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1 Abstract—Spontaneous combustion of coal seams poses 
significant threats to ecology and human health, making it a 
global concern. Precise location identification of coal fire 
burning is vital for disaster management. Traditional methods 
of identifying fire zones focus on specific indicators, such as 
temperature anomalies. However, solely relying on one 
indicator can easily lead to “heterogeneous homogeneity”, and 
using multiple indicators complicates threshold settings. To 
address this, our study presents an enhanced ensemble learning 
model named AdaBoost_RF_StBP for coal fire zone 
identification. By integrating multi-modal remote sensing data, 
we extracted diverse abnormal features of fire zones. Using a 
standard deviation ellipse, we categorized feature samples into 
three fire zone types, which were then analyzed using the 
proposed model. The combined approach of base and meta 
learners was applied in coal fire zones located in Jiangjun Gobi, 
Jiangjun Temple, Sandaoba, and Beishan coal mines. Results 
show that the multi-modal remote sensing data coupled by our 
model can effectively addresses the “heterogeneous 
homogeneity” issue. The accuracy of the model in terms of 
accuracy, precision, recall rate, F1_Score, etc., has been 
improved from 0.56-0.87 of the initial base-learners to 0.8-0.96 
of the meta-learners. Additionally, the recognition areas of 
AdaBoost_RF_StBP in Jiangjun Gobi, Jiangjun Temple and 
Sandaoba fire areas account for 122.7%, 109.8% and 115.8% 
of the actual fire areas, respectively. This underscores the 
promising potential of the AdaBoost_RF_StBP model for fire 
zone identification. This model offers valuable insights and 
guidance for large-scale fire zone monitoring and identification, 
proving beneficial for precise and efficient fire control. 

Index Terms—Coal fire identification, Multi-source remote 
sensing, Machine learning, Ensemble learning 
 

I. INTRODUCTION 

OALFIELD fire zones, which are expansive areas 
resulting from the sustained combustion of surface coal 

outcrops, can extend from shallow to deep, and their 
formation and development are influenced by the 
combination of natural conditions and human activities [1], 
[2], [3]. As an economic resource, coal is being extensively 
exploited. Unregulated mining exacerbates coal oxidation 
and spontaneous combustion, leading to the expansion of 
coalfield fire zones. This is particularly serious in countries 
and regions rich in coal resources such as the United States, 
Russia, Australia, China, India and South Africa [4], [5], [6]. 
Coal fires not only deplete coal resources but also emit 
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harmful substances, including coke tar, sulfur, and carbon. 
They also release gases that have an incalculable impact on 
the surrounding ecosystem, water resources, soil, and 
atmospheric environment [7], [8], [9]. Therefore, how to 
quickly and accurately identify and delineate the location of 
coal fire zones has become the focus over the years. 

The intense underground combustion of coal alters the 
physical and chemical landscapes in fire areas. Therefore, 
four major types of field detection methods, including 
geophysical, geochemical, thermal, and drilling, represented 
by surface temperature measurement [10], natural potential 
[11], transient electromagnetics [12], isotope measurement 
of radon and sulfur [13], [14], and binary tracer gas [15] have 
been proposed successively. With the significant 
improvement of the spatial-temporal resolution and 
performance of satellite-borne sensors, the use of remote 
sensing data to characterize coal fire combustion and 
subsequent identification has been widely studied. This 
mainly includes thermal infrared monitoring [10], [16], [17], 
subsidence monitoring [18], [19], [20] and multi-source 
remote sensing cooperative monitoring [21], [22], [23], [24]. 
Tien et al. [25] used Lansat-8 TIRS data to invert surface 
temperature based on radiation transfer equations and 
combined hotspot analysis to delineate the Khanh Hoa coal 
fire zone in northeastern Vietnam. Jiang et al. [26] 
investigated the feasibility and potential of detecting the land 
subsidence accompanying coal fires by means of satellite 
InSAR observations, which the interferometric results agree 
well with GPS observations and coal fire data obtained by 
field investigation. On this basis, Jameela et al. [27] used 
New Small Baseline Subset InSAR (N-SBAS) technology to 
accurately estimate vertical subsidence in Kusunda Coal 
Mine in India. While reducing the occurrence of temporal-
spatial coherence loss in dynamic areas such as coalfield fire 
zones, it has a good correspondence with Landsat-8 satellite 
temperature anomaly maps and field evidence. Wang et al. 
[28] used strong-weak joint constraints on multi-source 
remote sensing data that reflected different phenomena of 
coal fire combustion. They constructed band-pass filters for 
fire zone identification, and achieved a 91% accuracy rate in 
identifying the Fukang fire zone in Xinjiang. Yu et al. [29] 
integrated multi-temporal thermal infrared and radar data to 
determine temperature anomaly frequency thresholds, and 
developed a Coal Fire Ratio Index (CRI) for quantitatively 

Kun Tan is with the Key Laboratory of Geographic Information Science 
(Ministry of Education), East China Normal University, Shanghai 200241, 
China (e-mail: tankuncu@gmail.com). 

Jun Wei, Fei Cao, Huahai Sun are with the Xinjiang Uygur Autonomous 
Region Mine Safety Service and Guarantee Center, Urumqi 830017, China 
(e-mail: weijunwxx@163.com; figo6507804@163.com; 297228108@qq.com). 

Mengmeng Bu is with the Fifth Geological Brigade of the Bureau of 
Geology and Mining, Xuzhou 221004, China (e-mail: 
bumengcumt@gmail.com). 

C

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2024.3425612

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



assessing the severity and changes of coal fires. Wang et al 
[30] proposed a Spatio-Temporal Temperature-Based 
Thresholding algorithm to enhance thermal anomaly 
detection capability and introduced Polarimetric Persistent 
Scatterer Interferometry to enhance the interference effect in 
fire areas. Chen et al [31] proposed a Temporal Temperature 
Anomaly Extraction algorithm based on Adaptive Windows 
(TTAE-AW) and integrated it with DS-InSAR to propose a 
Double Threshold Two-stage Filter (DTTF). In practice, the 
temperature anomalies extracted by TTAE-AW are more 
concentrated in the actual fire areas, and the DTTF has a 
better identification performance compared to various 
traditional threshold methods. 

Each of the aforementioned coal fire monitoring methods 
possesses unique advantages and has shown practical results. 
However, there are still many shortcomings. While field 
detection methods offer reliable measurement results, they 
tend to be inefficient, limited in scope, and offer lower 
spatial resolution. The limitation of single satellite-borne 
thermal infrared detection is the ambiguity of defining 
temperature thresholds for distinguishing background pixels 
from coal fire pixels. Due to the influence of surface cracks, 
the detected thermal anomalies might not directly indicate 
coal fires in the vertical direction [16]. The limitation of 
using deformation anomaly to detect coal fire zones is that it 
is easily affected by disturbances induced by other 
deformation sources, e.g. mining subsidence [32]. Multi-
source remote sensing information filtering can take into 
account the above-mentioned situations to a certain extent. 
However, due to the complex geological conditions in the 
fire area, the apparent abnormal position does not overlap 
vertically with the actual fire area. The asynchronous multi-
source information from burning zones and the concealed 
nature of deep surface fires result in the burning and 
developmental state being invisible. The intermediate 
parameters of the filter itself need to be adjusted for different 
periods and different fire areas, and the threshold setting is 
highly subjective. Considering all these factors, the filtering 
method sometimes cannot effectively eliminate interference 
information. In addition, due to the lack of clear physical 
connections between multi-source data sets, such methods 
also do not address issues like decreased sensitivity in certain 
parameters. This leads to a reduction in the generalizability 
and continuous monitoring capability of the method across 
different regions. 

Where statistical models struggle with multidimensional 
data sets, machine learning can offer solutions. Its goal is to 
use actual data sets to construct a prediction model with 
strong generalization ability, so as to give as accurate an 
estimate as possible for unknown objects [33], [34]. 
However, in practice, it is often difficult for a single learning 
model to find a suitable model in the assumed space. 
Ensemble learning, which employs multiple learners to 
tackle the same problem, boasts enhanced model 
generalization capabilities. Its idea can be roughly divided 
into heterogeneous ensemble that applies different learning 
algorithms to the same data sets and homogeneous ensemble 
that applies the same learning algorithm to different data sets 
[35], [36]. At present, most applications of ensemble 
learning employ a single ensemble learning approach, 
lacking a comparison between different ensemble methods. 
Moreover, very limited research on coal fire zone 
identification using ensemble learning has been conducted.  

