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Abstract—Spaceborne Global Navigation Satellite System Reflectometry (GNSS-R) is an emerging remote sensing technology that 
utilizes Earth surface reflections of GNSS signals to monitor geophysical parameters. With its unique advantages of high 
spatiotemporal resolution, low observational cost, wide coverage, and all-weather operation, GNSS-R has found extensive 
applications in ocean remote sensing. Recent successful launches of spaceborne GNSS-R platforms such as TechDemoSat-1 (TDS-
1) in 2014, Cyclone GNSS (CYGNSS) in 2016, BuFeng-1 A/B in 2019, and FengYun-3E in 2021 have opened up new opportunities 
in this field. This article provides a comprehensive overview of the latest advancements in the application of spaceborne GNSS-R in 
ocean remote sensing. It covers satellite missions related to spaceborne GNSS-R and explores various methods and techniques for 
ocean remote sensing applications, including sea surface wind mapping, hurricanes, typhoons, and tropical cyclones monitoring, 
tsunamis and storm surges detection, sea surface altimetry and wave height measurement, sea ice sensing, and rainfall estimation, 
among others. Furthermore, the article discusses the challenges, prospects, and future outlook of spaceborne GNSS-R. 

Index Terms—Spaceborne GNSS reflectometry, TechDemoSat-1, Cyclone Global Navigation Satellite System (CYGNSS), 
BuFeng-1 A/B, FengYun-3E, Geophysical parameters, Ocean remote sensing. 
 

I. 1INTRODUCTION 
urrently, there are more than 100 operational navigation 
satellites in space, including the four major global 

satellite navigation systems: China's BeiDou Navigation 
Satellite System (BDS), the European Union's Galileo, 
Russia's GLONASS, and the United States' Global 
Positioning System (GPS). Additionally, India's Indian 
Regional Navigation Satellite System (IRNSS) and Japan's 
Quasi-Zenith Satellite System (QZSS) contribute to the 
global navigation satellite network. These systems offer all-
weather capability, near real-time data, high accuracy, and 
continuous transmission of L-band signals, making them 
widely used for positioning, navigation, and timing (PNT) 
applications. 

As satellite constellations continue to improve and expand, 
the applications of Global Navigation Satellite Systems 
(GNSS) systems have become increasingly diverse. In 
addition to their primary functions in positioning, timing, 
and navigation, GNSS systems are also utilized for remote 
sensing by analyzing surface-reflected GNSS signals. This 
technique, known as GNSS-R remote sensing, is a relatively 
new and cost-effective method that capitalizes on the 
processing and analysis of GNSS signals reflected from the 
Earth's surface to measure various geophysical parameters. 

GNSS-R can be classified into four types based on the 
platforms receiving the signals: ground-based GNSS-R, 
shipborne GNSS-R, airborne GNSS-R, and spaceborne 
GNSS-R. Each type has its unique advantages and 
applications. In terms of remote sensing applications, 
GNSS-R can be categorized into three major domains: 
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atmosphere remote sensing, ocean remote sensing, and land 
remote sensing. 

Atmosphere remote sensing using GNSS-R mainly 
focuses on monitoring the ionosphere, which provides 
valuable information for weather prediction and atmospheric 
studies. Ocean remote sensing with GNSS-R enables the 
retrieval of essential oceanic parameters such as sea surface 
wind speed and significant wave height, etc [1-5]. This 
information is crucial for understanding ocean dynamics, 
climate patterns, and maritime transportation. Land remote 
sensing using GNSS-R encompasses applications such as 
soil moisture retrieval, soil freeze-thaw states monitoring, 
and snow depth estimation, etc [6-10]. These applications 
contribute to improved agriculture, hydrology, and climate 
modeling. 

In 1988, Hall and Cordey introduced the concept of GNSS 
bistatic radar [11], which paved the way for using GNSS 
reflection signals in remote sensing applications. In 1993, 
Martin-Neira proposed the use of GNSS reflection signals 
for ocean altimetry [12], highlighting the potential of GNSS-
R for ocean observation. In 1998, Garrison et al. conducted 
airborne experiments that validated the correlation between 
scattered GNSS signals and sea surface roughness under 
different sea conditions [13]. 

Building upon these advancements, Zavorotny and 
Voronovich developed a two-dimensional delay-Doppler 
power model for GNSS scattered signals using the bistatic 
radar equation, the Kirchhoff approximation, and geometric 
optics in 2000. This model laid the theoretical foundation for 
retrieving sea surface wind fields from scattered signals [14] 
as well as other applications. 

In 2002, Lowe et al. accomplished the first detection of 
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GNSS reflection signals from a spaceborne platform, 
demonstrating the feasibility of spaceborne GNSS-R for 
remote sensing [15]. In 2003, the United Kingdom Disaster 
Monitoring Constellation (UK-DMC) satellite, equipped 
with a GPS-R receiver, successfully received and processed 
GPS L1 C/A code reflection signals, confirming its capacity 
for retrieving sea winds and sea ice from spaceborne 
platforms [16]. 

In 2014, Clarizia, et al. [17] proposed the Minimum 
Variance (MV) estimator for GNSS-R wind speed estimation, 
achieving an improved accuracy with a root mean square 
error (RMSE) of 1.65 m/s. In the same year, the UK's 
TechDemoSat-1 (TDS-1) satellite, carrying the Spaceborne 
GNSS Receiver for Sensing the Earth's Surface (SGR-ReSI), 
was launched. The SGR-ReSI system coherently processed 
GPS L1 C/A code direct reflection signals and obtained a 
significant amount of Delay-Doppler Map (DDM) data. 
With the TDS-1 data, Foti et al. successfully retrieved sea 
surface wind speed with an accuracy of about 2.2 m/s for 
wind in the range of 3-18 m/s [18]. 

In December 2016, NASA developed the Cyclone Global 
Navigation Satellite System (CYGNSS) which consists of 
eight small satellites, providing more opportunities for 
utilizing GNSS-R technology to retrieve sea surface wind 
speeds [19]. On June 5, 2019, China launched the BuFeng-1 
A/B dual satellite mission, i.e., China's first dedicated 
GNSS-R satellite mission. With the launch of these satellites, 
China became the fourth country to deploy GNSS-R 
satellites in Earth orbit, following the UK, the US, and Japan. 
The BF-1 A/B mission also obtained the world's first 
spaceborne BDS DDM [20]. Additionally, on July 5, 2021, 
China launched the FengYun-3E meteorological satellite, 
which has been utilizing GNSS-R data for sea surface wind 
speed retrieval [21]. This satellite mission also focuses on 
GNSS Radio Occultation (GNSS-RO) applications. 
Furthermore, a detailed overview of the GNSS Deflection, 
Radio Occultation and Scattering Measurements on board 
the International Space Station (GEROS-ISS), proposed by 
ESA, is presented in the literature [22]. The experiment is 
planned for oceanic, atmospheric and terrestrial remote 
sensing using GNSS signals of opportunity. 

Several papers [4, 23-26] reviewing the applications of 
GNSS-R technology in various fields have been published. 
However, each of these papers tends to focus only on a 
specific application rather than providing a comprehensive 
review of all the ocean related applications for spaceborne 
GNSS-R. Therefore, there is a need for a comprehensive 
review paper that encompasses a wide range of applications, 
including but not limited to sea surface altimetry, sea surface 
wind speed and direction estimation, and sea ice monitoring. 
Such a review paper would provide valuable insights into the 

diverse applications of spaceborne GNSS-R technology in 
monitoring and studying the marine environment. 

The rest of the article is organized as follows. Section 2 
provides an overview of the key messages of the spaceborne 
GNSS-R mission. Section 3 provides an overview of the 
methods and research status of using spaceborne GNSS-R 
data to retrieval sea surface wind speed and direction, as well 
as potential applications in detecting hurricanes, typhoons, 
and tropical cyclones. Section 4 provides an overview of the 
demonstration of using spaceborne GNSS-R for sea surface 
height and the methods for retrieving sea surface wave 
height (i.e., significant wave height and swell height), as well 
as its potential in detecting tsunamis and storm surges. 
Section 5 provides an overview of the advanced methods and 
current status of research on the use of spaceborne GNSS-R 
for sea-ice detection and retrieval of sea-ice concentration 
and thickness. Section 6 provides an overview of the current 
state of research and challenges in spaceborne GNSS-R 
rainfall detection and rainfall intensity retrieval. Section 7 
outlines other innovative applications of spaceborne GNSS-
R technology. Section 8 presents conclusions and future 
research directions. 

II. SPACEBORNE GNSS-R RELATED SATELLITE MISSIONS 

Currently, approximately 10 satellite missions have 
payloads specifically designed for GNSS-R ocean and/or 
land applications. Table 1 lists the key information, 
including the GNSS-R types, frequency bands, polarizations, 
and associated GNSS system, about these spaceborne 
GNSS-R missions. Each mission is summarized as follows. 

UK-DMC: The UK-DMC satellite, launched in December 
2003, is the first GNSS-R satellite developed by Surrey 
Satellite Technology Limited (SSTL). It carries four primary 
payloads, one of which is specifically dedicated to 
experimental purposes to showcase the potential 
applications of GNSS-R technology. While the data 
collected by the UK-DMC satellite has not been extensively 
utilized in remote sensing research likely due to limited data 
available, the satellite has successfully sensed ocean 
roughness [27]. The experiments and data collection 
conducted by the UK-DMC satellite have played a 
significant role in optimizing the design of SSTL's new 
GNSS-R device [18]. 

TDS-1: On July 8, 2014, the UK launched the TDS-1 
satellite, which carried GNSS-R receivers also developed by 
SSTL. The TDS-1 satellite was retired in December 2018. In 
four years, TDS-1 recorded a large amount of spaceborne 
GNSS-R data, which is widely used in scientific and 
technological research [28, 29].

 
Table 1 GNSS-R Spaceborne Missions 

Missions 
Launch country 

(Area) 
Launch date GNSS-R type 

Frequency 
band/polarization 

GNSS system 

UK-DMC [16] UK 2003-12 cGNSS-R 
L1/ 

LHCP 
GPS 

UK-TDS-1 [28] UK 2014-07 cGNSS-R 
L1/ 

LHCP 
GPS 

CYGNSS [30] America 2016-12 cGNSS-R 
L1/ 

LHCP 
GPS 
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Missions 
Launch country 

(Area) 
Launch date GNSS-R type 

Frequency 
band/polarization 

GNSS system 

3Cat-2 [31] Spain 2016-08 
cGNSS-R 
rGNSS-R 
iGNSS-R 

L1/ 
LHCP，RHCP 

GPS 
GLONASS 

Galileo 
BeiDou 

SMAP GNSS-R [32] America 2015-01 cGNSS-R L2/H，V GPS 

BuFeng-1 A/B [33] China 2019-06 cGNSS-R 
L1/ 

LHCP 
GPS 

BeiDou 

Spire [34] America 2019-01 cGNSS-R 
L1, L2/ 
LHCP 

GPS 
Galileo 
BeiDou 

Quasi-Zenith Satellite 
System (QZSS) 

FengYun-3E/3G/3F [35-37] China 
2021-07/2023-

04/2023-08 
cGNSS-R 

L1/ 
LHCP 

GPS 
Galileo 
BeiDou 

3Cat-5 A/B (FSSCat) [38] Spain 2020-09 cGNSS-R 
L1/ 

LHCP 
GPS 

Galileo 

3Cat-4 [39, 40] Spain 
Summer 2024 

(expected) 
cGNSS-R 

L1，L2/ 

LHCP 
GPS 

Galileo 

PRETTY [41] ESA 2022 iGNSS-R 
L1/ 

LHCP 
GPS 

Galileo 

TRITON (FORMOSAT-7R) [42] Taiwan, China 2022 cGNSS-R 
L1/ 

LHCP 

GPS 
Galileo 
QZSS 

HydroGNSS [43] ESA In the future cGNSS-R 
L1，E1/ 

LHCP，RHCP 
GPS 

Galileo 

CYGNSS: Following TDS-1, on December 15, 2016, 
NASA launched eight microsatellites to monitor tropical 
cyclones with the primary goal of improving the accuracy of 
hurricane intensity measurements and predictions [44, 45]. 
The project is led by the University of Michigan in the 
United States. CYGNSS has also generated a large number 
of data, which are also used to retrieving various ocean and 
land parameters in addition to its initially targeted ones. 

3Cat-2: 3Cat-2 is a 6-unit cube satellite demonstration 
mission for Earth observation using GNSS-R [31]. The 
spacecraft carries the main payload of P(Y) & C/A 
reflectometer (PYCARO), and the 3Cat-2 payload is 
designed with dual frequency (L1, L2) and dual 96 
polarization (LHCP, RHCP) 3 × 2 patch antenna arrays to 
perform GNSS-R measurements over oceans, land, and ice 
using multiple constellation signals (GPS, GLONASS, 
Galileo, and BDS). 3Cat-2 also aims to provide scientifically 
valuable data in a very cost-effective manner, which may 
open the door for future GNSS-R instrument constellations. 

SMAP: The Soil Moisture Active Passive Detection 
(SMAP) mission, launched in January 2015 and became 
operational in April 2015, is designed to measure soil 
moisture levels on regional and global scales. The mission 
aims to gather global soil moisture data every 2-3 days. The 
frequent and reliable measurements obtained by SMAP 
contribute to improving the prediction capabilities of 
weather and climate models. The radar receiver of the SMAP 
mission was tuned to the GPS L2 frequency (1227.6MHz) to 
collect GPS signals reflected by the Earth's surface [32]. The 
SMAP mission utilizes reflected GPS signals to obtain 
additional information about soil moisture and other 
geophysical parameters. By utilizing the GPS signals, 

SMAP enhances its capabilities to monitor and study soil 
moisture dynamics, further enhancing our understanding of 
Earth's water cycle. 

BuFeng-1 A/B: On June 5, 2019, China Aerospace 
Science and Technology Corporation (CASC) launched the 
dual satellite “BuFeng-1” from the Yellow Sea. The main 
focus of this satellite mission is to test the ability of GNSS-
R to monitor sea surface wind fields, especially typhoons 
[20]. 

Spire: The Spire constellation conducts various GNSS 
Earth observation missions, including radio occultation 
(GNSS-RO), ionized layers, and space weather 
measurements, as well as precise orbit determination [46, 
47]. In December 2019, Spire launched two new satellites to 
perform GNSS reflection measurements. Compared to 
CYGNSS, Spire's GNSS-R satellite has been specifically 
optimized for land applications with hardware and software 
improvements for better signal calibration and increased 
data acquisition per satellite. With more Spire satellites 
entering orbit, the potential for more powerful GNSS-R soil 
moisture retrieval with finer spatial resolution in the near 
future is promising. Current and future GNSS-R satellites 
from Spire will provide unprecedented next-day global 
coverage at sub-kilometer spatial resolution, making this 
intensive data collection crucial for various land and marine 
applications. 

