 and AMSR2, the 
proposed disaggregation can be applied to other combinations 
of radiometric and SAR data (e.g. ALOS PALSAR2 or 
SAOCOM in combination with AMSR2 or SMAP or SMOS). 
The incoming satellite missions (e.g. BIOMASS, NISAR, 
Rose-L, CIMR) could further enhance the coverage and 
revisiting possibilities. Given the ML algorithms 
characteristics, changing I/O data to other sensors’ 
combinations is straightforward and the computational cost 
related to retraining is not an issue if using recent machines.  

Of course, the accuracy will depend on the sensors involved: 
for instance, better results are expected if using L-band sensors 
(both SAR and radiometer) than sensors operating at higher 
frequencies.  

Some improvement in coverage could also be achieved by 
extending the application of the algorithms outside the area in 
which they have been trained, i.e. areas in which S-1 data are 
available but AMSR2 data are not, although this eventuality is 
less likely, given that AMSR2 coverage and revisit are superior 
to those of S-1.   

Regarding the accuracy, it is important to highlight that the 
achieved results are based on S-1 data and observation 
geometry only. Some further improvement could be obtained if 
considering auxiliary data as for instance NDVI from 
multispectral sensors (e.g. S-2) or X- band backscattering from 
SAR (e.g. ASI’s Cosmo SkyMed [22]). As counterpart, 
including more EO data from other sources could add further 
constraints to the revisiting and coverage.  

The disadvantages of the proposed disaggregation can be 
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related to the general shortcomings of ML applications [24] and 
above all to the need of avoiding outliers, i.e. values in the data 
outside the training range, which could cause large errors in the 
predictions. In this sense, the proposed strategy of training over 
50% data and testing over the remaining 50% not involved in 
training, should ensure some generalization capabilities and 
robustness to outliers, thus mitigating this problem.  

As a final remark about the limitations, the applicability 
should be better assessed in case of very inhomogeneous 
surfaces, characterized by mixed targets and large SM 
variability. In such case, important differences in range and 
statistics could occur between LR and HR data, affecting 
unpredictably the ML algorithms.  

VI. CONCLUSIONS 
The ML algorithms proposed in this study aimed at increasing 

the spatial resolution of the AMSR2 SM product generated by 
the IFAC’s HydroAlgo algorithm from the original 10 Km up 
to ≃30 m. To achieve this result, the S-1 data at VV and VH 
were first aggregated and resampled at the AMSR2 resolution 
and combined with the HydroAlgo SM for training the ML 
algorithms, based on ANN and RF, respectively. After training, 
both ANN and RF were applied to the full resolution S1 images 
to estimate SMC at improved spatial resolution. Validation 
results suggested 30m as the actual resolution of the 
disaggregation outputs.   

Although the validation was so far limited to relatively small 
areas, the obtained results were encouraging, pointing out the 
algorithm capability in improving the correlation between 
estimated and in-situ SM from R≃0.5 of the original LR SM at 
10 km up to R= 0.83 of the disaggregated SM at 30 m with a 
decrease in the corresponding error from RMSE=0.15 m3/m3 to 
RMSE= 0.053 m3/m3. These results will be better exploited in 
the prosecution of the work, by spatially and temporally 
extending the validation to other test areas and datasets.  

The obtained results emphasize the potential of the SAR and 
radiometer synergy for operational applications at regional 
scale, particularly in heterogeneous environments as the Italian 
territory. 
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