To more effectively discern the potential relationships 

among multi-source remote sensing data in fire zones, we 
integrated thermal infrared, multispectral, SAR, and night 
light data to extract multi-modal remote sensing information 
under strong constraints. We combined Boosting, Bagging, 
and Stacking ensemble ideas to construct an improved three-
layer ensemble learning model, named AdaBoost_RF_StBP, 
for coal fire zone identification. This approach leverages the 
advantages of different ensemble methods and improves the 
robustness, generalizability, and accuracy of the model and 
identification results. We verified the model's accuracy and 
identification capabilities using three test areas in Jiangjun 
Gobi, Jiangjun Temple (including Beishan coal mines) in 
Qitai, and Sandaoba in Miquan County, Xinjiang, 
respectively. This provides a novel approach for coal fire 
zone identification. 

Ⅱ. METHODOLOGY 

In response to the existing problems outlined earlier 
regarding fire zone identification, this study proposes a 
multi-source remote sensing identification method for coal 
fire zones based on a three-layer ensemble learning model. 
Firstly, we used multi-modal remote sensing data including 
thermal infrared, multispectral, SAR and night light data to 
extract multi-element information (temperature, vegetation 
index, surface deformation, brightness) in the fire zones. 
Secondly, we constructed feature samples of concealed fire 
zones, open fire zones and non-fire zones, and built a 
AdaBoost_RF_StBP model based on the ensemble concepts 
of Boosting, Bagging, and Stacking. Finally, we inputted the 
fire zone samples into the AdaBoost_RF_StBP model to 
identify the fire zone range, and conducted a thorough 
analysis to verify the model’s accuracy and generalizability. 
The specific technical route is shown in Fig. 1. 

 

 
Fig. 1. Flow chart of the overall technical route of the method proposed in 
this study. 
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A. Extraction of Multi-element Information from Fire Zones 
Based on Multi-modal Remote Sensing Data 

1) Inversion of Surface Temperature and Extraction of 
Temperature Anomalies: Firstly, we used the atmospheric 
correction (LaSRC) algorithm based on the thermal infrared 
radiation transfer equation and the single-window (SMW) 
algorithm proposed by Qin et al. [37] to invert the surface 
temperature. The calculation formula of the thermal infrared 
radiation transfer equation is expressed as. 

𝐿 = 𝐵(𝑇 ) = (𝜀𝐵(𝑇 ) + (1 − 𝜀)𝐿 ) + 𝐿          (1) 
where 𝐿   represents the on-board radiance (W ∙ m ∙
sr ∙ μm ); 𝐵 stands for the Planck function; 𝑇  is the 
on-board brightness temperature (K) ; 𝜀  is the surface 
emissivity; 𝜏  is the atmospheric transmittance; 𝑇   is the 
surface temperature (K) ; 𝐿   and 𝐿   are the downward 
and upward atmospheric radiation (W ∙ m ∙ sr ∙ μm ), 
respectively [38], [39]. 
The calculation formula of the single-window algorithm is. 

𝑇_𝑠 = 1/𝐶 (𝑎(1 − 𝐶 − 𝐷) + (𝑏(1 − 𝐶 − 𝐷) + 𝐶
+ 𝐷) 𝑇_𝑠𝑒𝑛 − 𝐷𝑇_𝑎)                              (2) 

where 𝑎 and 𝑏 are fixed coefficients of Planck equation; 
𝑇  is the average effective temperature of atmosphere (K); 
𝐶  and 𝐷  are intermediate parameters related to surface 
emissivity; other parameters retain their previously 
mentioned meanings. 

Existing methods for extracting temperature anomaly 
zones can be classified into two categories: the adaptive 
gradient threshold method and the manual threshold method. 
The former assumes that the surrounding overburden of the 
fire area has similar thermal conductivity and that the 
thermal energy decreases sharply from the burning center to 
the boundary of the fire area. Therefore, the average 
temperature corresponding to the temperature gradient 
extremum is used as the threshold to separate the anomaly 
area from the background area. The latter is based on the 
statistical principle that the surface temperature roughly 
follows a normal distribution. This method uses the mean (�̅�) 
of inverted surface temperature and different standard 
deviations (𝜎) to determine the segmentation threshold [28]. 
Given that coal fire zones typically exhibit higher surface 
temperatures compared to the average areas, we opted for the 
manual threshold method. This approach not only enhances 
the accuracy in identifying temperature anomaly zones but 
also reduces interference from areas with moderate to low 
temperatures. According to application requirements, we set 
the confidence level at 95%, i.e., took �̅� + 2𝜎 as the best 
segmentation threshold, and regarded areas above the 
threshold as initial temperature anomaly zones. 

Factors such as feature type, climatic conditions, coal fire 
burning status, and temperature inversion algorithm at the 
time of remote sensing image imaging can affect the surface 
temperature inversion results in fire areas [40]. In addition, 
coal fire areas exist in three states: burned, burning and 
unburned. Thermal infrared data cannot effectively identify 
information about burned and cooled areas. To ensure high 
reliability of subsequent sample features, we intersected 
adjacent images to each winter season based on the optimal 
segmentation threshold. This mitigated the impact of surface 
temperature anomaly areas caused by direct solar radiation. 
We then superimposed them on an annual basis to attenuate 
the influence of climate and seasonal factors on surface 
temperature anomaly areas. This step also reduced the 
probability of coal fires being extinguished due to extreme 

weather, obtaining the final temperature anomaly zones. 
2) Calculation of Vegetation Index and Extraction of 

Vegetation-rich Areas: The toxic substances released by coal 
fires greatly inhibit the normal growth of surrounding 
vegetation. Therefore, filtering out relatively vegetation-rich 
areas has an auxiliary effect on identifying fire zones. The 
Normalized Difference Vegetation Index (NDVI) effectively 
captures vegetation growth status and distribution 
information and can serve as a basis for extracting 
vegetation-rich areas. When using NDVI to filter out 
relatively vegetation-rich areas, it is necessary to determine 
a segmentation threshold. Unlike thermal anomaly zones, 
vegetation distribution varies around different fire zones. 
The average NDVI value of an entire image is often higher 
than that of fire zones, which is difficult to filter out if the 
segmentation is done directly by adding the mean and 
standard deviation. Therefore, we restricted the extraction of 
vegetation-rich areas within the final temperature anomaly 
zones. We experimentally adjusted the multiplicative 
relationship between the mean and standard deviation and 
combined it with the actual NDVI values to determine the 
segmentation threshold. Finally, areas exceeding this 
threshold were identified as vegetation-rich areas. 

3) Time-series Surface Deformation Calculation and 
Extraction of Subsidence Anomalies: Continuous burning of 
coal fires can cause cracks in surrounding rock formations 
and cause surface subsidence. The development of 
InSAR/multi-temporal InSAR techniques allow for rapid 
and accurate probing of deformation information, offering 
significant potential in fire zone identification. We 
performed the SBAS-InSAR method proposed by Berardino 
et al. [41] to obtain the deformation time series over the coal 
fire areas. The basic principle is to assume that N view SAR 
images of the same area are obtained at times (𝑡 , 𝑡 , ···, 
𝑡 ) , and small baseline sets below the temporal-spatial 
baseline threshold are selected to form M interferograms, 
then 𝑁/2 ≤ 𝑀 ≤ [𝑁(𝑁 − 1)]/2 . By using precise orbit 
(POD) with the reference digital elevation model (DEM) 
data, the interferograms are registered, multi-viewed and the 
differential interferograms are obtained after removing the 
flatland and terrain phases [42]. If the i-th differential 
interferogram is obtained at times 𝑡  and 𝑡  (𝑡 < 𝑡 ), the 
phase at a high coherence point x can be expressed as: 

∆𝜙 (𝑥, 𝑟) = 𝜙(𝑡 , 𝑥, 𝑟) − 𝜙(𝑡 , 𝑥, 𝑟) 

≈ [𝜙 (𝑡 , 𝑥, 𝑟) − 𝜙 (𝑡 , 𝑥, 𝑟)]+
4𝜋

𝜆

𝐵 ∆𝑧

𝑟 sin 𝜃
 

+[𝜙 (𝑡 , 𝑥, 𝑟) − 𝜙 (𝑡 , 𝑥, 𝑟)] + ∆𝑛 (𝑥, 𝑟)      (3) 
where (𝑥, 𝑟) is the coordinate of the high coherence point; 
𝜙(𝑡 , 𝑥, 𝑟), 𝜙(𝑡 , 𝑥, 𝑟) are phase values of two SAR images; 
𝜙 (𝑡 , 𝑥, 𝑟)  and 𝜙 (𝑡 , 𝑥, 𝑟)  are cumulative deformation 
phases in radar line-of-sight (LOS) direction relative to 
initial reference time 𝑡  ; 𝜙 (𝑡 , 𝑥, 𝑟)  and 
𝜙 (𝑡 , 𝑥, 𝑟) are atmospheric delay phases of two images; 
∆𝑛 (𝑥, 𝑟)  is phase caused by noise; 𝑟  and 𝜃  are slant 
range and incidence angle in line-of-sight direction; 𝜆  is 
radar wavelength. 