FengYun-3E/3G /3F: On July 5, 2021, China's FengYun-
3E meteorological satellite was launched, carrying GNOS II 
GNSS remote sensing instruments and 11 payloads, 
including integrated GNSS-RO and GNSS-R payload for 
sensing ionospheric, atmospheric, and oceanic parameters 
for the first time [48]. FengYun-3G is China's first low-
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inclination orbit precipitation measurement satellite, which 
was successfully launched on April 16, 2023. The GNOS-II 
instrument (Global Navigation Satellite Occultation 
Sounder-II) is one of the payloads of China's low-orbit 
meteorological satellite system, FY-3 series, and its main 
mission is to carry out the detection of GNOS occultation 
signals and reflectance signals, and to provide the parameters 
of atmosphere and ionosphere, atmospheric temperature 
profile (ATP) and wet atmospheric profile (WAP), sea 
surface wind speed, soil moisture, and to provide high-
quality data sets for numerical weather prediction, climate 
change and space weather. The FengYun-3F satellite was 
launched on August 3, 2023, which is a continuation of the 
GNSS GNOS-II on the FY-3E satellite, and the GNOS-II on 
the FY-3F satellite is one of the 03 batch of payloads, and its 
main mission is to carry out the GNSS occultation detection 
and the ocean reflection detection to provide the atmospheric 
and ionospheric parameter profiles, sea surface wind speed, 
and to provide high quality datasets for numerical weather 
prediction, climate change, and space weather. It provides 
high-quality data sets for numerical weather prediction, 
climate change and space weather.  

3Cat-5 A/B (FSSCat): FSSCat is an innovative mission 
consisting of two joint 6-unit cube satellites (3Cat-5/A and 
3Cat-5/B) [38]. FSSCat was the first mission contributing to 
the Copernican System (Land and Marine Environmental 
Services), which was successfully launched on September 3, 
2020, providing L-band GNSS-R measurements. It carries 
dual microwave payloads (GNSS reflectometer and L-band 
radiometer with interference detection/mitigation function) 
and multi beam spectrum optical payloads to measure soil 
moisture, ice cover range and thickness, and detect melting 
pools on ice. It also includes a technical demonstrator for 
Optical Inter Satellite Link (OISL) and a concept validation 
for Federated Satellite System (FSS). 

3Cat-4: 3Cat-4 is the fourth member of the CubeSat series 
from the nanosatellite laboratory at the University of 
Polytechnic de Catalunya (UPC). This task aims to 
demonstrate the capabilities of nanosatellites, especially 
those based on the unit cube satellite standard, using GNSS-
R and L-band microwave radiation measurements for Earth 
observation and automatic recognition services [39]. 

PRETTY: One of the purposes of the reflectometer 
payload on Passive Reflectometry and Dosimetry (PRETTY) 
is to demonstrate the technical feasibility of phase height 
measurement (or phase delay height measurement) as done 
in [49, 50] at grazing incidence angles. PRETTY flies in 
Low Earth Orbit (LEO) and measures reflected and direct 
GNSS signals for altitude and scattering measurements at 
very high incidence angles based on interferometry 
techniques. The signal processing core of PRETTY is an on-
chip system, consisting of a dual core ARM processor and 
an on-chip Field Programmable GateArray (FPGA) structure 
[41]. 

TRITON (FORMOSAT-7R): The FORMOSAT-7R (FS-
7R) program is a GNSS reflection measurement task for 
remote sensing of ocean surface roughness and wind speed, 
attempting to provide key data for severe weather research 
and prediction. Compared with the GNSS-R receivers in 
TDS-1 and CYGNSS, the GNSS-R payload has some 
distinct characteristics. The GNSS-R payload is a powerful 

GNSS receiver because it can handle scattered GPS, Galileo, 
and QZSS signals [42, 51]. 

HydroGNSS: With funding from the European Space 
Agency (ESA) Scout program, SSTL is building Hydrology 
using Global Navigation Satellite System reflections 
(HydroGNSS), a 55-kg small satellite used to measure 
climate change variables [43]. HydroGNSS employes 
GNSS-R technology, using existing signals from global 
navigation satellites such as GPS and Galileo as radar 
sources, to measure key hydroclimate variables including 
soil moisture, freeze/thaw surface state, floods and wetlands, 
and above-ground biomass (AGB). HydroGNSS provides a 
new capability for monitoring highly dynamic phenomena 
and helps fill the gaps in monitoring Earth's vital signs in the 
future. The HydroGNSS mission aims to assist in climate 
change mitigation by leveraging space technology to provide 
valuable measurements. 

In addition to the aforementioned GNSS-R missions, there 
are other spaceborne missions aimed at utilizing reflected 
GNSS signals and other opportunistic signals for various 
geophysical applications. For example, on July 5, 2019, the 
DOT-1 satellite which is the third satellite designed by SSTL 
for GNSS-R research was launched. The payload carried on 
the DOT-1 satellite is intended to test advanced electronic 
equipment such as antenna technology, which can be utilized 
for future spaceborne technologies [52]. On July 3, 2021, the 
first commercial satellite with a GNSS-R payload, Jilin-01B, 
was launched into space. The GNSS-R payload is carried 
onboard the Jilin-01B satellite developed by Changguang 
Satellite Technology Co., Ltd. (CGSTL), and it is utilized for 
detecting a range of oceanic parameters [53].  

III. RETRIEVAL OF SEA SURFACE WIND SPEED AND DIRECTION 

A. Sea Surface Wind Speed Retrieval 
Currently, there are four types of methods for retrieving 

ocean surface wind speed using spaceborne GNSS-R: 
waveform matching, empirical modeling, intelligent 
optimization algorithms, and machine/deep learning. 
Among these, machine learning approaches have shown the 
highest accuracy in wind speed estimation. The waveform 
matching method involves comparing the observed GNSS 
reflection signal to a pre-constructed simulated waveform to 
retrieve wind speed. This method has been proven to provide 
high accuracy. For example, Li and Huang [54] used the 
least squares method to fit the two-dimensional simulated 
GNSSR DDM to measured data and achieved a wind speed 
error of 1 m/s when the lower threshold was set between 30% 
to 42% of the peak DDM point. However, this method 
requires significant computation and manual work to build 
and maintain waveform libraries, and it is limited in extreme 
weather conditions or nonlinear retrieval problems.  

The empirical modeling method is fast and efficient for 
estimating sea surface wind speed using statistical 
relationships or empirical formulas. It offers simplicity, 
efficiency, and practicality in real-time wind speed 
estimation compared to the waveform matching method. For 
example, Clarizia, et al. [17] utilized empirical geophysical 
model functions(GMF) to retrieve wind speed based on 
various parameters such as mean, variance, Allan variance, 
leading edge slope, and trailing edge slope of the DDM. 
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They also developed a minimum variance estimator (MVE). 
Similarly, Rodriguez-Alvarez and Garrison [55] compared 
the minimum variance estimator method with the maximum 
signal-to-noise ratio (SNR) method and principal component 
analysis method. The results indicated that the principal 
component analysis method demonstrated better 
performance. In 2015, Foti, et al. [56] proposed a wind speed 
retrieval algorithm based on the GNSS-R bistatic radar 
equation and SNR. They confirmed the significant capacity 
of low-cost, low-quality, and low-power GNSS-R receivers 
(e.g., ReSI) for global ocean wind speed retrieval at low 
Earth orbit heights. Furthermore, Bu, et al. [57] classified the 
waveforms in DDM into three categories: center delay 
waveform (CDW), integral delay waveform (IDW), and 
differential delay waveform (DDW). They developed a 
composite wind speed estimation model using NBRCS and 
Leading Edge Slope (LES) observables, which resulted in an 
RMSE of 2.1 m/s and a determination coefficient of 0.906. 
This model exhibited improved accuracy and performance 
compared to traditional single-parameter models. 

The retrieval of ocean surface wind speed is indeed a 
complex nonlinear problem influenced by various 
meteorological, oceanic, and geographical factors. While 
traditional empirical modeling approaches have their 
limitations in fully accounting for these complexities, 
intelligent optimization algorithms offer a more effective 
solution by incorporating global search and adaptive 
adjustment techniques to handle nonlinear and intricate 
problems. Guo, et al. [58] proposed a novel approach using 
Particle Swarm Optimization (PSO) for wind speed retrieval 
by combining the DDM observable with the minimum 
variance estimator. The study highlighted that the PSO-
based method showed dependencies on GPS constellation 
types and CYGNSS satellite identifiers, which differed from 
the MVE-based techniques. 

Thanks to the development of computer technology, 
machine learning methods have further improved the 
processing of complex nonlinear problems in ocean wind 
speed retrieval, with their powerful nonlinear modeling 
capabilities that can capture complex nonlinear relationships 
and enhance the accuracy of ocean surface wind speed 
retrieval. Liu, et al. [59] employed a multi-hidden-layer 
neural network (MHL-NN) to extract four different feature 
sets for ocean wind speed retrieval, resulting in significant 
improvement compared to traditional empirical models. 
Artificial neural networks (ANNs) enable fast completion of 
complex tasks by learning the relationship between inputs 
and outputs, Reynolds, et al. [60] conducted the initial 
research on using ANN for wind speed estimation, [61] 
evaluated the performance of ANN-based wind speed 
retrieval using CYGNSS data and analyzed the sensitivity of 

wind speed retrieval performance to different input 
parameters, finding that the geographical location of 
specular reflection points and the height of uplift can 
significantly affect wind speed retrieval. To enhance the 
comprehensiveness of data input, Chu, et al. [62] proposed 
an input composed of DDMs and all satellite receiver state 
(SRS) parameters. To effectively integrate the information 
of DDM and SRS, they introduced a heterogeneous 
multimodal deep learning (HMDL) approach that utilizes the 
heterogeneity of input data to retrieve wind speed. 
Asgarimehr, et al. [63] developed an efficient wind speed 
retrieval method called CYGNSS net based on. Building 
upon this, Guo, et al. [64] introduced a statistical correction 
convolutional neural network (CNN) with auxiliary 
information fusion. In this approach, the convolutional 
layers extract effective DDM features, and an adaptive 
polynomial form of cumulative distribution function (CDF) 
matching is performed to eliminate bias. Bu, et al. [65] 
presented an improved deep learning model called GloWS-
Net, which significantly enhances the retrieval accuracy of 
high wind speeds compared to the CYGNSS net and MCNN 
models.  

Liu, et al. [66] utilized the characteristics of long short-
term memory (LSTM) models in extracting temporal 
features from time series and proposed a recursive deep 
neural network (DNN) using feature attention mechanism 
(FA-RDN) for global ocean surface wind speed retrieval 
based on GNSS-R. However, FA-RDN only involves time-
related input features for wind speed retrieval. Lu, et al. [67] 
fully considered the spatiotemporal characteristics of ocean 
wind speed and put forward a hybrid CNN-LSTM network. 
Such a network can extract spatial features surrounding the 
specular point (SP) from the two-dimensional matrix of 
DDM through the CNN module, and extract temporal 
features from the time series through the LSTM module, thus 
better capturing spatiotemporal features and improve the 
accuracy of ocean wind speed retrieval. Nevertheless, the 
main challenge faced by deep learning models has been the 
poor performance of wind speed retrieval in high wind 
speeds due to uneven distribution of wind speed samples. 
Therefore, future studies should select samples within a 
wider range of wind speeds to develop deep learning models 
for widely applicable spaceborne GNSS-R wind speed 
retrieval. 

Table 2 summarizes and compares the methods for 
spaceborne GNSS-R sea surface wind speed retrieval, 
mainly focusing on the retrieval method, retrieval model, 
GNSS-R observations, retrieval accuracy, and advantages 
and disadvantages. The table only includes representative 
references, where "-" indicates that the information is not 
covered. 

 
Table 2. Comparison of spaceborne GNSS-R sea surface wind speed retrieval methods. 

Methods Retrieval Models Literature GNSS-R Observables 
(Variables) Retrieval Accuracy 

Waveform matching 
method - [54] Normalized power value of 

DDM 1–2 m/s for WS < 20 m/s 

Empirical model method Polynomial fitting  [68] NBRCS, LES 

For fully developed seas (FDS) GMF, the 
performance of the wind speed retrieval beow 
20 m/s. The RMS difference is ∼2 m/s at low 
wind speeds and grows to ∼4 at 20 m/s. the 
component of that difference due to uncertainty 
in the CYGNSS wind speed retrieval is 
estimated to be 1.4 m/s.  
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Methods Retrieval Models Literature GNSS-R Observables 
(Variables) Retrieval Accuracy 

Exponential function [56, 69] DDMA, NBRCS, LES ~2 m/s for WS < 20 m/s 

Power function [20, 45] NBRCS, DDMA, LES RMSE = 2.63 m/s, 2.04 m/s, and 1.77 m/s (vs. 
ECMWF, ASCAT, and buoys) 

Combination of multiple observables [55] 
Generalized Linear 

Observables (MSNR, MVU, 
and PCA) 

When the WS is greater than 30 m/s, the PCA 
based RMSE is about 2.4 m/s lower than the MV 
estimator and about 0.2 m/s lower than the 
MSNR. 

Intelligent optimization 
algorithm 

Combination model based on MVE 
and PSO [17, 58] DDMA, DDMV, ADDMV, 

LES, TES, NBRCS 

The RMS error in the MV estimator, at 1.65 m/s; 
PSO method is better than MVE method. The 
RMSE is better than 1.95 m/s for WS < 20 m/s. 

Machine/Deep learning 
method 

WS model based on ANNs (MHL-
NN, ANN, MF-ANN) [59-61] 

DDMA, LES, incidence angle, 
NBRCS, GPS satellite 

number, RCG, etc. 

The optimal RMSE of MHL-NN can reach 
1.79m/s; The RMSE of ANN are 1.58 m/s and 
1.86 m/s respectively (vs. CYGNSS level 2 
(version 2.1) WS products and buoys). 

WS model based on CNNs (HMDL, 
CYGNSSnet, MCNN, GloWS-Net) [62-65] 

DDM BRCS, power_analog, 
effective scattering area, 

NBRCS, LES, etc. 

The RMSE of MCNN is 1.53 m/s; The RMSE of 
CyGNSSnet is 1.36m/s; The RMSE prediction 
accuracy of HMDL was improved by 36.8% (vs. 
traditional NN based solutions); The RMSE of 
the GloWS-Net model is 2.16 m/s. 

WS model based on LSTM (FA-
RDN, CNN-LSTM) [67, 70] 

DDM BRCS, power_analog, 
effective scattering area, 

NBRCS, LES, SNR, RCG, 
etc. 

The WS retrieval RMSE of the FA-RDN model 
can reach 1.45 m/s, 10.38%, 6.58%, 13.28%, 
17.89%, 20.26%, and 23.14% higher than that of 
BPNN, RNN, ANN, RF, XGBoost, and SVR, 
respectively; The accuracy of the WS obtained 
by CNN-LSTM in terms of RMSE value is 1.34 
m/s. 

WS model based on transformer 
(DDM-Former) [71] 

DDM BRCS, the 
corresponding effective 

scattering area, power_analog 
, and raw counts. 

DDM Former outperforms traditional retrieval 
algorithms and CNN based baseline network 
CyGNSSnet, achieving an average RMSE of 
1.43m/s. 

1. MHL-NN represents a multi hidden layer neural network; ANN represents an artificial neural network; HMDL represents heterogeneous multimodal deep 
learning networks; CNN represents a convolutional neural network; MCNN represents the CNN with statistical correction; FA-RDN represents a recurrent 
neural network with feature attention mechanism; GloWS-Net denotes an improved deep learning framework; DDM-Former denotes Transformer networks; 
CNN-LSTM denotes a Hybrid Model Combining CNN and LSTM; MF-ANN denotes a Novel Artificial Neural Network. 
 

B. Sea Surface Wind Direction Retrieval 
Both wind speed and direction are key factors for the 

ocean. Various techniques have been developed for 
determining sea surface wind speed and direction. 
Traditional methods consist of using microwave radiometers 
and scatterometers. Microwave radiometers estimate wind 
speed and direction by detecting changes in the roughness of 
the sea surface. On the other hand, scatterometers send out 
electromagnetic wave signals towards the ocean, receive 
reflected signals, from which a can be applied to retrieve 
wind speed and direction. 

As an emerging remote sensing technology, GNSS-R has 
also made significant progress in wind direction retrieval. 
Park and Johnson [72, 73] found that wind direction has 
higher sensitivity in non-specular geometry compared to 
specular geometry, and the accuracy of wind speed retrieval 
plays an important role in the performance of wind direction 
retrieval. The retrieval can be carried out using DDM away 
from the specular part, and the outlook of wind retrieval 
using Spaceborne GNSS-R is also proposed. Zhang, et al. 
[74] realized the exploration of wind direction in non-
specular geometry by Spaceborne GNSS-R on this basis, and 
provided the wind direction retrieval algorithm based on the 
DDMA in non-specular geometry. Simulation results show 
that Spaceborne GNSS-R DDMA in non-specular geometry 
can be used to retrieve the wind direction. Guan, et al. [75] 
investigated the effect of different wind features in GNSS-R 
observables on the wind direction retrieval, and the results 
show that the wind direction retrieval performs better when 
the SNR and the metric angle are higher. Wang, et al. [76] 
investigated the feasibility of retrieval of wind direction 
using low-level backward geometry of GNSS-R, and 

focused on analyzing the effects of wind direction on sea 
surface roughness and scattering intensity. 

In addressing the problem of spatial footprint blurring 
caused by Spaceborne GNSS-R receivers operating at high 
speeds in low orbits, Southwell and Inst [77] found that 
Spaceborne GNSS-R receivers operating at high speeds in 
low orbits lead to spatial footprint blurring. To address this 
problem, Gao, et al. [78] introduced the concept of blurred 
gaze processing, which involves tracking multiple fixes 
simultaneously, to investigate the sensitivity of DDM to 
wind direction. They analyzed the relationship between 
multiple observations and wind direction and used a deep 
learning model for wind direction retrieval. Pascual, et al. 
[79] investigated the effect of kurtosis of DDM samples in 
CYGNSS data on wind direction sensitivity and proved that 
CYGNSS data are sensitive to wind direction: 

 ( ) ( )0 1 2cos WD cos 2WDˆ A A Aκ = + +  (1) 
where 0A  is the offset, 1A  is the upwind/downwind 
modulation factor, 2A  is the upwind/sidewind factor, and 
WD  is the relative wind direction. 

Zhang, et al. [80] developed a support vector machine 
(SVM) model for sea surface wind direction retrieval using 
CYGNSS satellite data to address the difficulty of wind 
direction retrieval in large space and large time span at the 
global sea surface, and the results show that the retrieval has 
a high classification accuracy in the dataset with wind speeds 
greater than 10m/s, and the RMSE of the retrieval results is 
26.70°. Zhang, et al. [81] developed a sea surface wind 
direction retrieval model based on three machine learning 
algorithms (SVM, BP and CNN) using CYGNSS L1 data. 
The results show that the CNN model outperforms the SVM 
model and BP model in retrieval of wind direction. 
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Future studies could improve the results of sea surface 
wind studies by using more high-quality data to provide 
more comprehensive and detailed information. 
C. APPLICATIONS: HURRICANES, TYPHOONS, AND TROPICAL CYCLONES 

MONITORING 

Typhoon is a tropical cyclone, also known as hurricane, 
which is the result of the interaction between the atmosphere 
and the ocean. Typhoons are formed on tropical oceans and 
are characterized by strong winds and heavy rain. 
Monitoring typhoon is of crucial importance for weather 
disaster predicting and warning, helping reduce the losses 
caused by typhoons. 

GNSS-R has become one effective technique for typhoon 
monitoring [44]. It has the advantages of monitoring large-
scale typhoon activities in real time and remotely without 
relying on traditional ocean buoys and aircraft detection, etc. 
Martín, et al. [82] and others used interferometric GNSS-R 
for typhoon monitoring. Li, et al. [83] used the ocean 
reflection signals from the BeiDou GEO satellites to conduct 
coastal typhoon observations. Through preliminary analysis 
of the BeiDou reflection signals collected in the experiment, 
the GNSS-R measured wind speeds match well with in situ 
data, and the average deviation was 1.6 m/s and a root-mean-
square error of 2.4 m/s. This promotes the application of the 
Beidou GEO satellites in typhoon monitoring. Ruf, et al. [84] 
proposed to utilize the CYGNSS data to perform high 
temporal and spatial resolution wind speed observation to 
help predict the paths and intensities of typhoons. In addition, 
spaceborne data from the UK TDS-1 mission were 
successfully applied to typhoon monitoring, representing the 
first success of monitoring typhoons using Spaceborne 
GNSS-R technique [85, 86]. Balasubramaniam and Ruf 
[87]constructed an empirical model considering azimuthal 
dependence by using the CYGNSS observation data and the 
wind speed data from the Hurricane Weather Research and 
Forecasting (HWRF) model, for describing the variation of 
GNSS-R scattering cross sections in typhoons. It is found 
that the azimuthal dependence of the scattering cross-section 
increases with wind speed, and changes in azimuthal 
direction can lead to a 2-8% variation in the scattering cross-
section. 

Understanding and predicting hurricanes is an important 
part of weather forecasting and climate research. Hurricanes 
and associated flooding and coastal inundation are among 
the most dangerous and expensive natural hazards for coastal 
communities. In addition, remote sensing of ocean surface 
winds usually lacks accuracy for very intense hurricanes. 
Shen, et al. [88] used the ability of cross-polarized SAR to 
detect wind speeds from hurricanes and found that wind 
speed estimation with cross-polarized SAR has better 
accuracy compared to co-polarized SAR. It provides 
valuable insights for numerical modeling of hurricanes, air-
sea interaction, and climate change. Said, et al. [89] 
employed simulated CYGNSS data to develop an algorithm 
for retrieving the maximum wind speed of hurricane and 
compared the retrieved results with hurricane research 
reanalysis data (the best path) and the HWRF model data, 
with overall deviations relative to the optimal track of 11.3 
and 2.1 m/s for optimal track maximum wind speeds less 

than 40 m/s and greater than 40 m/s, respectively. To 
complement existing sea surface wind speed data products 
to help characterize the intensity of tropical cyclones. 

Kim and Park [90] successfully monitored changes in 
water levels caused by hurricane-induced storm surges 
through the analysis of multi-frequency and multi-system 
GNSS. By using spectral analysis and statistical data 
processing of multi-frequency GNSS signals, their method 
was able to detect the effects of storm surges on water levels, 
improving the accuracy and temporal resolution of GNSS-R 
water level measurements. The proposed algorithm was 
validated through a case study of the storm surge during 
Hurricane Harvey in 2017, with results showing that the 
correlation coefficient between GNSS-R measurements and 
tide gauge readings at the same location was 0.97. 

Wang, et al. [91] proposed a joint use of spaceborne 
microwave sensors and the CYGNSS constellation to 
observe tropical cyclones. The TC tracks obtained by this 
method were compared with the best tracks provided by the 
National Hurricane Center (NHC), with mean absolute error 
values ranging from 18.4 to 46 km and standard deviation 
varying between 15.1 and 28.2 km. Morris and Ruf [92] 
developed a method for estimating the integrated kinetic 
energy (IKE) of tropical cyclones using CYGNSS 
observations, demonstrating the validity and feasibility of 
the method through testing and evaluating performance with 
simulated data. Morris and Ruf [86] also utilized CYGNSS 
satellite observations to estimate surface wind speed 
structure and intensity of tropical cyclones. Mayers and Ruf 
[93] proposed a new method to determine the TC center 
location using wind speed measurements from CYGNSS. 
The storm center location is estimated by fitting a parametric 
wind model to the CYGNSS surface wind speed data, where 
the wind speed as a function of radius is described as: 
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where r  is the distance from the storm center, f is the 
Coriolis factor, mR  is the radius of maximum winds, and mV
is the maximum wind speed. The exponent b controls the 
rate at which the winds radially decay away from the inner 
core. 

On this basis, Ruf, et al. [94] evaluated the CYGNSS 
ocean surface wind speed measurements in terms of 
uncertainty, dynamic range, sensitivity to precipitation, 
spatial resolution, spatial and temporal sampling, and data 
latency. They found that the average revisit time of 
CYGNSS satellites was 9.1 hours, and the spatial coverage 
reached 50%, which satisfied the mission's threshold 
requirements. 

However, it is worth noting that the current spatial 
resolution of Spaceborne GNSS-R data may not be sufficient 
for monitoring small-scale weather phenomena like 
hurricanes. The development and progression of hurricanes 
often happen on a smaller spatial scale. Therefore, it is 
recommended to consider generating higher resolution data 
in the future to accurately monitor the location, intensity, and 
trajectory of hurricanes. 
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IV. SEA SURFACE ALTIMETRY AND WAVE HEIGHT RETRIEVAL USING 

SPACEBORNE GNSS-R 

A. Sea Surface Altimetry 
The measurement of sea surface height holds great 

importance in fields like ocean meteorology, ocean 
engineering, and marine scientific research. The traditional 
approach involves using tidal gauges, which require the 
consideration of altimeter deviations and drift to calculate 
the variation in sea level over time [95]. However, altimeters 
are expensive and susceptible to environmental influences. 
Alternatively, GNSS-R-based retrieval has become a 
commonly used method due to its advantages of low power 
consumption, cost-effectiveness, and high spatial resolution. 
M.Martin-Neira [96] pioneered the use of GNSS-R for sea 
surface height measurement in 1993. The geometric 
principle of spaceborne GNSS-R altimetry is depicted in 
Figure 1. 

 
Figure 1 The Geometric Principles of Spaceborne GNSS-R Altimetry [97]. 

There are two commonly used methods for measuring sea 
surface height using ground-based GNSS-R techniques. The 
first method is the GNSS Interferometric/Multipath (GNSS-
I/MR) method, which involves analyzing the interference or 
multipath effect of GNSS signals. This method utilizes the 
SNR obtained by the receiver to measure sea surface height 
[98]. Purnell, et al. [99] proposed a modeling technique 
based on SNR data to estimate the accuracy of GNSS-R sea 
level measurements and analyze measurement uncertainty.  

The second method is the conventional GNSS-R (cGNSS-
R) method, which retrieves sea surface height by observing 
the time delay between reflected and direct GNSS signals. 
There are two approaches for measuring the time delay: 
code-based methods and carrier-based methods. Code-based 
methods track the code phase of the reflected and direct 
signals to determine the time delay [100, 101], while carrier-
based methods track the carrier phase to achieve the same 
objective [102]. Cardellach, et al. [49] introduced the first 
Grazing Angle (GA) carrier phase delay method for sea 
surface height retrieval. However, the carrier-based method 
requires continuous carrier phase and strong coherent 
components in the reflected signal, imposing smoothness 
requirements on the reflecting surface. This limits its 
application in ocean surveying. In contrast, code-based 
methods have lower requirements for signal coherence, 
making them more widely applicable. 

Ground and airborne GNSS-R technologies have provided 
the basis for the development of spaceborne GNSS-R 
systems [103, 104]. The UK-DMC satellite constellation 
launched in July 2014 was the first to carry a GNSS-R 
receiver capable of generating a differential DDM (dDDM) 
containing information about delay and Doppler around the 
SP. 

Subsequently, some researchers conducted sea surface 
altimetry studies using TDS-1 data. Song, et al. [105] 
conducted high-resolution processing of Doppler and code 
delay based on raw data from the TDS-1 satellite and 
explored the potential of using higher time sampling rates to 
improve accuracy using two different height measurement 
methods. Mashburn, et al. [106] used GNSS-R data from the 
TDS-1 satellite for sea surface altimetry and developed an 
error budget by analyzing the sources of error. The sea 
surface height residual was found to be 6.4 m with a 1σ 
integration time of 1 second compared to the mean sea 
surface topography. For accurate delay re-tracking, 
correction for ionospheric effects, and spacecraft receiver 
positioning in GNSS-R altimetry studies, Mashburn, et al. 
[107] also utilized a simulated DDM to match with the 
measured data in order to obtain accurate specular reflection 
delays through correcting the path delay effects in 
conjunction with a global ionospheric map. This method, 
which is based on reflection modeling and ionospheric 
correction, is able to extract more accurate sea surface 
altimetry information from GNSS-R measurements, 
providing new possibilities for related applications. 

Li, et al. [108] utilized raw IF data collected by CYGNSS 
satellites to comprehensively analyze the high performance 
of oceanographic measurements with spaceborne GNSS-R 
technology. They calculated the ellipsoidal height of the sea 
surface above the WGS84 ellipsoid using the double-base 
geometry [12]. 

obs
rtrk iono tropo blobs ( )

2cose

c
H

i
τ δρ δρ δρ− + +

= −  (3) 

where i  is the angle of incidence, obs
rtrkτ  is the residual two-

base delay derived from different retrackers, ionoδρ  is the 
ionospheric delay correction term, tropoδρ  is the tropospheric 
two-way tilt delay, and blδρ  is the antenna baseline 
correction. 

Due to the limited capabilities of some satellite missions, 
Nguyen, et al. [109] used the dual frequency GPS reflection 
signal data collected by the Spire satellite constellation for 
the first time to construct a phase height retrieval model as 
shown in formula (4), achieving centimeter level high-
precision height estimation in sea ice covered areas and open 
sea areas. 