Using a linear model to estimate the deformation phase of 
N view images is as follows: 

𝜙 = (𝐴 𝐴) 𝐴 Δ𝜙                            (4) 
where 𝐴[𝑀 × 𝑁]  is a coefficient matrix corresponding to 
M differential interferograms and N SAR images at different 
times; 𝜙 is unknown deformation phase matrix of N SAR 
images at different times; Δ𝜙 is phase value matrix of M 
differential interferograms. 
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Since 𝐴 𝐴 is often a singular matrix, the singular value 
decomposition methods are used in each subset to find least 
squares solutions of the unknown parameters in the sense of 
minimal norms, yielding linear deformation quantities and 
elevation errors. On the basis of the linear model, temporal 
and spatial filtering of the residual phase can further separate 
the atmospheric phase and the nonlinear deformation phase. 
Then, the final deformation can be obtained by combining 
the linear and nonlinear deformations [43]. 

In the actual process, we only performed a series of 
systematic treatments on the selected interferograms with 
good overall coherence. External atmospheric correction 
data was employed to assist in removing the atmospheric 
delay phase. We utilized the Delaunay triangulation, a 
network formed by irregular triangles, for 3D phase 
unwrapping, which notably increased the accuracy of 
unwrapping in regions with low coherence [44]. Thereby the 
final average deformation rate was obtained. Since the 
average deformation rate of all pixels roughly follows a 
normal distribution, we extracted the subsidence anomaly 
areas following the same approach used for extracting the 
initial temperature anomaly areas. Specifically, the optimal 
segmentation threshold was set by subtracting two times the 
standard deviation from its mean, and areas below this 
threshold were identified as subsidence anomaly zones. 

4) Night Light Data Processing and Extraction of High-
brightness Zones: Shallow floating coal has more contact 
with oxygen and is prone to open fires. This distinguishing 
feature sets fire areas apart from other ground objects. 
Therefore, night light remote sensing images can be used to 
detect open fire locations and assist in identifying fire areas. 

Different ground object categories exhibit significant 
variations in pixel brightness values [45], [46], and the 
distribution range of brightness also varies significantly 
across the imagery [47]. We counted the brightness values of 
the entire night light image elements after the radiometric 
calibration and subtracted all areas with a value of 0, which 
were defined as bright zones. The bright zones contained fire 
areas, mining areas and a large number of scattered spots, 
which were further processed by the following steps in order 
to segment the feature types: 

Step 1. Intersect the bright areas from two night light 
images obtained within the same month. Generally speaking, 
the burning conditions in fire areas are relatively stable, and 
open fire spots will not undergo significant changes on a 
large scale within a short period of time. Therefore, 
intersection processing can filter out scattered spots caused 
by sensors, partial high-radiation ground units and 
atmospheric scattering. 

Step 2. Segment the intersected area into blocks and 
calculate the average brightness from both images. Segment 
the brightness values from the lowest to the highest into eight 
equal intervals. Then, combine temperature anomaly zones 
with subsidence anomaly zones to distinguish fire zones 
from mining areas. 

Step 3. Calculate the brightness mean (𝑥 ) and standard 
deviation (𝜎) for open fire spots. Due to the lower resolution 
of night light imagery, the light overflow effect might cause 
scattered open fire spots to be counted within a single pixel. 
Therefore, �̅� + 𝜎  is used as threshold for density 
segmentation to further determine open fire position. Areas 
with values higher than this threshold are regarded as high-
brightness zones. 

B. Strongly Constrained Concealed Fire Zones, Open 
Fire Zones and Non-fire Zones Sample Delineation 

To address the issue of limited overlap between the 
temperature anomaly zones and deep subsidence zones in the 
fire area, we created a 1 times standard ellipse based on the 
intersection of the temperature and subsidence anomaly 
areas. This serves as a strong constraint for the concealed fire 
zone sample range. The average center of the ellipse 
represents the spatial centroid of the fire zone's distribution. 
The long semi-axis represents the direction of fire area 
distribution. The short semi-axis represents the approximate 
extant of fire area distribution [48]. The strongly constrained 
open fire zones were overlaid on the strongly constrained 
concealed fire zones by adding the high-brightness zones. 
We assumed that all open fire zones were within the range of 
concealed fire zones. Non-fire zone samples were identified 
from two aspects: (i) By extracting independent temperature 
and subsidence anomaly zones and designating them as non-
fire zones, the capability of the learner to distinguish 
anomaly zones characterized by these two factors as non-
coal fire zones is enhanced, thereby further increasing the 
sensitivity of the learner; (ii) Extracting spots with no 
abnormal features. These spots were near mean in all four 
data sources, as supplement to non-fire zone samples. 
Therefore, the method for delineating non-fire area samples 
goes as follows: Using the standard deviation ellipse from 
the temperature and subsidence anomaly zones, we created 
a 100m buffer zone around it. The threshold of temperature 
anomaly and subsidence anomaly was lowered to 1 times 
standard deviation, and the independent temperature 
anomaly and subsidence anomaly data in the image were 
extracted (areas with no intersection between both). Data 
within the buffer was masked, and temperature and 
subsidence anomaly data were separated. Spots with no 
abnormal features were randomly extracted in the remaining 
area, and the number of spots was determined according to 
the image area. It was required to cover the entire test area. 

In order to make each pixel value of multi-modal remote 
sensing data correspond to each other while increasing 
sample size, we firstly used the highest resolution data 
source as reference image and reprojected rest of multi-
element information inversion results to same coordinate 
system. Secondly, we used nearest neighbor method to 
resample the resolution of all images. Finally, the concealed 
fire zones, open fire zones and non-fire zones samples were 
extracted using a mask for subsequent processing. 

C. Construction of AdaBoost_RF_StBP Coal Fire Zone 
Identification Model 

Different ensemble approaches produce various outcomes. 
Given their performance across diverse datasets, 
homogeneous ensemble methods like Boosting and Bagging 
necessitate substantial data to fully leverage their advantages 
[49]. Meanwhile, in the case of Stacking—a heterogeneous 
ensemble—the training data for its meta-learner is derived 
from the predictions of the base-learner, leading to potential 
error accumulation [50]. 

We combined both homogeneous and heterogeneous 
ensemble approaches, employing five models as base (initial 
layer) learners: Classification and Regression Tree (CART), 
K-Nearest Neighbor (KNN), Back Propagation Neural 
Network (BPNN), Support Vector Machine (SVM), and 
Naive Bayes (NB). Adaptive Boosting (AdaBoost), Random 
Forest (RF), Stacked-BP Neural Network (StBP) were used 
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as meta (secondary layer) learners. Lastly, we derived the 
final layer of the AdaBoost_RF_StBP coal fire zone 
identification model by computing the weighted average of 
the identification probabilities from the meta-learners. 
Furthermore, we have used a genetic algorithm to 
automatically optimize the numerical and character-type 

hyperparameters involved in the base learners of ensemble 
learning. The conceptual framework for model construction 
is illustrated in Fig. 2. The parameter settings and 
construction steps of the AdaBoost_RF_StBP coal fire zone 
identification model are shown in Table Ⅰ.