 


2sin
h ρ ρδ

α
−

=  (4) 

where hδ represents the surface height deviation from a 
reference surface, ρ represents the observed geometric 

distance of the reflected signal path, ρ  represents the prior 
distance of the signal path based on the reference surface and 
α  is the angle between the local tangent plane of the SP and 
the line-of-sight to the transmitter. 
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The launch of China's BuFeng-1 (BF-1) satellite and 
Fengyun-3 (FY-3) satellite has significantly enhanced 
spaceborne GNSS-R observations. The utilization of 
multiple constellations of GNSS signals, which exhibit 
differences in signal performance based on frequency bands 
and modulations, can improve the accuracy of height 
measurements [110]. Due to the highly nonlinear complexity 
of sea surface, traditional empirical models often fail to fully 
consider the effects of various factors. In contrast, machine 
learning and deep learning techniques have proven to be 
effective in data processing. However, compared to 
applications like sea surface wind speed retrieval and soil 
moisture detection, machine learning and deep learning for 
spaceborne GNSS-R sea surface altimetry are still in their 
early stages with limited studies conducted thus far. Zhang, 
et al. [97]. proposed the use of machine learning methods, 
such as Principal Component Analysis combined with 
Support Vector Regression (PCA-SVR) and CNN, for 
obtaining sea surface height (SSH) based on TDS-1 data. 
They further validated and compared the performance of 
these methods. Additionally, Zhang, et al. [111] developed 
two different CYGNSS SSH retrieval models based on 
widely used machine learning techniques, including back 
propagation (BP) neural network and CNN. 

To improve the accuracy of sea surface wave height 
retrieval, Wang, et al. [112] proposed a novel weighted 
average fusion feature extraction method. Built on this 
research, an end-to-end modified residual multimodal deep 
learning (MRMDL) method was introduced, which 
leverages complete DDM information to further enhance the 
retrieval accuracy of sea surface height [113]. However, 
most studies have mainly focused on post-processing 
strategies to improve performance without considering 
practical (near) real-time applications. To address this 
challenge, Liu, et al. [114] proposed a cloud service-based 
approach for near real-time sea level measurements using a 
robust Kalman filter (RKF) to achieve high accuracy and 
temporal resolution. The results show negligible bias 
compared to retrieval in post-processing mode, confirming 
the practical significance of the proposed method for real sea 
level monitoring applications. Table 3 summarizes and 
compares methods for spaceborne altimetry of the sea 
surface, mainly focusing on retrieval methods, observational 
data, retrieval models, observed values, retrieval accuracy, 
and validation models. The table lists only representative 
references, with "-" indicating aspects not covered.

Table 3 Comparison of spaceborne sea surface Altimetry methods. 

Method Literature Data Retrieve Models  Observables Precision 
Verification 

Model 

Bistatic 
group delay 
(code phase)  

[115] CYGNSS Formula (3) 

HALF (the point at a 
fraction of 

the peak power), DER 
(the point with the 

maximum of 
waveform’s first 

derivative), and FIT 
(fitting the waveform 

to its model) 

Two-way ranging precision can 
reach up to 3.9 and 2.5 m 

DTU 
(Danmarks 
Tekniske 

Universitet) 
models 

[107] CYGNSS Formula (3) DDM 

The RSS residual error of the 
CYGNSS altimetry 

observations is estimated to be 
6-m delay at the average 

observed CYGNSS SNR using 
VZ18DDM tracking on 1-s 

observations. 

[106] TDS-1 
Quasi-spherical Earth 

mode 
DDM 

Compared with the average sea 
surface topography, the 

residual sea surface height is 
6.4m and the 1 σ integration 

time is 1 second. 

[105] TDS-1 Formula (3) Code Phase 

When the time resolution is 0.2, 
0.5, and 1 s, the precision of the 
code phase altimetry can reach 
1.01 m, 0.67 m, and 0.51 m, 
respectively. 

Carrier 
phase-delay 

[116] GPS LEO - IPT 
Obtain a vertical accuracy of 
0.70 meters under horizontal 

sampling of~1 kilometer 

[49] CYGNSS - 
Carrier phase-delay 

measurements 

The combined precision, is 
16/20 cm (median/mean) 

precision at 50 ms integration 
(a few cm level at 1 Hz). 
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Method Literature Data Retrieve Models  Observables Precision 
Verification 

Model 

[109] Spire Formula (4) 

Dual frequency 
reflection signals 

(Phase and pseudo 
range measurements) 

Compared with the sea surface 
model, the accuracy after 

removing the average height 
difference is 3cm 

[117] BuFeng-1 - 
DDM and GNSS-R 

variables 

The results were compared to 
the DTU18 20min product with 

RMSD and R2 of 0.94 m and 
99.15%, respectively. 

Machine 
learning 

[97] TDS-1 PCA-SVR and CNN 
DDM and GNSS-R 

variables 

The MAE, RMSE and R2 of the 
PCA-SVR retrieval model are 
0.61 m, 1.72 m, and 99.56%, 
respectively; and the MAE, 
RMSE, and R2of the CNN 

retrieval model is 0.71 m, 1.27 
m, and 99.76%, respectively. 

[111] CYGNSS BP and CNN 
DDM and GNSS-R 

variables 

The MAE of 1.04 m for the BP 
model and 0.63 m for the CNN 

model. 

 
The marine environment is a complex and dynamic 

system that is influenced by various factors. The complexity 
and uncertainty involved make it challenging to accurately 
predict future SSH. In practical applications, it is necessary 
to synthesize, validate, and evaluate multiple methods and 
data sources to enhance the accuracy and reliability of 
prediction results. Further research and technological 
advancements are needed to overcome this challenge. 

B. Sea Surface Significant Wave Height Retrieval 
The SWH of ocean waves is an important parameter that 

describes wave energy and has a significant impact on the 
marine environment and maritime activities. Sea surface 
roughness and scattering coefficient are important factors 
that affect the reflection signal of spaceborne GNSS-R [118]. 
The Dual Scale Model (TSM) is a reliable method for 
analyzing electromagnetic scattering from the sea surface. 
TSM divides the sea surface into two parts: large-scale 
roughness and small-scale roughness. It uses the following 
formula to define the scattering coefficient [119]: 
𝜎𝜎TSM = 𝜎𝜎KA−GO + 𝜎𝜎SPM                                                   (5) 

where 𝜎𝜎𝐾𝐾𝐾𝐾−𝐺𝐺𝐺𝐺 represents the large-scale surface roughness 
scattering coefficient calculated based on the Kirchhoff 
approximation-geometric optics (KA-GO), primarily related 
to swell. 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆 represents the small-scale surface roughness 
scattering coefficient calculated using the Small Perturbation 
Method (SPM), mainly associated with wind wave. SWH 
represents the average height of the highest third of ocean 
surface waves generated by wind and swell. Whensea 
surface wind speed is low, swell contributes predominantly 
to SWH [120]. Conversely, in high wind speed conditions, 
wind waves are the primary components of SWH. 

To accurately measure SWH, researcher s have explored 
various retrieval methods. This section provides a brief 
overview of some common methods for SWH retrieval, 
discussing their characteristics and limitations.  

Buoy observation is a widely used SWH retrieval method 
for with high accuracies. However, its application is limited 
due to the high cost and restricted coverage of buoy 

equipment, which makes it challenging to implement in 
large-scale sea areas [121]. Satellite altimetry is another 
commonly used method for measuring ocean wave 
parameters. However, due to the limited resolution of 
satellite observations, it can be difficult to obtain detailed 
results [122]. Interference Complex Field (ICF) is a method 
that calculates SWH by utilizing the effective correlation 
time function of coastal GNSS reflection signals and direct 
signals [123]. Alonso-Arroyo, et al. [124] conducted an 
analysis of oscillation frequency and coherence loss using 
the interference pattern technique (IPT) and retrieved SWH 
and mean sea surface level (MSSL) with ground experiment 
data. IPT is not applicable to spaceborne GNSS-R scenarios 
[125], although there are special cases where this pattern 
occurs. When the relative delay between the direct GNSS 
signal and the reflected signal is less than the code-slice 
length (e.g., about 300 m for C/A codes), both signals 
contribute to the correlation sum amplitude computed by the 
receiver, and an IPT-like signalling pattern occurs. This 
situation has been found in GNSS radio occultation 
measurements where the receiver is not stationary [116]. 
However, in spaceborne GNSS-R applications, the IPT 
method is not applicable due to the large satellite-terrestrial 
path variations [125], where the relative delays of the direct 
and reflected signals usually exceed the code-slice length. 

Qin and Li [126] proposed a multi-satellite observation 
SWH retrieval method based on GNSS-R. This algorithm 
employs DDM to extract SNR and introduces offset 
correction for elevation differences to retrieve SWH.  

However, this method is only applicable when SWH is 
below 2.5m. Clarizia, et al. [17] proposed using the LES of 
the integrated delay waveform (IDW) to retrieve SWH, but 
further research on SWH retrieval has not been conducted. 
Peng and Jin [127] estimated the global ocean SWH using 
spaceborne CYGNSS GNSS-R data and the relationship 
between the square root of CYGNSS DDM SNR data and 
SWH. Yang, et al. [128] estimated SWH using a polynomial 
function relationship between SWH and the Delay-Doppler 
Map Average (DDMA) as well as the LES of CYGNSS data 
developed based on the ERA5 data. Bu and Yu [129] 
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achieved relatively good results by retrieving SWH using the 
GMF with CYGNSS data, which confirms the feasibility of 
estimating SWH using spaceborne GNSS-R. To improve the 
accuracy of SWH retrieval, Wang, et al. [130] adopted a 
multivariate regression machine learning model, which 
introduced additional input variables in an attempt to capture 
more factors that affect SWH to improve the accuracy and 
reliability of the model. Multiple models were compared and 
evaluated to select the best model and further improve the 
SWH retrieval method. Wang, et al. [131] compared the 
effectiveness of GMF and NN model  in retrieving SWH. 
The results demonstrated that the NN model outperformed 
traditional GMFs. NN models possess greater flexibility and 
nonlinear modeling capabilities, allowing them to accurately 
capture the complex relationship between SWH and input 
variables. Bu, et al. [132] proposed for the first time a joint 
retrieval method suitable for spaceborne GNSS-R sea 
surface rainfall and wind waves, establishing a deep 
convolutional neural network (DCNN) model to estimate 
SWH of rain and wind driven sea conditions. The research 
results indicate that deep learning methods have great 
potential in SWH retrieval. However, wind speed and swell 
are the main interfering factors affecting precipitation 
retrieval, and eliminating or mitigating the impact of wind 
speed and swell on precipitation intensity retrieval is a key 
challenge that needs to be addressed in the next step. 

Table 4 summarizes and compares different sea surface 
SWH retrieval methods for GNSS-R. We mainly compare 
the methods used, GNSS-R data, GNSS-R observations, 
retrieval models, and retrieval accuracy. '-' indicates not 
involved. From the table, it can be seen that the research on 
GNSS-R wave SWH retrieval mainly focuses on shore based, 

ship based, and spaceborne experiments. For spaceborne 
GNSS-R SWH retrieval, the main focus is on building 
empirical models for SWH retrieval based on GNSS-R 
observation values. Although some promising results have 
been achieved, due to the fact that empirical models only 
consider a limited number of variable parameters, there are 
significant challenges in constructing multivariate 
regression models considering multiple factors, resulting in 
low robustness and retrieval accuracy of the model, making 
it difficult to apply in practice. Although machine learning 
algorithms, such as stepwise linear regression, SVM, ANN, 
sparrow search algorithm extreme learning machine, and 
bagged tree (BT) have proven to have advantages in 
constructing multivariate regression SWH retrieval models 
and have higher retrieval accuracy than empirical models, 
the input data of the model often ignores key feature 
information in DDMs. This limits the accuracy of SWH 
retrieval. Deep learning methods, such as DCNNs, have 
been proven to be effective for retrieving SWH from 
spaceborne GNSS-R data. DCNNs can automatically extract 
feature information related to sea surface SWH from BRCS 
DDM and effective scattering area, and excel in 
automatically extracting complex spatial features from 
multiple input images. However, this method ignores the 
characteristics of time series. 

Therefore, future research should focus on developing 
hybrid models that take into account both spatial and 
temporal correlation feature information. One possible 
solution is to construct a hybrid model that integrates DCNN 
and Bidirectional Long Short-Term Memory (BiLSTM) to 
improve the performance of global SWH retrieval for 
spaceborne GNSS-R.

 
Table 4 Comparison of GNSS-R sea surface significant wave height retrieval methods 

Method Literature 
GNSS-R 

Data 
Reference 

Data 
GNSS-R 

Observations 
Retrieve Models  Precision 

Interference 
Complex 

Field (ICF) 
[133] 

Measured 
shore-based 
GPS-R data 

Buoy data 
correlation 

time 

A semi empirical 
model on correlation 

time and SWH 
－ 

Interferogram 
Technology 

(IPT) 
[124] 

SMIGLOL 
Reflectometer 
Measurement 

Data 

VEGAPULS62 
radar measured 

SWH data 

Elevation 
mask 

logarithmic function 

When SWH<0.8 m, 
the retrieval accuracy 

of SWH reaches 6 
cm. 

Upper cut-off 
elevation 
method 

[134] 
Shore based 

GNSS-R 
－ Upper cut-off 

elevation 

Generalized shallow 
water wave growth 

model 

A correlation 
coefficient > 80% 

between WS 
measurements and 
SWH retrievals. 

Empirical 
modeling 
method 

[135] 
Shore based 

GNSS-R data 

Datawell’s 
Directional 
Waverider 

buoy (Datawell 
DWR-MkIII 

SNR multinomial 

The average absolute 
percentage error, 

RMSE, and 
maximum error are 
8.26%, 0.1671 m, 

and 0.32 m, 
respectively. 

[131] 
 

Shipborne 
GNSS-R 

Shipborne 
meteorological 
station SWH; 

ERA5 and 
Jason-3 SWH 

Correlation 
time; spectral 
width; peak 
frequency 

GMF and Neural 
Networks 

The RMSE of SWH 
retrieval is 0.38 m. 

[136] 
Shipborne 
GNSS-R 

Observation 
data of nautical 

seismometer 

Time delay 
window 

multinomial 
The correlation 

coefficient is 0.97, 
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Method Literature 
GNSS-R 

Data 
Reference 

Data 
GNSS-R 

Observations 
Retrieve Models  Precision 

and maritime 
wavemeter 

and the RMSE is 
0.22. 

[137] CYGNSS 
ECMWF, 
AVISO, 

buoy data 
SNR power function 

Compared with 
ECMWF data, the 
standard deviation 

and correlation 
coefficient of SWH 
retrieval are 0.2153 

m and 0.9752, 
respectively. 

[138] CYGNSS 
ECMWF, 
AVISO, 

buoy data 
DDMA、LES N-order polynomial 

Compared with 
ECMWF data, the 

RMSE and 
correlation 

coefficients of SWH 
retrieval are better 
than 0.257 m and 

0.945, respectively. 

[129, 139] CYGNSS ECMWF 

DDMA; 
NIDW LES; 
NIDW TES; 
NCDW LES; 
NCDW TES; 

NCDW 
LEWS 

Power function; 
Binomial 

exponential function 

Compared with 
ECMWF data, the 

RMSE and 
correlation 

coefficients of SWH 
retrieval are 0.503 m 

and 0.88, 
respectively. 

 [140] CYGNSS ECMWF 
DDMA; 

NIDW LES; 
NIDW TES 

Power function; 
Two term 

exponential 
function; MVE 

based composite 
model 

The RMSE and 
correlation 

coefficient (CC) of 
the combined model 
are better than 0.428 

m and 0.91, 
respectively, which is 
14.74% higher than 

the RMSE of the 
LES observation 

model. 

Machine 
learning 
methods 

[130] CYGNSS 
ECMWF; 

NDBC Buoy 

DDM-related 
variables and 

auxiliary 
variables 

stepwise linear 
regression, Gaussian 

SVM, ANN, 
sparrow search 

algorithm-extreme 
learning machine, 

and BT 

The BT model 
performs best, with 

RMSE and 
correlation 

coefficient of 0.48 m 
and 0.82, 

respectively. 

Deep learning 
methods 

[132] CYGNSS ECMWF 

Power_analog 
DDM, DDM-

related 
variables and 

auxiliary 
variables 

DCNN 
The RMSE of SWH 

retrieval is better 
than 0.20 m. 

 

C. Sea Surface Swell Height Retrieval  
Sea swell is an important type of marine meteorology and 

its formation process is influenced by various factors such as 
wind, seawater density, temperature, rainfall, and bed 
characteristics. Swells have a wide range of impacts on the 
ocean and coastal areas, directly threatening the safety of 
ships at sea and the stability of offshore structures. 

Unlike wind waves, swells are typically waves that 
propagate from distant wind fields and continue to move 
without being influenced by local winds. Swells can be 
modeled as narrowband Gaussian processes, and the swell 
spectrum model is as follows [141]: 

𝜓𝜓swell�𝑘𝑘𝑥𝑥, 𝑘𝑘𝑦𝑦� = �ℎ2�
2𝜋𝜋𝜎𝜎𝑘𝑘𝑘𝑘𝜎𝜎𝑘𝑘𝑘𝑘

𝑒𝑒𝑒𝑒𝑒𝑒 �− 1
2
��𝑘𝑘𝑥𝑥−𝑘𝑘𝑥𝑥𝑥𝑥

𝜎𝜎𝑘𝑘𝑘𝑘
�
2

+

�𝑘𝑘𝑦𝑦−𝑘𝑘𝑦𝑦𝑦𝑦
𝜎𝜎𝑘𝑘𝑘𝑘

�
2
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where �ℎ2� represents the variance of wave height, 𝜎𝜎𝑘𝑘𝑘𝑘 and 
𝜎𝜎𝑘𝑘𝑘𝑘 represent the standard deviation of wave spectrum, 𝑘𝑘𝑥𝑥 
and 𝑘𝑘𝑦𝑦  respectively represent the components of wave 
number 𝑘𝑘  in the 𝑥𝑥  and 𝑦𝑦  directions, 𝑘𝑘𝑥𝑥𝑥𝑥 and 𝑘𝑘𝑦𝑦𝑦𝑦 
respectively represent the peak wave numbers of swell 
waves in the 𝑥𝑥 and 𝑦𝑦 directions. 𝑘𝑘𝑚𝑚 = �𝑘𝑘𝑥𝑥𝑥𝑥2 + 𝑘𝑘𝑦𝑦𝑦𝑦2 = 2𝜋𝜋

𝛬𝛬𝑚𝑚
, 

𝛬𝛬𝑚𝑚 is 400 m, 𝜎𝜎𝑘𝑘𝑘𝑘 = 𝜎𝜎𝑘𝑘𝑘𝑘 = 0.0025 m-1 [142]. 
Swells are usually associated with large-scale rough sea 

surfaces that have a significant impact on GNSS sea surface 
reflection signals, and the impact of swells is more 
significant at low wind speeds. When retrieving wind speed 
under such conditions, the presence of swells can introduce 
substantial retrieval errors, thus reducing the accuracy of 
wind speed retrieval. 

Traditional swell measurement is accomplished via 
collecting sea surface information by placing buoys on the 
sea surface, which has some limitations, including limited 
coverage, high cost, and susceptibility to environmental 
factors. In contrast, using satellite altimeters for observation 
has the advantage of covering a global range. Albuquerque, 
et al. [143] used satellite altimeter data to correct sea breeze 
and swell data, but the accuracy may be limited due to the 
limited spatial resolution of satellite altimeters. Li [144] 
utilized the spaceborne synthetic aperture radar (SAR) 
images to monitor the height of swell. Altiparmaki, et al. 
[145] proposed using SAR altimetry data to detect swells by 
studying the spectrum of fully focused synthetic aperture 
radar (FFSAR) altimetry data. However, due to the sparse 
data obtained in both time and space, constructing an 
accurate model can be challenging. Several studies have 
focused on the use of high frequency radar (HFR) for swell 
measurements [146]. HFR is usually a land-based radar that 
monitors sea surface conditions up to 300 km from the coast. 
With a spatial resolution of 0.5-5 km and a temporal 
resolution of about half an hour, it is capable of continuously 
acquiring real-time sea information [147, 148]. 

In addition, with the development of GNSS technology, 
GNSS-R as a new remote sensing technology has the 
advantages of short revisit period, low observation cost, and 
high spatial and temporal resolution. Bu, et al. [149] used 
spaceborne GNSS-R data from eight CYGNSS satellites to 
retrieve swell height. In order to improve the accuracy of its 
retrieval, an improved hybrid optimization algorithm was 

proposed based on the particle swarm optimization (PSO) 
algorithm [58] (i.e. a combination algorithm combining 
simulated annealing (SA) and PSO, SA-PSO). The 
experimental results showed that the estimated swell height 
of the proposed method was consistent with reference data 
(i.e., ERA5 swell height). However, the empirical model 
constructed in this study only considers a limited number of 
input variable parameters, thereby limiting the retrieval 
accuracy of swell height. Swell changes are complex and 
cannot be adequately characterized by simple models. 
Therefore, the development of more advanced models 
becomes necessary. Machine learning or deep learning 
techniques offer significant advantages in modeling complex 
variable relationships. Consequently, Bu, et al. [150] became 
the first to apply deep learning methods to estimate swell 
height using spaceborne GNSS-R data. The study also 
discussed the performance of machine learning models in 
swell height retrieval. Experimental results indicate that the 
proposed DCNN model outperforms other models when 
ERA5 serves as the reference data. However, as the swell 
height increases, the retrieval performance of the model 
gradually decreases, especially when the swell height is 
greater than 3 m. At this point, there is an underestimation 
of the swell heights retrieved by all 8 models. The 
underestimation may be due to two key factors: a) the 
sensitivity of DDM observables reaches saturation during 
high swell; b) the distribution of swell height data is 
extremely uneven. Throughout the entire training process, 
due to the presence of a large amount of data distribution 
related to medium swell heights, all eight models tend to 
conservatively predict within the range of high swell heights. 
Therefore, the retrieval performance in the high swell range 
needs to be further improved in the future. In addition to the 
content introduced here, Bu, et al. [150] also reported more 
detailed information on the impact of rainfall on swell height, 
model retrieval performance under different sea state 
conditions, and other aspects. Table 5 summarizes and 
compares different methods for sea surface swell height 
retrieval. A comparison is made mainly in terms of the 
methods used, data, reference data, retrieval model, and 
retrieval accuracy. "-" indicates not applicable. Only 
representative literature is listed in the table. 

Table 5 Comparison of Sea Surface Swell Height Retrieval methods.  
Method Literature Data Reference Data Retrieve Models Precision 

Satellite Altimeter [143] 
Bathymetry 
and distance 

from land 
buoy data Multiple linear 

regression model 
The swell has achieved a 
5% improvement in SI. 

Spaceborne synthetic 
aperture radar (SAR) [144] ASAR wave 

mode data buoy data - 
The RMSE of ASAR wave 
peak direction compared to 
buoy measurement is 17 °. 

Shore-based HFR [151] VHF radar 
data situ data - 

RMS differences relative to 
in situ wave height 

measurements range from 
0.16 to 0.25 m as the radar 
beam angle increases from 

22° to 56°. 

X-band Radar [152] 

The X-band 
marine radar 
sea surface 

images. 

Buoy data 
Ensemble empirical 
mode decomposition 

(EEMD) 

The root mean square 
differences compared to the 
buoy reference is 0.36 m. 
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Method Literature Data Reference Data Retrieve Models Precision 

Spaceborne GNSS-R 
methods 

[149] CYGNSS 
ECMWF 

reanalysis swell 
height datasets 

PSO (SA-PSO) 
algorithm 

The RMSE of the SA-PSO 
method is improved by 

23.53%, 26.42%, 30.36%, 
and 7.14%, respectively 

[150] CYGNSS ERA5, 
WaveWatch III DCNN 

The RMSEs of SWH 
retrieving for swell and 
wind waves are greater 

than 0.394m and 0.397m, 
respectively, with a 

correlation coefficient R of 
0.90. 

 
Meanwhile, in future research on swell height, deep 

learning is still in the development stage in the GNSS-R field, 
but they have great potential for development in the research 
of swell retrieval. 

D. Applications: Tsunamis and Storm Surge Detection 
Sea surface wind mapping, wave height measurement and 

altimetry have been demonstrated applications, the use of 
spaceborne GNSS-R for tsunami detection is a potential 
application but has not been confirmed with field data yet. 

Tsunami is a natural disaster characterized by large ocean 
waves triggered by underwater geological activities such as 
earthquakes, volcanic eruptions, landslides, or other similar 
events. To mitigate the impacts of tsunamis, it is crucial to 
monitor them in real-time and provide timely and accurate 
information for emergency response and protective 
measures to minimize human and coastal damage. 

Tsunami monitoring requires continuous surveillance of 
potential tsunami activities in the ocean using certain 
technical methods. Existing methods include underwater 
seismic monitoring [153], seawater level monitoring [154], 
and marine meteorological monitoring [155]. Through these 
monitoring approaches, essential data and information such 
as earthquake parameters, sea level changes, meteorological 
conditions, acoustic signals, and sea surface conditions can 
be obtained for timely detection and warning of tsunamis. 

Initially, early tsunami monitoring relied on water level 
measurement instruments placed in coastal areas, such as 
buoys. However, this approach is expensive and covers only 
limited areas. Satellite altimeters offer accurate tsunami 
monitoring capabilities, but their longer revisit cycles 
introduce potential delays in warning. With the continuous 
advancement of technology, modern tsunami monitoring 
systems have become more sophisticated and 
comprehensive. Spaceborne GNSS-R technology offers a 
promising alternative for detecting tsunamis and estimating 
tsunami parameters. 

Stosius, et al. [156] conducted a comparison between the 
meshed comb constellation and the Walker constellation 
layout and found that the Walker constellation provides a 
much more evenly distributed reflection point coverage 
compared to the meshed comb constellation. If Spaceborne 
GNSS-R is capable of detecting tsunami waves 20 cm or 
higher, the 48/8 or 81/9 Walker constellations can accurately 
detect strong tsunamis with a magnitude (M) of ≥ 8.5 from 
any orbital altitude within 15-25 minutes. 

Furthermore, Stosius, et al. [157]  analyzed the detection 
performance of a GNSS-R constellation using signals from 

GPS, GLONASS, and Galileo at an altitude of 900 km and 
an inclination of 60°. They utilized the TUNAMI-N2 wave 
propagation model to determine the probability of tsunami 
detection by calculating the number of simulation runs in 
which a tsunami was detected within a specific time period. 
The results indicated that the best detection performance was 
achieved when all three signals from GPS, Galileo, and 
GLONASS were combined. 

DDM data reflect changes in the surface scattering 
scenario, which include ocean surface waves and surface 
disturbances caused by tsunamis. Yan and Huang [158] 
proposed a simulation method for tsunami detection and 
parameter estimation based on GNSS-R DDM. This method 
utilized the double static scattering Z-V model, Cox and 
Munk sea surface mean square slope model, and wind 
disturbance model caused by tsunamis. To validate the 
applicability of the Cox and Munk models in tsunami 
scenarios, the consistency between the Cox and Munk 
models based on the scattering coefficient and Jason-1 
measurement results was compared. The correlation 
coefficient was found to be 0.93, confirming the suitability 
of the Cox and Munk models in tsunami scenarios. 

In 2016, Yan and Huang [159] employed the two-antenna 
scattering interferometry (SIA) method to extract the sea 
surface scattering coefficient from DDM data. They also 
retrieved the distribution of sea surface wind velocity based 
on the scattering coefficient. Additionally, they proposed a 
method to determine sea surface height anomaly (SSHA) 
results and detect tsunamis in order to reduce the false alarm 
rate. Through comprehensive simulation tests, the accuracy 
and feasibility of the scheme were verified. The processes of 
SSHA measurement and tsunami detection caused by 
tsunamis are illustrated in Figure 2. In Figure 2, 0σ is the 
scattering coefficient, A is the tsunami SSHA amplitude, k  
is the tsunami SSHA undirected wave number, 

0
ϕ  is the 

tsunami SSHA phase shift. 

 
Figure 2 Flow chart of SSHA measurement and tsunami detection caused 
by tsunami [159].  
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In the same year, Yu [160] proposed a method to detect 
weak tsunamis using noise sea surface height (SSH) 
measurement data. The method involves comparing 
simulated data with actual data and utilizing a trigonometric 
function model to describe the shape of the leading wave of 
a tsunami. Additionally, a detection method based on bin 
averaging (BA) technology is proposed for determining the 
presence of a tsunami through hypothesis testing. The 
formulas for the probability of detection (PD) and the 
probability of false alarm (PFA) are derived as 
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where ( )i
tws  is the tsunami component ( tws ) of the i th BA 

output, PFA is the probability that the hypothesis of presence 
of a tsunami is accepted, the threshold γ  can be determined 
by giving the PFA denoted by α , ( , )twsβ γ is the 
probability that the hypothesis of presence of wave is 
accepted when the wave is present, ( , )twm sγ is the 
probability that the hypothesis of absence of a wave is 
accepted but a wave is present. 

On this basis, Yu [161] estimated the wave height and 
wavelength of a tsunami based on GNSS-R SSH 
measurements. By processing and analyzing GNSS-R 
observation data, the waveform and parameter estimation of 
the tsunami can be obtained. In addition, a simplified 
parameter estimation method was proposed to evaluate the 
estimation performance of tsunami wave height and 
wavelength using the Cramer Rao Lower Bound (CRLB), 
and the wave height and wavelength can be clearly defined. 
In another study, Kim, et al. [162] analyzed event driven 
water level changes and used GNSS reflection measurement 
technology to monitor tsunamis and storm surges. Through 
an improved GNSS-R data processing method that included 
using multi-band GNSS signals, determining the optimal 
processing window, and employing Kalman filtering to 
determine altitude, they successfully detected two tsunami 
events and two storm surge events. The correlation 
coefficients with nearby tide meters were high, with values 
of 0.944, 0.933, 0.987, and 0.957, respectively. These results 
highlight the significant potential of monitoring tsunamis 
and storm surges using GNSS-R technology. 