 
Fig. 2. The structure of AdaBoost_RF_StBP coal fire zone identification model. 
 

TABLE Ⅰ 
BASE/META LEARNER MODEL PARAMETER SETTINGS 

Base-learners 
(attribution) 

Parameter Value setting 
Meta-learners 
(attribution) 

Parameter Value setting 

CART (Tree) 

Feature division point selection 
criteria 

random 
AdaBoost 
(Additive) 

Number of base 
classifiers 

100 

Maximum number of 
leaf nodes 

50 Learning rate 1.0 

Maximum tree depth 10 

RF (Tree) 

Number of decision 
trees 

100 

Internal node splitting minimum 
number of samples 

2 
Maximum number of 

leaf nodes 
50 

KNN (Neighbors) 

Number of neighbors 8 Maximum tree depth 10 

Vector distance algorithm 
Euclidean 
distance 

Internal node splitting 
minimum number of 

samples 
2 

BPNN (Neural 
Network) 

Activation function relu 

StBP (Neural 
Network) 

Activation function relu 
Learning rate / L2 regularization 

term 
0.10/1.0 

Learning rate / L2 
regularization term 

0.20/1.5 

Number of iterations 1000 Number of iterations 1000 

Hide layers / The number of 
neurons in each hidden layer  

3/100 
Hide layers / The 

number of neurons in 
each hidden layer 

3/100 

SVM (Kernel) 

Penalty factor 1 

Note：The StBP is a posterior model and is placed in this 
table in advance in a uniform parameter format.  

Kernel functions rbf 
Error convergence conditions / 

Number of iterations  
0.001/1000 

NB (Linear) Prior distribution 
Gaussian 

distribution 

1) Model Construction: The specific steps are as follows. 
Step 1. Conduct ADASYN oversampling on the three 

sample data types outlined earlier to ensure balance. 
Subsequently, shuffle the dataset, allocating 70% for training 
and 30% for testing. 

Step 2. Assume that the training data set is Tr and the test 
data set is Te. Use Tr to train the base-learners separately, 

and use the trained five models to predict Tr and Te, 
respectively. Use 5-fold cross-validation to reduce the risk of 
overfitting. After 10 times independent runs, Tr_tree_pred, 
Tr_knn_pred, Tr_bp_pred, Tr_svm_pred, Tr_nb_pred and 
Te_tree_pred, Te_knn_pred, Te_bp_pred, Te_svm_pred, 
Te_nb_pred are obtained. Take the average of the ten output 
results predicted by five models for Tr respectively to obtain 
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AV_Pred_tree, AV_Pred_knn, AV_Pred_bp, AV_Pred_svm, 
AV_Pred_nb. Statistical analysis of classification accuracy 
of base-learners in 10 trainings. Select the base-learner 
model with the highest accuracy to serve as the meta-learner 
model, denoted as St(model). 

Step 3. Set Tr_Pred_Data = (Tr_tree_pred, Tr_knn_pred, 
Tr_bp_pred, Tr_svm_pred, Tr_nb_pred), Te_Pred_Data = 
(Te_tree_pred, Te_knn_pred, Te_bp_pred, Te_svm_pred, 
Te_nb_pred), use Tr_Pred_Data to train three meta-learners 
AdaBoost, RF and St(model) at secondary level. Use trained 
models to predict Te_Pred_Data to obtain prediction results 
of meta-learners. 

Step 4. Calculate the weighted average from the three 
meta-learners to establish the final AdaBoost_RF_StBP coal 
fire zone identification model. Use Kappa coefficient to 
determine the weight. The larger the Kappa coefficient, the 
larger the corresponding weight, otherwise, the reverse. The 
weighting formula is. 

𝑊 , , =
𝐾𝑎𝑝𝑝𝑎 , ,

𝐾𝑎𝑝𝑝𝑎 + 𝐾𝑎𝑝𝑝𝑎 + 𝐾𝑎𝑝𝑝𝑎
             (6) 

where 𝐾𝑎𝑝𝑝𝑎 , ,   represents the Kappa coefficient for a 
specific model. 𝐾𝑎𝑝𝑝𝑎 , 𝐾𝑎𝑝𝑝𝑎 , 𝐾𝑎𝑝𝑝𝑎  represent the 
kappa coefficients of the three meta-learners, respectively. 

To determine the final classification label predicted 
probability, multiply the weights of each model by the 
predicted probabilities of the three class labels naked_fire 
(nf), concealed_fire (cf), and unfire (uf), respectively. 
Formula for calculation is. 

𝑃 =
𝑃 × 𝑊 , ,

𝑊 + 𝑊 + 𝑊
, 𝑃 =

𝑃 × 𝑊 , ,

𝑊 + 𝑊 + 𝑊
, 

𝑃 =
𝑃 × 𝑊 , ,

𝑊 + 𝑊 + 𝑊
                              (7) 

where 𝑃 , 𝑃 , 𝑃  represent the probability of open fire 
zones, concealed fire zones and non-fire zones after 
weighted average of the three meta-learners, respectively; 
𝑃  , 𝑃  , 𝑃   represent the probability of open fire zones, 
concealed fire zones and non-fire zones predicted by each 
model, respectively; 𝑊 , ,   represents the weight of a 
specific model; 𝑊 , 𝑊 , 𝑊  represent the weights of the 
three meta-learners, respectively. 

2) Genetic Algorithm Construction: The specific steps are 
as follows. 

Step 1. Define the fitness function: This function accepts 

the creation functions of five base learners, a dictionary of 
hyperparameters, and training data. We use accuracy as the 
metric, evaluate the performance of each classifier using 
cross-validation, and return the mean accuracy of each 
learner over five runs as the individual’s fitness. 

Step 2. Initialize the population: If the hyperparameter is 
character-type, a value is randomly selected from the 
numerical mapping list. If the hyperparameter is an integer 
with an upper bound, an integer is randomly generated 
between its lower and upper bounds. If there is no upper 
bound, an integer is randomly generated between its lower 
bound and ten times its lower bound. If the hyperparameter 
is a floating-point type, its random number generation 
strategy is the same as that of the integer type, but the 
random number is a floating-point number. Subsequently, 
each generation of the population contains 50 individuals. 

Step 3. Selection: The tournament algorithm is used, with 
the number of competitors in each tournament being four. 
Individuals with high fitness are selected from the 
population. 

Step 4. Crossover: This function accepts two parent 
individuals and a dictionary of hyperparameters, and 
generates a child individual. 

Step 5. Mutation: Set the mutation probability for each 
offspring individual to 10% to enhance randomness. 

Step 6. Iteration: Execute the genetic algorithm with the 
number of iterations set to 20. 

Ⅲ. TEST AREAS 

A. Overview of Test Area 
The eastern part of the Junggar Basin in Xinjiang is rich 

in coal resource. This region exhibits a continental desert 
climate, which is characterized by arid to semi-arid 
conditions, minimal rainfall, significant annual and daily 
temperature fluctuations, and intense solar radiation. Severe 
weathering conditions of soil and rocks result in widespread 
distribution of coal fire areas. In this study, we focused on 
three pivotal coalfield fire regions: Jiangjun Gobi, Jiangjun 
Temple in Qitai, and Sandaoba in Miquan—all situated in 
the eastern segment of the Junggar Basin. For a more 
thorough analysis, the Beishan coal mines region is also 
included. Fig. 3 shows the precise geographical locations. 
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Fig. 3. Geographical location of the test areas. (a) The location of Qitai County and Midong District in the eastern Junggar Basin of China. (b) The red boxes 
from north to south represent the Jiangjun Gobi fire zone, the Jiangjun Temple fire zone, and the Beishan coal mines area, respectively. The black box 
represents the northern and southern parts of the fire zone. (c) The blue box represents the Sandaoba fire zone, and the black box represents the eastern and 
western parts of the fire zone. 
 