 
Storm surge refers to an abnormal rise in water level in the 

ocean caused by storms or climate systems. It is primarily a 
result of strong winds and low-pressure systems, combined 
with tidal effects, leading to a significant increase in sea level. 
Storm surges can have a devastating impact on coastal 
communities, ports, shipping, fisheries, and coastal 
ecosystems, resulting in extensive damage. 

Detecting storm surges requires real-time attention to 
changes in water level and sea surface wind speed. Ocean 
observation stations established in coastal areas are usually 
equipped with water level measurement equipment, 

meteorological stations, buoys, and other sensors, which can 
record data such as wind speed, direction, pressure changes, 
and sea surface height.  

As storm surge leads to an abnormal increase in water 
level, analyzing the reflected signal characteristics of GNSS 
signals can provide information about the abnormal increase 
in seawater level caused by storm surge. Two commonly 
used analytical methods for GNSS water level analysis are 
the phase delay analysis method and the SNR analysis 
method [163]. In the SNR analysis method, before a 
reflected signal is received, it undergoes multiple paths. 
These multiple paths result in delay differences between the 
reflected signals and the direct signal, introducing 
interference patterns. The SNR analysis method can be 
applied to the detection of storm surges using spaceborne 
GNSS-R, and the SNR is represented by the following 
equation [162]: 

 ( )2 2 2 2 cosd m d mSNR A A A A ψ= + +  (9) 
where dA  and mA are the amplitudes of the direct and 
multipath signals, respectively, and ψ  is the phase 
difference between the two signals. 

Phuong Lan, et al. [164] utilized blind signal 
decomposition techniques like Singular Spectrum Analysis 
(SSA) and Continuous Wavelet Transform (CWT) to extract 
storm features of sea surface height from GNSS-R tidal data. 
This approach offers a new perspective and tool for studying 
storm surges, enabling a deeper understanding and 
prediction of their behavior and impact. Peng, et al. [165] 
were pioneers in applying GNSS interferometric reflection 
measurements to detect storm surges. By analyzing the SNR 
data of GNSS signals, they obtained sea level measurements 
that were validated against traditional tidal meter data (with 
an RMS difference of approximately 12.6 centimeters 
between the GNSS-based sea level measurements and tidal 
meter records). Kim, et al. [162] proposed a tide meter based 
on GNSS-R technology, which utilized multi-band GNSS 
signals, optimal processing windows, and Kalman filtering 
to determine altitude rates and detect extreme changes in 
water levels. Li, et al. [166] employed a combination of 
GNSS-R coastal wind data and ECMWF reanalysis products 
to enhance storm surge simulation. The results demonstrated 
improved accuracy, with a reduction in RMSE from 24.3 cm 
to 16.9 cm. This method represents a great progress in storm 
surge monitoring. 

Future research can further explore and optimize the 
methods for detecting storm surges. When storm surge 
occurs, environmental factors such as waves, wind speed and 
wave height on the ocean surface will have an impact on the 
reflected signals, and the data can be better understood and 
calibrated by modeling the relationship between the 
reflected signals and the environmental factors (e.g., waves, 
wind speed, etc.). 

V. SEA ICE DETECTION, SEA ICE CONCENTRATION RETRIEVAL, AND SEA ICE 

THICKNESS RETRIEVAL USING SPACEBORNE GNSS-R 

A. Sea Ice Detection 
Sea ice is formed when seawater freezes in the ocean. It 

has a significant impact on the distribution of temperature 
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and salinity on the ocean surface, as well as the density and 
circulation patterns of seawater. Sea ice also plays a role in 
regulating climate by reflecting solar radiation. Therefore, 
the detection and study of sea ice are crucial for 
understanding climate change, predicting changes in the 
marine environment, and protecting marine ecosystems. 
GNSS-R technology offers several advantages for sea ice 
detection and research. It allows for wide-ranging 
observations without the need for additional equipment, 
relying solely on existing navigation satellite systems and 
thus reducing costs. Furthermore, GNSS-R provides real-
time monitoring data with high spatiotemporal resolution, 
making it one of the commonly used methods for detecting 
sea ice.  

Komjathy, et al. [167], were the first to propose the use of 
GNSS-R technology for sea ice detection with airborne 
instruments to receive GPS reflection signals. Wiehl, et al. 
[168] simulated GPS ice sheet reflection and demonstrated 
the potential of GNSS reflection signals for ice sheet remote 
sensing. Rivas, et al. [169] extracted dielectric constant and 
roughness data of ground scattering targets from reflected L-
band GPS waveforms and used this information to infer the 
type of sea ice. 

DDM is a crucial dataset for sea ice detection using 
GNSS-R as it contains rich information about sea ice 
conditions within sea areas. The primary difference between 
DDM of sea ice and seawater lies in diffusivity, allowing for 
classification of sea ice or seawater areas by evaluating 
DDM observables during sea ice detection. 

Currently, sea ice detection methods are mainly divided 
into three categories: threshold-based methods, machine 
learning-based methods, and deep learning-based methods. 
Many researchers have extracted multiple observables from 
DDM (such as the DDW-TES (differential delay waveform-
trailing edge slope) observable and DDW-TEWS 
(differential delay waveform-trailing edge waveform 
summation) observable, etc.) and set optimal thresholds to 
distinguish between sea ice and seawater [170-175]. 
However, relying solely on individual observables results in 
less than optimal accuracy in sea ice detection. In order to 
improve the accuracy of sea ice detection, machine learning 
methods (such as neural network (NN), decision tree (DT), 
random forest (RF), SVM, etc.) have been introduced for sea 
ice detection in [176], with the detection performance 
reaching over 95% in polar regions. Building upon this, in 
order to further improve detection performance by 
considering key feature information in DDM images, Yan 
and Huang [177] proposed a sea ice detection deep learning 
method based on CNN. The results show that the CNN-
based method outperforms machine learning methods (such 
as NN), with a standard deviation error (Estd) ranging from 
0.0016 to 0.0022. 

Table 6 summarizes and compares the methods of 
spaceborne GNSS-R sea ice detection mainly from the 
aspects of retrieval methods, GNSS-R data, reference data, 
GNSS-R observations and retrieval accuracy. It should be 
noted that only representative literature is listed in the table. 
 

Table 6 Comparison of spaceborne GNSS-R sea ice detection methods. 
Retrieve Models 

(Methods) 
Literature 

GNSS-R 
Data 

Reference Data 
GNSS-R 

Observations 
Precision 

NN 

[178] TDS-1  
Observation data of 

multiple sensors 
DDM 

The detection accuracy is 
about 98.4%, and the 

correlation coefficient is 0.93. 

[179] FFSCat 
OSI SAF sea ice extent 

maps 

12 observables 
(Averaged Delay 

Doppler Map 
(ADDM), Elevation 
angle of the reflected 

signal and 
Reflectivity, etc.) 

The overall accuracy for the 
sea ice extent maps is greater 
than 97% using microwave 

radiometry (MWR) data, and 
up to 99% when using 
combined GNSS-R and 

MWR data 

CNN [177] TDS-1  
Observation data of 

Microwave Radiometer 
DDM 

The standard deviation error 
(Estd) is 0.0016 to 0.0022. 

SVM and FS [180] TDS-1 
Observation data of 
passive microwave 

sensors 
DDM 

The detection accuracy is 
98.56%. 

DT and RF 
algorithms 

[176] TDS-1  OSISAF SIE data 
DDM-related 

variables and auxiliary 
variables 

The sea ice monitoring 
methods based on RF and DT 
have detection accuracies of 
98.03% and 97.51% in the 
Arctic region, and 95.96% 

and 95.46% in the Antarctic 
region, respectively. 

Linear discriminant 
analysis (LDA) 

[181] TDS-1 
Surface type data of 
NOAA and data of 

SMOS 
DDM 

The detection accuracy is 
about95.03%, and the 

correlation coefficient is 0.93. 
Threshold analysis 

method 
[175] TDS-1 Ground-truth data DDM 

The accuracy is as high as 
99.73%. 
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Retrieve Models 
(Methods) 

Literature 
GNSS-R 

Data 
Reference Data 

GNSS-R 
Observations 

Precision 

[172] TDS-1 
AMSR2 data, Ocean 

and Sea Ice SAF 
(OSISAF) data 

DDM 
The probability of detecting 
sea ice is greater than 97%. 

[182] FY-3E 
OSI SAF sea ice 

concentration data 
DDM 

The overall accuracy of sea 
ice detection is 98.42%. 

In GNSS-R-based sea ice detection, the accuracy is 
influenced by factors such as temperature and the mixture of 
sea ice and water.  In the mixture of sea ice and water, due 
to the different physical properties of sea ice and water, the 
surface reflectivity and dielectric constant will change, 
which will affect the reflection of GNSS-R signal. In the 
future, we should pay attention to these factors, and study 
relevant models and algorithms to improve the accuracy and 
reliability of sea ice detection. 

B. Sea Ice Concentration and Sea Ice Thickness Retrieval 
Sea ice concentration (SIC) and thickness are two crucial 

indicators for sea ice detection in the ocean. SIC refers to the 
extent of sea ice cover in a specific area of ocean surface, 
with 0% and 100% indicating open water and solid ice areas, 
respectively. Gleason [183] used spatial GPS detection 
signals reflected by sea ice to retrieve SIC and compared the 
results with those from advanced microwave scanners and 
sea ice maps. Semmling, et al. [184], [185] studied the 
reflection power of GNSS observations and its sensitivity to 
SIC based on ship borne GNSS. Munoz-Martin, et al. 
[186]presented some initial results of the PYCARO-2 
instrument designed for the multidisciplinary drifting 
observatory MOSAiC for Arctic Climate Research, with a 
focus on the method of measuring ice and snow thickness 
using GNSS-R technology. Yan, et al. [178] retrieved SIC 
and sea ice extent using NN and achieved high precision in 
detecting sea ice and estimating SIC, with an average 
accuracy of 98.4%. The method was validated with Nimbus-
7 SMMR and DMSP SSM/I-SSMIS data, with an average 
absolute error of less than 9% and a correlation coefficient 
as high as 0.93. However, issues may arise with DDM 
collected near the ice edge of calm seas and low wind speeds 
that can lead to overestimated SIC and false positives. To 
evaluate the SIC estimate, the mean error avE , the mean 
absolute error absE , the standard deviation error stdE , and the 

correlation coefficient R  between nnSIC  and refSIC  are 
employed for evaluation purposes and they are given by 

 

( )
( )

( )
o

| |

,
(
v

) ( )
c ( )

av nn ref

abs nn ref

std nn ref

nn ref
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R
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







=


= −



= −

= −  (10) 

where absE  is the mean absolute error, stdE is the standard 
deviation error, R is the correlation coefficient, nnSIC is the 
neural network-based SIC result, and refSIC  is the reference 
SIC data of the day. 

In recent years, researchers have made further progress in 
quantifying and analyzing the impact of low sea state on SIC 
estimation by utilizing more in situ sea state data and DDM 
data. Zhu, et al. [187] utilized GNSS-R data from the TDS-
1 satellite and analyzed the DDM to extract SIC information. 
They proposed a DDM-based observable called DDW and 
used the right edge waveform summation (REWS) of DDW 
to develop a retrieval model for SIC. Through validation 
with AMSR2 data, the RMSE of the retrieval SIC for 
northern hemisphere (NH) and southern hemisphere (SH) 
are 11.78% and 12.10%, respectively. 

Yang et al. [177, 188] developed an SIC retrieval method 
based on deep learning using GNSS-R DDM data. The 
RMSE of the retrieval results in March and June 2016 were 
0.0284 and 0.0415, respectively, which were compared with 
the SIC products of Hamburg University. The resulting SIC 
exhibited little deviation from the actual results, and the 
performance of the deep learning and NN-based methods 
was evaluated, proving that the deep learning-based GNSS-
R retrieval SIC method has unique advantages over 
traditional methods. 

Sea ice thickness (SIT) is also an important parameter to 
describe the state of sea ice and the state changes of sea ice 
(such as melting, deformation, freezing, etc.) [189]. Because 
the sea ice state is greatly affected by environmental factors, 
the change process and existence state are complicated, so 
SIT retrieval is difficult. A traditional method commonly 
used is satellite altimeter measurements. Laxon, et al. [190] 
collected satellite altimeter measurements of ice freeboard 
for eight years to retrieve and observe the SIT in the Arctic 
region. The thinning of Arctic sea ice is concluded. Giles, et 
al. [191] used ENVISAT altimeter data to measure SIT in 
the Arctic region and found that the average SIT is decreased 
by 0.26 meters. Microwave radiation measurement is 
another approach. Tian-Kunze, et al. [192] proposed an SIT 
dataset based on Soil Moisture and Ocean Salinity (SMOS) 
to measure SIT. Huntemann, et al. [193] developed a method 
to determine SIT by analyzing the high incidence angle of 
the SMOS satellite. By comparing thermodynamic ice 
growth data with SMOS brightness temperatures at 
incidence angles between 40 and 50 degrees, they observed 
a high correlation with intensity and an inverse correlation 
with the difference between vertical and horizontal 
polarization brightness temperatures. 

Spaceborne GNSS-R technology can provide detailed and 
accurate sea ice characteristics for monitoring SIT across the 
entire ocean area. With the advancement of machine learning, 
it has been applied to GNSS-R signal retrieval of SIT. 
Machine learning's powerful nonlinear fitting ability helps 
address the problem of multiple influencing factors caused 
by the complex environmental impact on sea ice conditions. 
Yan and Huang [194] compared the two machine learning 
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based SIT retrieval methods: CNN and support vector 
regression (SVR), the correlation coefficients were 0.95 and 
0.90 respectively, and the root-mean-square differences 
were 5.49cm and 7.97cm, respectively. This proves the 
capability of machine learning methods in retrieving SIT 
from GNSS-R data. Yan and Huang [195] analyzed the 
reflectance data of the TDS-1 satellite and proposed a 
reflectance-based SIT estimation model (as shown in 
formula (11)), which can be used to accurately estimate SIT). 
Figure 3 shows the corresponding schematic diagram of 
GNSS-R signals reflected from the three-layer model of air, 
sea ice, and seawater. The model was validated using 
combined measurement results from SMOS and 
SMOS/SMAP as reference data. The derived TDS-1 SIT 
showed good agreement with the reference SIT, with a 
correlation coefficient (r) of 0.84 and a root-mean-square 
difference of 9.39 cm when compared to SMOS, and a 
correlation coefficient of 0.67 and a RMSE of 9.49 cm when 
compared to SMOS/SMAP. This demonstrates the 
applicability of the developed model and the value of TDS-
1 data in SIT estimation.  