The Jiangjun Gobi fire area is located in the northeast of 
Qitai County, Changji Hui Autonomous Prefecture, Xinjiang. 
Its central coordinates are 90°14'40'' E and 44°45'9'' N. This 
fire area consists of two sections: The northern section 
measures an average 341m in length and 148.7m in width, 
encompassing approximately 50,679m2. The southern 
section extends 2,974m in length with an average width of 
238m, covering around 708,909m². The Jiangjun Temple fire 
area is located south of the Jiangjun Gobi. The coordinates 
of its center are 90°42'15'' E and 44°27'52'' N. Its two 
primary segments are: The northen fire zone is arranged 
along the coal seam outcrop from northwest to southeast, 
with a total area of 79,880m2. The southern fire zone is 
dispersed along the coal seam outcrop in an east-west 
orientation, with a total area of 40,633m2. Lastly, the 
Sandaoba fire area is located in the east of Jianquan Gully in 
Midong District, Urumqi City. It is centered at 87°25'27'' E 
and 43°47'41'' N. This region also comprises two sections: 
The eastern section, shaped like a long strip running from the 
southwest to northeast, measures around 2,695m in length 
and varies between 116m and 257m in width. It spans 

roughly 564,644m2. The western section is irregular in form, 
with a length of about 145m from east to west and a width 
of about 100m from north to south, covering an area of 
9,419m2. 
B. Data Sources 

Four types of remote sensing data are adopted in this study: 
Landsat-8 multispectral (OLI) B4, B5 band data; Thermal 
infrared (TIRS) B10 band data; Sentinel-2A multispectral 
(MSI) B4 and B8 band data; C-band Sentinel-1A ascending 
data in IW working mode with VV polarization and LuoJia-
1 GEC system geometric correction product. External data 
comprise: DEM data with a 30m resolution from the Shuttle 
Radar Topography Mission (SRTM); the Generic 
Atmospheric Correction Online Service for InSAR (GACOS) 
offering a spatial resolution of 90m and a temporal resolution 
of one minute; and detailed survey reports of the three fire 
zones from the Xinjiang Coalfield Fire Extinguishing 
Engineering Bureau. The acquisition timings, quantities and 
resolutions of the remote sensing data for the test area are 
presented in Table Ⅱ.

TABLE Ⅱ 
VARIOUS IMAGE DATA INFORMATION IN THE TEST AREA 

Parameters
Sensors 

Jiangjun Gobi，Jiangjun Temple Sandaoba 
Time Number of images Resolution(m) Time Number of images Resolution(m) 

Sentinel-1A 20170321—20200317 36 5×20 20150124—20170125 29 5×20 

Sentinel-2A 
20170610 20190521 

3 10 20160804 20170610 2 10 
20180615  

Landsat-8 
20171028 20181116 

6 
OLI:30 

TIRS:100 
20151030 20161101 2 

OLI:30 
TIRS:100 

20171129 20191119 
20181031 20200122 

LuoJia-1 20181009 20181029 2 130 — 0 130 
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Ⅳ. RESULTS 

A. Multi-modal Remote Sensing Data Inversion and 
Anomaly Area Extraction 

1) Surface Temperature Inversion and Temperature 
Anomaly Identification: Using the LaSRC and SMW 
algorithms in tandem with six Landsat-8 image scenes, we 
conducted surface temperature inversions for the test areas 
of Jiangjun Gobi and Jiangjun Temple. The statistical 
histograms of these inversion results, along with their mean 
and standard deviation are displayed in Fig. 4. 

Analyzing Fig 4 reveals that the temperature curves for 
the first five periods roughly follow a normal distribution. 
Simultaneously, due to a significant snow cover in the sixth 
period, the temperature trend significantly shifted towards 
cooler values. The inversion outcomes from the two 
algorithms are comparable, but the LaSRC algorithm 
demonstrates a smaller standard deviation compared to the 
SMW, indicating a lower degree of dispersion and stronger 
stability. Therefore, we chose the surface temperature data 
derived from the LaSRC algorithm to delineate the initial 
temperature anomaly areas. These data were then used in 
subsequent time-series overlay procedures. 

 
Fig. 4. Land surface temperature inversion statistical chart of LaSRC/SMW algorithm (The temperature curves, as well as the mean and standard deviation of 
the inversion results for the LaSRC algorithm and the SMW algorithm, are denoted in red and blue, respectively.). 

 
Fig. 5(a)-(f) depicts the initial temperature anomaly areas 

across the six periods post-threshold segmentation. It can be 
observed that there are significant variations in the range of 
temperature anomaly areas across different seasons within 
the same year and between different years. When using a 
single temperature anomaly result, there may be problems 
with the range being "overestimated" or "underestimated". 
Fig. 5(g) shows the final temperature anomaly areas under 
annual and seasonal sequential overlay limitations. Notably, 

these temperature anomaly zones are predominantly situated 
in the southern fire area of Jiangjun Gobi, the northen fire 
area of Jiangjun Temple, and the Beishan coal mines area. 
Independent temperature anomalies have been efficiently 
eliminated. Additionally, it's evident that solely using 
temperature anomalies is insufficient to distinguish between 
fire areas and mining areas. Therefore, it is essential to 
incorporate additional information for further constraints. 
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Fig. 5. The extent of the surface temperature anomaly zones. (a)-(f) are the initial temperature anomaly areas of 6 scenes, where the red part represents the 
extent of temperature anomalies. (g) The final temperature anomaly area after being constrained by annual and seasonal sequences. 

 
2) Vegetation Index Inversion and Vegetation-rich Area 

Identification: We conducted radiometric calibration, 
atmospheric correction, and topographic correction 
uniformly on three scenes of Sentinel-2A imagery, then 
calculated the NDVI. As illustrated in Fig. 6(a)-(c), the 
NDVI in the test area is generally low. However, higher 
values appear in the northern Jiangjun Gobi, Jiangjun 
Temple, and southern Beishan coal mines. This observation 
is counterintuitive, as fire and mining activities typically 
inhibit vegetation growth. Therefore, by averaging the 
results of NDVI calculations over three periods, we extracted 

and quantified the mean and standard deviation of NDVI 
within the final temperature anomaly areas. The experiment 
found that using the mean plus one standard deviation as the 
segmentation threshold not only retained most of the final 
temperature anomaly areas, but also effectively filtered out 
areas with high NDVI [Fig. 6(d) and (e)]. By filtering these 
areas from the temperature anomaly zones in subsequent 
processing, the error rate of delineating temperature 
anomalies can be reduced, further enhancing the reliability 
of the fire zone samples. 

 
Fig. 6. NDVI and vegetation-rich zones. (a)-(c) are the NDVI inversion results of 3 scenes. The red boxes at the top represent the northern fire zones of 
Jiangjun Gobi and Jiangjun Temple, and the red boxes at the bottom represent the Beishan coal mines area. (d) and (e) The green part inside the red ellipse 
represents the area with vegetation-rich zones.
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3) Time-series Surface Deformation Detection and 
Subsidence Anomaly Identification: For SAR image 
processing, we utilized the Sarscape software on 36-view 
SAR images, and then trimmed the images to fit the test area 
dimensions. Given that the test area mostly comprises the 
Gobi with sparse vegetation, we adjusted the thresholds to 
balance temporal coherence and processing efficiency: 
setting the maximum spatial baseline threshold to 2% of the 
critical baseline, the maximum temporal baseline threshold 
to 120d, and the minimum time-space baseline thresholds to 
0. Finally, we obtained a total of 114 pairs of small baseline 
connection diagrams. Spatial and temporal baseline 
distribution is shown in Fig. 7. 

 
Fig. 7. Spatial-temporal baseline distribution. 

Following the above data processing approach, we first 
aligned the images and applied 4:1 multi-viewing in both 
distance and azimuth directions. We then removed 
topographic and orbital phases from the interferometric 
phases by using the 30m resolution SRTM DEM data and 
precision orbit data (POD), respectively. 

We applied the Delaunay Minimum Cost Flow (Delaunay 
MCF) method algorithm [51] for phase unwrapping and used 
GACOS data to correct the atmospheric delay phase. This 
allowed us to estimate the average deformation rate and the 
residual phase component. As a result, we obtained the 
average deformation rate for the Jiangjun Gobi and Jiangjun 
Temple fire areas from March 21, 2017 to March 17, 2020 
[Fig. 8(a)-(c)]. 

Observations reveal that the overall deformation in the test 
areas are stable. Notable subsidence is primarily evident in 
the Jiangjun Gobi, Jiangjun Temple fire area, and Beishan 
coal mines area. The average subsidence rate in the fire areas 
is over 30 mm/a, with the southern portion of the Jiangjun 
Gobi fire area reaching up to 60 mm/a. Meanwhile, the 
majority of the Beishan coal mines demonstrate an average 
subsidence rate of 60 mm/a, indicating that it is difficult to 
distinguish between fire areas and mining areas using 
deformation information alone. Fig. 8(d) shows the 
subsidence anomaly areas obtained after threshold 
segmentation, mainly covering the eastern excavation pit of 
the southern Jiangjun Gobi fire area, the northern fire area of 
Jiangjun Temple, and most parts of the Beishan coal mines. 

 
Fig. 8. The three-year average deformation rate and the range of subsidence anomaly zones in the test area. (a) The average deformation rate of the Jiangjun 
Gobi, Jiangjun Temple fire areas, Beishan coal mines and surrounding areas over three years. (b) and (c) are the three-dimensional mappings of the average 
deformation rates of the Jiangjun Gobi, Jiangjun Temple fire areas and Beishan coal mines area, respectively. (d) The range of the subsidence anomaly areas. 

 
4) Night Light Data Brightness Analysis and High-

brightness Zones Identificatgion: Fig. 9(a), (b), and (c) show 
brightness grading results for the fire and mining areas after 
intersecting two night light images. It can be observed that 
the fire zones have higher brightness values, with the 
maximum reaching 0.03920. In contrast, the mining area 
demonstrates a significantly subdued brightness, with a 
maximum value of 0.005320, which is only 1/7 of the 
brightness in the fire area. Fig. 9(b) and (c) show differences 
in brightness distribution. The fire area has a higher degree 
of brightness aggregation, with only one brightness peak in 
the figure. This may be due to the dispersion effect of the fire, 

causing open fire spots to gather in a pixel cell and leading 
to an accumulation of brightness values within entire cell. 
On the other hand, the mining area has a more dispersed 
brightness range, with two brightness peaks in the figure, and 
scattered smaller peaks around them. This may be due to 
frequent and widely distributed human activities in the 
mining areas, resulting in stable light brightness radiation. 

Moreover, at the two brightness peaks in the mining areas, 
there are no anomalies in temperature or subsidence, 
suggesting that these locations might be fixed luminous 
structures. Therefore, through a comprehensive analysis 
encompassing temperature, subsidence, and brightness data, 

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2024.3425612

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



we segmented the fire and mining areas, exclusively 
extracting the fire zone range [Fig. 9(d)]. The threshold was 
determined by adding the mean brightness value to twice its 

standard deviation, identifying the high-brightness zones 
[Fig. 9(e)]. This area serves as the open fire area.

 
Fig. 9. Grading results of night light data and high-brightness zone range. (a) The brightness level of Jiangjun Gobi, Jiangjun Temple, Beishan coal mines and 
surrounding areas. (b) and (c) are the three-dimensional mappings of the brightness levels of Jiangjun Gobi, Jiangjun Temple fire zones and Beishan coal 
mines, respectively. (d) The brightness grading results of Jiangjun Gobi and the northern fire zone of Jiangjun Temple. (e) The area of high-brightness. 
 

B. Strongly Constrained Delineation Sample Results of 
Concealed Fire Zones, Open Fire Zones and Non-fire 
Zones 

After segmenting the fire areas of Jiangjun Gobi and 
Jiangjun Temple, as well as the Beishan coal mines, we 
employed a standard deviation ellipse for the overlapping 
regions of temperature and subsidence anomalies primarily 
located in the southern Jiangjun Gobi fire area and the 
northern Jiangjun Temple fire area. Fig. 10(a), (b), and (c) 
illustrate the samples derived from the strongly constrained 
concealed fire zones, the open fire zones, and the non-fire 
zones, as established by the methods described. 

In Fig. 10(a), the standard deviation ellipse, formed based 
on the intersection of temperature and subsidence anomaly 
regions, exhibits pronounced elongation and directional 
characteristics, mirroring the overarching pattern of the fire 

area. A single standard deviation ellipse effectively captures 
approximately 68% of the fire areas, striking an optimal 
balance between sample comprehensiveness and precision. 
Additionally, Fig. 10(a) further delineates the boundaries of 
the open fire zones, highlighting a concentration of open fire 
activity within the southern Jiangjun Gobi fire area. 
Meanwhile, Fig. 10(b) and (c) presents the non-fire zones, 
featuring three distinct temperature anomaly samples, a 
singular subsidence anomaly sample, and 2000 randomly 
generated anomaly-free data spots. The temperature 
anomaly areas are partly concentrated in the southern part of 
the mountain and partly outside the buffer area of the 
Beishan coal mines, which may be related to solar radiation 
and human activities on the ground, respectively. The 
Beishan coal mines subsidence anomaly is the most typical 
in the whole image, so it is used as a separated subsidence 
anomaly area.

 
Fig. 10. Strongly constrained samples from concealed fire zones, open fire zones, and non-fire zones. (a) The strongly constrained concealed fire zones and 
the strongly constrained open fire zones, where the ellipse is the 1 times standard deviation ellipse. (b) The separated temperature and subsidence anomaly 
areas (The vegetation-rich areas have been filtered out). (c) The non-fire areas integrated from (b).
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C. Results of the AdaBoost_RF_StBP Coal Fire Zone 
Identification Model 

Considering the imaging times of the night light images 
and the quality of inversions for various types of images, we 
undertook a band fusion, integrating the average 
deformation rate, the vegetation inversion data (from June 
15, 2018), the temperature inversion data (from October 31, 
2018), and the night light inversion data (from October 9, 
2018). More precisely, we took Sentinel-2A as the reference 
image while reprojecting the rest of the data, and up-
sampling using the nearest neighbor method. Among them, 
the final temperature anomaly areas are obtained by annual 
and seasonal timing constraints. The vegetation-rich areas 
are obtained by taking the mean of two images in the summer 
of each year and performing threshold segmentation. The 
deformation anomaly areas are obtained by taking the 
temporal average deformation rate and performing threshold 
segmentation. The high-brightness areas are obtained 
through brightness grading and density segmentation. 

Subsequently, we extracted three distinct sample types, as 
detailed in above, and utilized them for training within the 
base-learner framework. 

To evaluate the classification results' quality across 
multiple dimensions, we employed metrics including 
accuracy, recall, precision, F1_Score, Kappa coefficient, and 
confusion matrix heatmap. Generally speaking, in the 
context of imbalanced samples, accuracy might not be a 
reliable indicator to measure outcomes, even when 
ADASYN oversampling has been applied. Metrics such as 
recall, precision, and F1_Score emphasize the relationship 
between predicted positive samples and actual positive 
samples (i.e., the set of object labels of interest). Thus, the 
values of these metrics provide more insightful assessments 
of final classification precision. 

1) Base-Learner Classification Accuracy Analysis: Table 
Ⅲ presents the accuracy outcomes of the training phase for 
each model within the base learner set, while the heatmap of 
the confusion matrix for each model validation set test is 
given in Fig. 11. 

TABLE Ⅲ 
BASE-LEARNER ACCURACY FOR EACH MODEL 

Index 
Model (Data set) 

Accuracy Recall Precision F1_score Kappa 

CART 
Training set 0.808 0.808 0.826 0.790 

0.710 
Cross-validation set 0.854 0.854 0.879 0.846 

KNN 
Training set 0.873 0.873 0.896 0.868 

0.781 
Cross-validation set 0.848 0.848 0.864 0.843 

BPNN 
Training set 0.869 0.869 0.896 0.863 

0.809 
Cross-validation set 0.872 0.872 0.899 0.866 

SVM 
Training set 0.649 0.649 0.6 0.595 

0.569 
Cross-validation set 0.629 0.629 0.591 0.588 

NB 
Training set 0.780 0.780 0.798 0.765 

0.671 
Cross-validation set 0.781 0.781 0.798 0.766 

 
Fig. 11. Base-learner test data confusion matrix heatmap. (a)-(e) are CART, KNN, BPNN, SVM, and NB in order. (The horizontal axis represents the actual 
sample, and the vertical axis represents the predicted sample). 
 