 2
2

1 Γln
4

d
Rα

−
=  (11) 

where α  is the attenuation coefficient, Γ  is the reflectivity,
R  is the Fresnel reflection coefficient(The detailed 
derivation process of R is shown in [195]). 

 
Figure 3 Schematic diagram of GNSS-R signal reflecting from a three-layer 
model of air, sea ice, and seawater [195]. 

Munoz-Martin, et al. [186] modeled the interference 
patterns generated by combining GNSS direct and reflected 
signals on the surface of sea ice, and used a four-layer model 
to link the different thicknesses of the bottom layer (such as 
snow and ice) with the stripe positions of the interference 
patterns. Herbert, et al. [196] inferred SIT from the FSSCat 
mission data using a predictive regression neural network 
approach and illustrated preliminary results of the FSSCat 
mission in polar regions. Xie and Yan [197] utilized FY-3E 
data to conduct SIT retrieval employing a two-layer (sea ice-
sea water) SIT retrieval model. The FY-3E dataset includes 
both GPS and BDS reflection signals. In comparison with 
the reference SIT, for the training set, the RMSE and 
correlation coefficient between GPS-R SIT and the reference 
were 0.1347 m and 0.8087, respectively, while for the test 
set, they were 0.1442 m and 0.7821, respectively. The results 

suggest that the BDS-based results exhibit a slight 
superiority over those obtained using GPS. Subsequently, Li, 
et al. [198] employed a random forest method to estimate 
SIT using FY-3E and SMOS data. Evaluation in the Arctic 
region demonstrated that the model trained on GPS and BDS 
signals from FY-3E achieved high consistency and low error. 
For GPS signals, coefficients of determination are 0.97 and 
0.91 and mean absolute errors are 0.019 m and 0.032 m for 
the training and test sets, respectively. 

Further investigations on thicker sea ice could be 
conducted in the future. 

VI. RAINFALL DETECTION AND RAINFALL INTENSITY RETRIEVAL USING 

SPACEBORNE GNSSS-R 

Rainfall is a critical factor in marine GNSS-R as it affects 
wind speed, sea surface height, and the retrieval of 
significant wave height. Therefore, detecting rainfall (RD) 
and measuring rainfall intensity (RI) are essential aspects of 
marine remote sensing. To model the impact of raindrops on 
the water surface, researchers have used the first-order 
superposition concept, which incorporates the widely used 
rain-generated ring spectrum and the wind-induced 
Elfouhaily elevation spectrum. The ring spectrum is a 
logarithmic Gaussian model, which can be described as 

 𝑆𝑆𝐾𝐾(𝐾𝐾) = 1
2𝜋𝜋
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where 𝑓𝑓(𝐾𝐾)  is given by the dispersion relationship 𝜎𝜎2 =
(2𝜋𝜋𝜋𝜋)2 = 𝑔𝑔𝑔𝑔 + 𝜏𝜏

𝜌𝜌
𝐾𝐾3; 𝜎𝜎,𝑔𝑔, 𝐾𝐾, 𝜌𝜌 and 𝜏𝜏 are radian frequency, 

gravitational acceleration (~980 cm s-2) , wave number, 
water density, and water surface tension (~74 cm3 s-2), 
respectively; 𝑉𝑉𝐺𝐺𝐺𝐺  is the group velocity at wavenumber 𝐾𝐾 , 
and𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  is the power-law spectral model given by 6 ×
10−4𝑅𝑅0.53 cm2 Hz-1; 𝑓𝑓𝑃𝑃 = 5.772 − 0.0018𝑅𝑅 Hz; Bliven, et 
al. [199] estimated the model coefficients to represent 
circular waves in the frequency range of 2.75 to 12 Hz 
(wavelengths 1.94 to 20.8 cm).  

Various RD methods based on X-band radar have been 
proposed by researchers [200-202]. Lund, et al. [200] 
utilized the zero-pixel percentage (ZPP) method, which 
considers the impact of rainwater on the intensity of zero-
pixel as a quality control factor for rainfall presence, thus 
improving the accuracy of wind speed retrieval. To further 
enhance the accuracy of rainfall detection, Lu, et al. [203] 
introduced the ratio of zero-intensity to echo (RZE) method 
based on the ZPP method. Experimental results indicated an 
11.4% improvement in accuracy compared to ZPP. Chen, et 
al. [201] proposed a RD method based on SVM and 
compared it with the ZPP method, demonstrating higher 
accuracy with the SVM-based approach. Zheng, et al. [202] 
discovered a certain correlation between the spatiotemporal 
characteristics of sea clutter and the correlation coefficient 
of rainy versus non-rainy wave images, and based on this, 
they proposed a new RD method. 

RI reflects the magnitude of rainfall, which has significant 
implications for the marine environment and navigational 
safety. Additionally, in the context of wind-wave 
information retrieval, RI also indicates its impact on the 
accuracy of wind-wave retrieval results [202, 203]. To 
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improve the reliability of wind-wave retrieval results, it is 
advisable to discard data with relatively high RI values. 

Traditional methods for RI estimation involve using rain 
gauges, which provide accurate results due to direct 
measurement of RI. However, they have limitations in terms 
of measuring RI within a small range and having poor 
spatial-temporal distribution characteristics [204, 205]. 
Ground-based radar measurements are also commonly used 
for RI retrieval, but they are often affected by issues such as 
signal attenuation and reflectivity problems [206]. Remote 
sensing methods have made significant progress in large-
scale RI retrieval [207-209]. Tian, et al. [210] proposed two 
models based on backpropagation neural network (BPNN) 
and CNN and compared them with traditional 
meteorological service system methods. Results from all 
three methods showed that deep learning algorithms 
outperformed traditional methods, with a reduction in mean 
square error by 75.84% and 82.30%, respectively. 

In addition to traditional methods, the development of 
meteorological satellites has led to the availability of various 
open-source rainfall products that are widely used in 
hydrology, meteorology, environmental science, and other 
fields. Some of these products include Climate Prediction 
Center MORPHing (CMORPH), Tropical Rainfall 
Measurement Mission (TRMM) Multi-satellite Precipitation 
Analysis (TMPA), Precipitation Estimation from Remotely 
Sensed Information using ANNs (PERSIANN), Integrated 
Multi-satellite Retrievals for GPM (IMERG), TRMM-
3B42v7, Global Satellite Mapping of Precipitation 
(GSMAP), Climate Hazards Group Infrared Precipitation 
with Stations (CHIRPS), ERA5, ECMWF Reanalysis 
Interim (ERA Interim), and SM2Rain-ASCAT (Advanced 
Scatterometer) rainfall products. Among these, IMERG has 
been found to exhibit the best performance in rainfall 
estimation [211-213]. 

GNSS-R, as a new remote sensing method, has achieved 
certain accomplishments in the field of oceanography, as 
mentioned earlier. However, research on rainfall detection 
(RD) using GNSS-R is limited. Asgarimehr, et al. [214] were 
the first to extract rainfall characteristics from GNSS-R data 
collected by TDS-1. Balasubramaniam and Ruf [215] also 
analyzed the impact of rainfall on GNSS-R ocean 
measurements, noting that GNSS-R in the L-band is more 

capable of penetrating rain and cloud layers compared to 
scatterometers. However, intense rainfall can cause changes 
in sea surface roughness that affect the measurements [199]. 
Bu and Yu [216] conducted preliminary research on RD and 
Rain Intensity (RI) retrieval using spaceborne GNSS-R 
technology. They proposed a GNSS-R observable threshold 
RD method based on probability density functions (PDFs). 
Unfortunately, the PDF method did not consider several 
important parameters, which limited the accuracy of RD. 
Subsequently, Bu and Yu [140] used CYGNSS DDM data 
to study RD over the ocean and proposed three new methods 
for spaceborne GNSS-R RD: Support Vector Machine 
(SVM), RF and CNN. The research results indicated that the 
SVM and RF methods have similar RD accuracy, while the 
CNN method outperformed the other two methods, 
achieving an improvement of over 10% compared to the 
PDF method. 

Previous studies have confirmed the ability of GNSS-R 
technology to detect rainfall over the ocean. However, there 
is a need for further research on RI retrieval. Bu, et al. [217] 
developed three models for spaceborne GNSS-R retrieval of 
RI over the ocean: DDMA, LES-NIDW, LEWS-NIDW, and 
REWS-NIDW. They extensively evaluated the RI retrieval 
results obtained from the three models against reference data 
(IMERG-F). This research demonstrated the significant 
potential of spaceborne GNSS-R for RI retrieval over the 
ocean. Figure 4 summarizes the general methods and 
technical processes for rainfall detection and RI retrieval 
using spaceborne GNSS-R up to the present time. In 2023, 
Bu, et al. [218] conducted a study on joint retrieval of sea 
surface wind speed, rainfall intensity, and wave height using 
spaceborne GNSS-R data. The research emphasized the 
necessity of estimating and correcting rainfall interference in 
wind and wave height measurements and highlighted the 
importance of using spaceborne GNSS-R technology for 
rainfall detection and intensity estimation to improve the 
accuracy of wind and wave retrieval. Additionally, sea 
surface wind and waves significantly influence rainfall over 
the ocean and serve as major interfering factors in rainfall 
monitoring. Therefore, future research should focus on 
investigating the impact of sea surface wind and waves, 
especially under complex sea conditions, on rainfall 
monitoring using spaceborne GNSS-R. 

 
Figure 4 The method and process of rainfall detection and intensity retrieval for Spaceborne GNSS-R [132, 216, 217, 219].
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VII. OTHER NEW APPLICATIONS 

A. Ionospheric Monitoring Using Spaceborne GNSS-R 
The ionosphere is a region of the upper atmosphere 

consisting of free electrons and ions resulting from the 
ionization of molecules and atoms by solar radiation. It plays 
a critical role in space weather studies, satellite operations, 
and remote sensing observations [220]. Ionospheric 
monitoring primarily involves measuring electron density 
(ED), total electron content (TEC), and ionospheric weather. 
ED and TEC are the main measurement tasks. 

Voxel tomography is a traditional method for ionospheric 
monitoring, but it involves a large number of unknowns. 
Therefore, some researchers, such as Pallares, et al. [221], 
have used hydrogen atomic imaging to derive ED from 
ionospheric TEC. 

In recent years, significant progress has been made in TEC 
monitoring using GNSS. However, due to the relatively 
sparse distribution of receivers in marine and remote areas, 
measurement errors may occur [222-224]. 

To solve this problem, some researchers have studied the 
use of GNSS reflected signals from the ocean to measure 
ionosphere-related parameters. Zhang, et al. [220] studied 
the effect of ionospheric delay on sea surface height 
measurement, eliminated this effect through spatial filtering, 
and determined the optimal filtering parameter values. 
Molina and Camps [225] used GNSS-R data from the 
CYGNSS mission to explore new sources of data on plasma 
loss (EPBs). Evidence for the first detection of ionospheric 
bubbles in ocean areas using GNSS-R data, and their size, 
duration, and increased intensity of flickers can be measured 
(𝑆𝑆4). The study found that the detected bubbles had a 𝑆𝑆4 
value of about 0.3-0.4 and lasted from a few seconds to a few 
minutes. Liu, et al. [226] proposed a new algorithm that 
integrated slant TEC (sTEC) measurements from GNSS 
reflected CubeSats and ground GNSS receivers to generate 
a map of vertical TEC (vTEC) in the Arctic. The results 
demonstrated that this method captured high spatial and 
temporal resolution, as well as high-precision features of the 
ionospheric structure in high latitudes. Ren, et al. [224] used 
CYGNSS to monitor ionosphere, improving the detection of 
ionospheric irregularity. The ionospheric regularity index 
S4R was derived and verified using the SNR measurement 
data from GNSS-R (SNR measurement was used to estimate 
the equivalent 4RS  value as shown in formula (13)). The 
CYGNSS-derived 4RS  was evaluated and analyzed along 
with the ionospheric irregularity data from ground-based 
(GNSS and Ionospheric Sounder) and spaceborne (Swarm 
and FORMOSAT-3/COSMIC) instruments. 

 

/10

22

2

10

4

SNR
DDM

SNR

SNR SNR
R

SNR

I

I I
S

I

 =


−
=



 (13) 

where SNRI denotes the average value. The value of the 
SNR is given in decibels (dB). 

In addition, they proposed an improved method that takes 
into account the influence of ionospheric and tropospheric 

delays above the GNSS-R receiver, and uses the least square 
(LS) fitting method to achieve the best match between 
measured and simulated DDM. The least square fitting 
process for measuring and simulating DDM is shown in 
[223]. To assess the performance of their method, they 
compared it with two ionospheric empirical models 
(NeQuick2 and IRI-2016), the Global Ionospheric Map 
(GIM) final product, and the measured GNSS TEC. The 
assessments were conducted for two periods, May 2015 and 
May 2017, under different solar activity conditions. The 
results show that the proposed method improves the root 
mean square (RMS) during high and low solar activity by 
5.3% and 23.5%, respectively. This improvement is 
significant for modeling the ionosphere over ocean areas 
[223]. Wang and Morton [222] used coherent GNSS-R 
measurements from low earth orbit (LEO) CubeSats to 
observe ionospheric TEC and plasma structure, and the 
results showed that GNSS-R has the potential to fill the gap 
in ionospheric observation data in polar regions and improve 
global ionospheric TEC observations over oceans and inland 
waters. Figure 5 shows the schematic diagram of the slant 
TEC and LEO receiving reflected GNSS signals. In the 
figure, γ  represents the elevation angle of the incident ray 
at the ionospheric pierce point (IPP), sTEC  represents the 
slant total electron content, subscripts 1, 2, and D represent 
the incident ray, reflected ray, and direct path of the 
ionosphere, respectively, and θ  represents the elevation 
angle at the SP. inT and reT  correspond to the Ionospheric 
errors in incident ray and reflected ray. 

 
Figure 5 Diagram of slant TEC along direct line of sight (DLOS) and 
reflected GNSS signal received at LEOs [227]. 

Currently, GNSS-R measurements using LEO CubeSats 
to observe the ionospheric total electron content (TEC) and 
plasma structure present some challenges (e.g., Differential 
Code Bias (DCB) estimation errors in receivers and carrier 
phase skip correction in coherent GNSS-R signal 
processing). Therefore, future research should focus on 
characterizing the relationship between DCB and elevation 
and azimuth, and designing internal DCB calibration 
systems. 