From the analysis of Table Ⅲ, it can be observed that the 
KNN model exhibits the highest values for accuracy, recall, 
and F1_Score in the training set, recorded at 0.873, 0.873, 
and 0.868, respectively. Its precision is 0.896, on par with 
the BPNN model. Within the cross-validation set, the BPNN 
model outperforms the rest, boasting values of 0.872, 0.872, 
0.899, and 0.866 for accuracy, recall, precision, and 
F1_Score, respectively. When these findings are combined 
with the Kappa correlation coefficient and insights from Fig. 
11, it becomes evident that the BPNN model achieves the 

highest classification accuracy and correct prediction count. 
Consequently, we selected the BPNN model to serve as the 
meta-learner (StBP) for the computation involving 
secondary learners. 

2) Meta-learner Classification Accuracy Analysis: The 
prediction results of the five base-learners were used as 
training data inputted for the meta-learner. Each learner still 
adopted a ten-fold cross-validation method to reduce the risk 
of overfitting, and was run independently ten times to output 
the training results for the meta-learner. Table Ⅳ presents 
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the accuracy of the training results for each model in the 
meta-learner. Fig. 12 provides the confusion matrix 
heatmaps for the validation set of each model, while Fig. 13 

displays the box plot representing the stability of each model 
after ten independent runs.

TABLE Ⅳ 
META-LEARNER ACCURACY FOR EACH MODEL 

Index 
Model (Data set) 

Accuracy Recall Precision F1_score Kappa 

AdaBoost 
Training set 0.836 0.836 0.851 0.841 

0.737 
Cross-validation set 0.805 0.805 0.842 0.807 

RF 
Training set 0.959 0.959 0.958 0.958 

0.934 
Cross-validation set 0.942 0.942 0.943 0.940 

StBP 
Training set 0.955 0.955 0.954 0.954 

0.932 
Cross-validation set 0.944 0.944 0.945 0.943 

 
Fig. 12. Meta-learner test data confusion matrix heatmap. (a)-(e) are AdaBoost, RF and StBP in order. 
 

 
Fig. 13. Box plot of stability evaluation index of meta-learner models (The sequence is the same as in Fig. 13). 
 

Based on the analysis of Table Ⅳ and Fig. 12, it can be 
observed that the overall estimation accuracy of the meta-
learners has significantly improved compared to the base- 
learners. For the RF model in the training set, the accuracy, 
recall, precision, and F1_Score have increased by 0.09, 0.09, 
0.062, and 0.095 respectively compared to the BPNN model 
in the base-learners. In cross-validation set, the 
improvements are 0.07, 0.07, 0.044, and 0.077, respectively. 
The performance of the StBP model is comparable to the RF 
model, with slightly higher metrics in the cross-validation 
set than the RF model. Performance of AdaBoost model is 
slightly worse, but still comparable to that of BPNN and 
performs better than both the SVM and NB learners. 

Among the meta-learners, both RF and StBP achieve the 
Kappa coefficient of over 0.93, indicating high degree of 
consistency between actual sample labels and predicted 
sample labels. Further combined with Fig. 13, the boxplots 
of the various metrics for the RF model in both the training 
and cross-validation sets are highly flat, meaning the 
estimation results are nearly the same for each learning 
iteration, making it the most stable model. The AdaBoost 
model also demonstrates high stability in the training set, 
with some fluctuations observed in the cross-validation set. 
The StBP model demonstrates minor fluctuations as well.  

From this, it is evident that integrating learners based on 
Bagging, Boosting, and Stacking algorithms can further 
effectively enhance sample classification accuracy. The 

Bagging and Stacking ensemble algorithms yield the best 
improvement results. 
 

3) Analysis of Identification Results of 
AdaBoost_RF_StBP Coal Fire Zone Identification Model: 
For practical application, we applied a secondary mask to the 
Jiangjun Gobi and Jiangjun Temple fire areas within the 
synthesized band image. Subsequently, this data was fed into 
the AdaBoost_RF_StBP model for coal fire zone 
identification, aiming to pinpoint the ultimate fire area 
demarcation. For comparison, we input the masked data into 
AdaBoost, RF and StBP separately. This allows us to 
examine the distinctions between the individual use of 
Boosting, Bagging, and Stacking ensemble strategies versus 
their combined application. To validate the universality of 
the AdaBoost_RF_StBP coal fire zone identification model, 
we also took the Sandaoba fire area as the test area. The 
temperature, deformation, and vegetation index imagery 
were re-projected, re-sampled, and band-merged in the same 
manner. After masking to extract data and inputting it into 
the model, the identified fire zone regions was compared 
with the actual fire zone regions.  

For a more intuitive comparative analysis, we enlarged the 
actual fire zone regions, as shown in Fig. 14 (a), (b), and (g), 
while (c)-(f) and (h) represent the corresponding model 
identification results. Table Ⅴ lists the actual detected area 
and identified area for each fire zone.
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Fig. 14 The actual fire zone regions and the identified fire zone regions. In (a), (b), and (g), the red lines represent the actual measured ranges of the Jiangjun 
Gobi fire area, the Jiangjun Temple fire area, and the Sandaoba fire area, respectively. (c) to (f) represent the identification results in the Jiangjun Gobi and 
Jiangjun Temple fire areas after secondary masking by the AdaBoost_RF_StBP, AdaBoost, RF and StBP model, respectively. (e) presents the identification 
result for the Sandaoba fire area using the AdaBoost_RF_StBP model. 
 

TABLE Ⅴ 
DETECTION AREAS OF FIELD FIRE AREAS AND IDENTIFICATION OF FIRE AREAS 

Name of fire areas 
Model 

Jiangjun Gobi 
(north and south) 

Jiangjun Temple 
(north and south) 

Sandaoba 
(west and east) 

Actual fire zone areas 50679m2+708909m2 79880.05m2+40633.18m2 9419m2+564644m2 

AdaBoost_RF_StBP 
Identification area 932774m2 132323m2 665339m2 

Misclassification area/percentage 173186m2/22.8% 11810m2/9.8% 91276m2/15.9% 

AdaBoost 
Identification area 971513m2 137626m2 — 

Misclassification area/percentage 211925m2/27.9% 17112m2/14.2% — 

RF 
Identification area 957840m2 136059m2 — 

Misclassification area/percentage 198252m2/26.1% 15546m2/12.9% — 

StBP 
Identification area 977589m2 138228m2 — 

Misclassification area/percentage 218001m2/28.7% 17715m2/14.7% — 

 
As depicted in Fig. 14, it is evident that the fire zones 

identified by the model show a high degree of overlap in 
orientation with the actual surveyed fire zones. The 
concealed fire zones, open fire zones, and non-fire zones are 
well-separated. In conjunction with Table Ⅴ, it is clear that 
the overall areas of the identified fire zone tend to be larger. 
Specifically, the recognition areas of AdaBoost_RF_StBP in 
Jiangjun Gobi, Jiangjun Temple and Sandaoba fire areas 
account for 122.7%, 109.8% and 115.8% of the actual fire 
areas, respectively. The misclassification rates are 22.8%, 
9.8% and 15.9%, respectively. Extensive excavation pits 
surround the northern regions of both Jiangjun Gobi and 
Jiangjun Temple and predominantly contribute to the 
subsidence anomaly. The identified results in these two areas 
exhibit significant deviations from the actual measurements. 
Conversely, the southern part of Jiangjun Temple is 
relatively isolated, with comprehensive fire zone 

identification and minimal surrounding impurities. 
Moreover, region ⅰ exhibits an isolated misjudgment, being 
identified as having an open fire. This might be attributed to 
significant contributions from both temperature and 
subsidence in the area, or it might suggest an expansion of 
the fire zone following the actual survey. In the Sandaoba 
fire area, there is a significant misidentification at region ⅱ. 
The identification results of the AdaBoost, RF, and StBP 
models show more fragmented fire areas, which is 
inconsistent with the trend that fire areas should be clustered. 
The StBP model identifies more open fire areas, but in 
combination with field survey results, this part should be 
concealed fire areas. The identification results of the three 
single models in Jiangjun Gobi and Jiangjun Temple are 
generally consistent with the AdaBoost_RF_StBP model. In 
addition, in conjunction with Table Ⅴ, the misclassification 
rates of the three single models are high, exceeding 25% in 
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Jiangjun Gobi and 10% in Jiangjun Temple, which indirectly 
reflects the robustness of the AdaBoost_RF_StBP model. 

The phenomenon of missed detection in the three fire 
areas is virtually non-existent, effectively compensating for 
omissions by filtering methods due to the small overlap 
range of temperature and subsidence anomalies in the 
vertical direction. Most of the misidentified areas are 
influenced by the surrounding excavation pits and 
subsidence anomalies. Yet, these excavation pits contain a 
significant amount of floating coal. If left unaddressed, it 
could elevate the potential for re-ignition and subsequently 
influence the trajectory of subsequent combustion spread. 
Additionally, model identification results include several 
open fire areas. These areas exhibit the most pronounced 
combined anomalies and warrant vigilant monitoring. In 
summation, utilizing multi-source remote sensing in tandem 
with ensemble learning method for fire area identification is 
not only viable but also yields relatively precise outcomes 
across expansive regions. 

Ⅴ. DISCUSSION 

A. Impact of Background Areas on Accuracy of Coal Fire 
Identification 

After coal undergoes spontaneous combustion, it develops 
into a fully burning fire source. The high-temperature area 
propagates to the surrounding low-temperature area through 
heat conduction, forming destructive cracks under the action 
of thermal stress. After the coal body is burned, the overlying 
rock layer undergoes deformation and destruction to form a 
large range of collapse cracks when the external load energy 
and its internal energy lose balance. Therefore, the spatio-

temporal differences between the coal fire area and the 
background area are mainly reflected in temperature and 
deformation, and indirectly affect elements such as 
vegetation and soil. By constraining in space and time, and 
utilizing multi-source remote sensing technology, the 
characteristics of the fire area can be highlighted in the entire 
background area, achieving the purpose of identification. 
During the sample extraction phase, in longstanding fire 
areas like Sandaoba [Fig. 15(a)], directly extracting the 
intersecting areas of temperature and subsidence anomalies 
as fire zone samples is more representative than constructing 
a standard deviation ellipse. Table Ⅴ also reflects that the 
identification accuracy for the Sandaoba fire area is 
consistently higher compared to the Jiangjun Gobi and 
Jiangjun Temple fire areas. One reason for this is that actual 
fire areas are often surrounded by mining areas. The area 
delineated by the standard deviation ellipse for the fire areas 
sometimes resembles these mining areas. For fire zones with 
shorter burning times, such as Jiangjun Gobi and Jiangjun 
Temple illustrated in Fig. 15(b), the overlap of various 
anomalies is not evident, leading to an insufficient collection 
of fire zone samples. While the standard deviation ellipse 
can somewhat mitigate this issue, it cannot eliminate the 
interference from mining areas, creating notable challenges 
for subsequent machine learning classifications. 

In past study, most scholars have relied on prior 
knowledge of fire zone ranges, focusing on smaller study 
areas. For broader studies, visual interpretations have been 
used to rule out mining areas, but this introduces a level of 
subjectivity. Consequently, a deeper investigation into 
distinguishing the formation mechanisms of fire areas from 
mining areas is a pivotal direction for future study.

 
Fig. 15. The extent of the anomaly overlapping. (a) The final overlap of temperature and subsidence anomalies in the Sandaoba fire area. (b) The final overlap 
of temperature and subsidence anomalies in the Jiangjun Gobi and the northern fire areas of Jiangjun Temple (there is no overlap in the southern fire area of 
Jiangjun Temple). 
 

B. The Limitations of Multi-source Remote Sensing in 
Fire Zone Identification Methods 

Utilizing multi-source remote sensing information, 
various anomalies can be detected across multiple 
dimensions without direct contact with the target. Through 
collaborative analysis of information and related data 
processing, it is possible to identify the region of fire zones. 
However, there are still several challenges: 

1) Temporal Discrepancies: Multi-source remote sensing 
images are widely dispersed in time. For instance, the night 

light data referenced in this study is available for only one 
month in 2018. This temporal limitation restricts the 
detection capabilities of open fire areas and complicates the 
task of differentiating interference areas based on brightness 
levels. 

2) Atmospheric Interference: Multispectral images can be 
compromised by atmospheric conditions like clouds and fog, 
leading in poor imaging quality for certain periods. 

3) Resolution Issues: Image resolution plays a critical role 
in the fine identification of the fire zones. This study 
employed four types of remote sensing data, the finest 
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resolution of which is just 10m. As shown in Table Ⅴ, the 
western fire area of Sandaoba is less than 10,000m2, 
translating to a size of 10×10 pixels in imagery. With a lower 
resolution, anomaly and background information tend to 
merge within a single pixel, making it challenging to 
distinguish between the anomalous areas and their 
boundaries. Such errors, originating at the initial stage, can 
escalate the risk of introducing non-fire zone samples when 
delineating fire zone samples using the standard deviation 
ellipse. This can mislead the classifier into erroneous 
learning, ultimately resulting in misjudgments and missed 
detections when identifying fire zones. Therefore, while 
trying to use high-resolution images as much as possible, the 
method of sample delineation should also consider both the 
quality and quantity of the results.  

4) Efficiency and Accuracy of the Model: Although the 
AdaBoost_RF_StBP model constructed in this study does 
enhance classification accuracy compared to individual 
classifiers. However, having more classifiers will increase 
processing time. Therefore, finding a balance between the 
number of classifiers and their accuracy is worth further 
exploration. 

5) The Monitoring of New Fire Focus: For the same fire 
area, by periodically adding data from areas of interest, we 
can expand the number of training samples and achieve 
continuous monitoring of long time series. However, we are 
more concerned that the added new samples should be 
efficiently trained with the old samples, rather than starting 
training from scratch, in order to save time. 

By addressing these points, researchers can aim for more 
accurate and efficient remote sensing methods for fire area 
identification. 

Ⅵ. CONCLUSIONS 

This study explores multi-modal remote sensing data for 
the multi-factor extraction of fire zones, delineates features 
of concealed fire zones, open fire zones, and non-fire zones, 
and constructs a AdaBoost_RF_StBP coal fire zone 
identification model. These three elements form the core of 
the study content, providing a novel approach for the 
identification of coal fire zones. 

1) Using a diverse array of data - thermal infrared, 
multispectral, SAR, and night light - we extracted 
temperature anomaly zones, vegetation-rich zones, 
deformation anomaly zones, and high-brightness zones. 
These are extracted by adding or subtracting n times the 
standard deviation to the mean at varying confidence levels. 
This strategy curtails the reliance on pre-existing knowledge 
of fire zones and reduces the subjectivity of threshold 
determination. 

2) The fire zones in Jiangjun Gobi and Jiangjun Temple 
have experienced relatively brief burning durations. 
Consequently, the overlap areas between temperature 
anomalies and subsidence anomalies are limited. By 
constructing a 1 times standard deviation ellipse in the 
intersecting areas of the two, it is possible to assist in 
delineating the range of concealed fire zone samples and 
increase the sample quantity. 

3) Night light data reveals stark brightness discrepancies 
between regions. The maximum brightness in the Jiangjun 
Gobi and Jiangjun Temple fire zones peaks at 0.03920, in 
contrast to the Beishan coal mines, which caps at a mere 
0.005320. The significant brightness difference between fire 
zones and mining areas indicates that night light data has 

great potential for distinguishing between them. 
4) The AdaBoost_RF_StBP coal fire zone identification 

model enhances traditional algorithms by integrating 
Bagging, Boosting, and Stacking concepts. This mitigates 
bias, variance, and overfitting in predictions. The initial 
base-learner has an accuracy between 0.56 and 0.87, but the 
meta-learner boosts this to 0.8-0.96. From the final 
identification results, the recognition areas of 
AdaBoost_RF_StBP in Jiangjun Gobi, Jiangjun Temple and 
Sandaoba fire areas account for 122.7%, 109.8% and 115.8% 
of the actual fire areas, respectively. The redundant areas are 
mostly excavation pits proximate to the fire zones and could 
potentially mark the zones of fire spread. As a validation area 
for model generalization, the Sandaoba fire area has a 
misjudgment rate of less than 20%, demonstrating the model 
possesses high applicability to different fire zones. Overall, 
combining multi-source remote sensing data with the 
AdaBoost_RF_StBP coal fire zone identification model, this 
study introduces an effective means for fire zone 
identification and monitoring. 
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