B. Sea Surface Salinity Measurement Using Spaceborne 
GNSS-R 

Sea surface salinity (SSS) refers to the concentration of 
salt in the surface waters of the ocean, and it is a vital 
parameter for studying seawater's salt content. Collecting 
data on ocean salinity is crucial for understanding global 
ocean circulation and climate change. In this regard, satellite 
sensors play a key role as they can monitor sea surface 
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salinity in real-time and provide accurate data for scientific 
research. Through observations from satellite sensors, we 
can gain a comprehensive understanding of the spatial 
distribution and temporal variations of ocean salinity, which 
are essential for marine environmental protection, resource 
management, and climate forecasting. 

Satellites used for monitoring SSS include the European 
Space Agency's (ESA) SMOS mission. Launched in 2009, 
the SMOS satellite detects SSS using L-band brightness 
temperature measurements [228]. Prior to its launch, 
researchers extensively discussed the planning [229], 
development [230], and error estimation [231, 232] of the 
SMOS salinity retrieval mission. They also studied the 
feasibility and accuracy requirements for SSS retrieval [233]. 
The launch of the SMOS satellite significantly contributed 
to the research on sea surface salinity retrieval. However, the 
lack of reliable and co-located auxiliary fields in SMOS 
retrieval has limited its scientific application. Encouragingly, 
some researchers conducted preliminary studies on the 
potential application of GNSS-R signals for ocean salinity 
retrieval [234, 235]. Subsequently, other researchers 
improved the feasibility of SSS retrieval by combining 
measurements from L-band radiometers and GNSS-R [236]. 
While L-band radiometry is a commonly used technique for 
measuring sea surface salinity from spaceborne observations, 
Kainulainen, et al. [237] observed a new correlation between 
sea surface roughness information collected by GNSS-R and 
radiometric measurements from L-band radiometer systems. 
They validated the capability of the HUT-2-D aperture 
synthesis radiometer to detect variations in ocean salinity.  

The Aquarius/SAC-D mission, launched in 2011, is a 
collaboration between NASA and the Argentine Space 
Agency (CONAE). Its main instrument, the Aquarius 
Salinity Scanning Radiometer, is used to measure the 
salinity of oceans. Le Vine, et al. [238] explained how 
Aquarius, along with remote sensing techniques, can 
monitor seasonal and interannual variations in sea surface 
salinity. This helps improve our understanding of ocean 
circulation, global water cycling, and climate. Valencia, et al. 
[239] demonstrated the potential of using L-band microwave 
radiometers for calibration in future salinity missions 
through ALBATROSS field experiments. 

In 2015, NASA launched the SMAP mission, which was 
primarily designed to measure soil moisture and landscape 
freeze-thaw, but also utilized L-band radiometry to measure 
sea surface salinity (SSS) [240]. Fore, et al. [241] developed 
and validated measurement algorithms for ocean vector 
winds and SSS estimation using SMAP's Combined 
Active/Passive (CAP) measurements. However, obtaining 
SSS from spaceborne L-band radiometers has always been a 
challenging task. 

In 2019, Sharma [242] proposed a new method for 
determining SSS from SMAP and verified the potential 
capability of this retrieval technique in capturing SSS 
changes on daily and monthly basis. Dinnat, et al. [240] 
compared the differences between the ocean surface salinity 
results obtained by three satellite remote sensing sensors 
(SMOS, Aquarius, and SMAP) and the in-situ observation 
data. They also analyzed the influence of retrieval 
parameters on these differences. 

SMOS, Aquarius, and SMAP all retrieve SSS using 
iterative algorithms, which are usually based on the 
statistical relationship between observed data and the model 
parameters, using multiple observational features such as 
brightness temperature (TB), polarizability, etc., to estimate 
SSS. The iterative algorithm that minimizes an estimator, or 
cost function, having the following general expression [240]: 

 
2 2

2 obs mod rtr anc
2 2, pol pol

( ) ( )

T

TB TB M M
θ σ σ

− −
= ∑ +∑  (14) 

where, θ  is the sum of squared differences in TB combines 
multi-incidence angles, pol represents multiple 
polarizations, obsTB is the observed TB, modTB is the TB 

calculated using the radiative transfer model, 2
Tσ  is the 

estimated variance of TB, rtrM is the retrieved auxiliary 
parameter, and ancM  is the auxiliary data. 

In 2021, the European Space Agency launched the 
Federated Satellite System (FSSCat) mission, which utilized 
data from the Flexible Microwave Payload-2 (FMPL-2) to 
estimate soil moisture and sea ice concentration at a coarse 
resolution. Additionally, FMPL-2 data was used to estimate 
sea surface salinity [243]. Liu et al. [244, 245] integrated 
CYGNSS data into the sea surface salinity retrieval 
algorithm of the SMAP mission to enhance salinity detection 
accuracy, particularly under low wind speed conditions. 
They also examined the sensitivity of SMOS and SMAP 
brightness temperatures to CYGNSS data for investigating 
the potential of using spaceborne GNSS-R to improve the 
precision of sea surface salinity measurements. 

In recent years, research efforts have been directed 
towards enhancing the accuracy of SSS retrieval. These 
studies have primarily focused on improving remote sensing 
techniques [242] and optimizing algorithm models [246], 
aimed at providing a more solid data foundation for climate 
research and marine science. Many researchers have utilized 
machine learning methods to improve spaceborne SSS 
retrieval. Rajabi-Kiasari and Hasanlou [247] deployed 
machine learning based methods to correct SSS products 
retrieved by L-band microwave sensors. Four machine 
learning methods, namely SVR, ANN, RF, and Gradient 
Boosting Machine (GBM), were employed to model SSS, 
among which GBM produced slightly better results (with an 
RMSE of 0.906). Jang, et al. [248] used three machine 
learning methods (i.e. RF, ANN, and SVR) to improve 
SMAP SSS retrieval. All these three machine learning 
models outperformed SMAP SSS, with RF exhibiting the 
best performance and generating the lowest RMSE (0.203 
and 0.556 psu). In another study, Jang, et al. [249] proposed 
a new global SSS model based on seven machine learning 
methods, including K-nearest neighbor, SVR, ANN, RF, 
Extreme Gradient Boosting, Light Gradient Boosting 
Models, and Gradient Boosted Regression Trees (GBRT). 
The global SSS model based on GBRT yielded the best 
results with a coefficient of determination (R2) of 0.99 and a 
root mean square deviation (RMSD) of 0.259 psu. The 
retrieval of sea surface salinity is highly dependent on 
correcting sea surface brightness-temperature. Li, et al. [250] 
preliminarily verified the correlation between CYGNSS 
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observables and brightness-temperature variations. They 
discovered that incidence angles need to be considered when 
acquiring SSS with SMAP and CYGNSS. To evaluate the 
detection performance of SMAP and SSS with different 
parameter combinations, a multilayer perceptron (MLP) 
model is developed. The results show that the retrieval 
performance based on the MLP model is superior to that 
based on the geophysical model function (GMF) model. 

In the future, deep learning methods hold great potential 
for improving the accuracy of sea salinity retrieval. With 
their powerful pattern recognition and feature extraction 
capabilities, deep learning algorithms can learn complex 
nonlinear relationships from ocean observation data. This 
enables them to provide more accurate predictions and 
simulations of sea surface salinity. Leveraging deep learning, 
large-scale observational and simulation datasets can be 
useful for training to further optimize the performance of 
SSS models. Overall, the application of deep learning in SSS 
retrieval has significant potential for advancing the field and 
improving our understanding of the ocean environment. 

C. Monitoring phytoplankton Using Spaceborne GNSS-R 
Phytoplankton refers to a category of small plants found 

in the ocean, including various types of microalgae and 
bacteria. They are diverse in species and widely distributed. 
The abundant proliferation of phytoplankton is often 
triggered by an excess of nutrients in the ocean. These 
nutrients, combined with sunlight, promote the growth and 
reproduction of phytoplankton, resulting in a thin layer on 
the ocean surface and reducing surface roughness. Human 
activities in the ocean exacerbate the harm to marine 
environments and ecosystems in some sense. Eutrophication 
of seawater can lead to phenomena such as algal blooms and 
red tides, which are marine ecological events characterized 
by rapid phytoplankton proliferation in highly eutrophic 
areas.  

In the past, remote sensing techniques such as optical 
remote sensing, thermal infrared remote sensing [251, 252], 
and microwave remote sensing [253] were commonly used 
to monitor harmful algal blooms.  

In recent years, the development of GNSS-R has rapidly 
advanced, providing a new observational method for 
monitoring phytoplankton. Rodriguez-Alvarez and Oudrhiri 
[254] were the first to use the dust deposition of the 2020 
Sahara sandstorm as a background to verify that GNSS-R is 
an effective tool for mapping the phytoplankton coverage. 
They also demonstrated the ability of CYGNSS data to 
detect and monitor phytoplankton proliferation. 

The frequent outbreaks of red tide have had significant 
negative impacts on the marine environment and ecosystem. 
The occurrence and development of red tide can cause 
fluctuations in sea surface temperature (SST). When 
monitoring red tide, it is often challenging to obtain SST 
directly through remote sensing technology. Therefore, a 
commonly used method is to select brightness temperature 
as a proxy for SST and monitor the physical characteristics 
of the sea surface [239]. The expression for brightness 
temperature is as follows [255]: 

 ( ) ( ),flat , ,SSS,SST Δ ( , )B B BT T f T pθ θ θ= +  (15) 

where, θ  is the signal incidence angle, f  is the carrier 
frequency of GNSS signal, p is the surface roughness, SSS 
is the salinity of the sea surface, ,flatBT is the brightness 
temperature of the flat sea surface, and Δ BT is the brightness 
temperature change caused by the fluctuation of the sea 
surface state. 

Ban, et al. [256] combined GNSS-R technology with the 
changes in the sea surface caused by red tide growth and 
established the relationship between GNSS-R observations 
and environmental factors influencing red tide, enabling the 
monitoring and early warning of red tides. However, unlike 
red tides, green tide algae tend to aggregate and have low 
satellite resolution, which may not be the optimal method for 
monitoring green algae. Ban, et al. [257] proposed a novel 
method to retrieve green algae density from geostationary 
orbit (GEO) satellite reflection signals collected by a 
shipborne receiver. This method validated that GEO-R 
signals can achieve continuous monitoring of green algae in 
the same area, better adapting to the floating and moving 
characteristics of green algae.  

Furthermore, Ban, et al. [258] proposed a new method to 
monitor green algae density using ground-based GNSS-R 
observations. Their method utilizes the relationship between 
seawater dielectric constant and changes in sea surface 
conditions caused by green algae to detect green algae 
density through variations in sea surface brightness 
temperature. Both of these methods address the issues of 
existing green algae remote sensing via optical sensors, 
which are heavily influenced by weather conditions and have 
long revisit times.  

Recently, Zhen and Yan [259] developed a method based 
on machine learning and auxiliary meteorological data to 
improve Spaceborne GNSS-R monitoring of algal blooms. 
Their results showed significant improvements in detection 
accuracy with the inclusion of meteorological data. The true 
positive rate (TPR) was 81.9%, the true negative rate (TNR) 
was 82.9%, and the overall accuracy (OA) was 82.9%. The 
area under the curve (AUC) was found to be 0.88. The 
technical route of spaceborne GNSS-R phytoplankton 
monitoring is depicted in Figure 6. 

 

 
Figure 6 Technological process of Spaceborne GNSS-R phytoplankton 
monitoring [254, 256, 259]. 

In the future, more improvements need to be made in the 
monitoring accuracy of phytoplankton, which can be further 
improved by applying other ML methods. 

D. Sea Surface Target Detection Using Spaceborne 
GNSS-R 

Sea surface target detection is an important research 
direction in the field of remote sensing, with significant 
implications for maritime traffic monitoring, vessel search 
and rescue, and environmental monitoring. In recent years, 
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GNSS-R has shown great potential as an emerging remote 
sensing method in the field of sea surface target detection. 
Compared to traditional active radar or optical remote 
sensing techniques, GNSS-R offers unique advantages such 
as weather independence, low power consumption, all-
weather availability, and low cost. These characteristics 
have made GNSS-R one of the highly regarded research 
directions in sea surface target detection. 

Significant progress has been made in the research on sea 
surface target detection using GNSS-R. Valencia et al. [260, 
261] proposed a GNSS-R-based method for retrieving sea 
surface scattering coefficients, which can effectively detect 
oil slicks on the ocean surface. Valencia, et al. [262] further 
explored the method for detecting oil films on the ocean 
surface using GNSS-R data. Ji, et al. [263], discuss a method 
for detecting and locating marine targets based on spatial 
GNSS-R DDM. Similarly, Simone, et al. [264] conducted a 
similar study successfully distinguishing the reflection 
characteristics of target objects from background clutter.  

In the process of distinguishing between sea clutter and 
sea surface targets, estimation of sea clutter is carried out, 
and it is subtracted from the DDM to highlight the 
characteristics of sea targets. However, in spaceborne 
GNSS-R measurements, Doppler tracking errors may occur 
due to factors such as signal propagation delay, motion of 
the reflecting surface, and dynamics of the receiving 
platform, making target detection not always reliable. To 
address these challenges, Cheong, et al. [265] proposed two 
blind methods for suppressing sea clutter: adaptive filters 
and infinite pulse response low-pass filters. Experimental 
results show that both proposed methods can significantly 
detect potential maritime targets. Furthermore, the adaptive 
filters have qualitative features that make the DDM features 
of maritime targets more prominent than other maritime 
suppression methods. Southwell, et al. [266] proposed a 
spatial GNSS-R ocean target detection method based on 
matched filters and compared it with other methods, 
demonstrating its effectiveness and superiority in detecting 
sea targets. Liu, et al. [267] introduced a GNSS-R multi-
object detection and localization method based on 
consistency check. Their method combines time domain and 
frequency domain information to improve detection 
performance. Li, et al. [268] estimated offshore clutter and 
eliminated positional ambiguity by fusing data from multiple 
GNSS-R satellites, thereby achieving detection and 
positioning of offshore oil wells.  

Currently, there are numerous studies on the use of GNSS-
R for sea surface target detection, particularly for ship 
detection. Simone, et al. [269] proposed a novel method for 
detecting ships by analyzing the characteristics of reflected 
signals. The method utilizes specific signal features formed 
by echo scattering and utilizes adaptive filtering and 
correlation analysis to improve detection performance. 
Additionally, Simone, et al. [270] evaluated the feasibility of 
ship detection in spaceborne GNSS-R data through 
comparative analysis and analyzed the traditional GNSS-R 
technology from two aspects: acquisition geometry and 
receiving polarization channel. Subsequently, Simone, et al. 
[271] verified the feasibility and effectiveness of using 
GNSS-R DDM in ship detection through simulation 

experiments and discussed the influence of acquisition 
geometry conditions and polarization modes on ship 
detection performance. The study provides a feasible scheme 
for the application of GNSS-R in the field of sea target 
detection. Beltramonte, et al. [272] also verified the 
feasibility of using GNSS-R DDM for ship detection through 
simulation experiments, discussed the influence of 
parameters on detection performance, and proposed some 
improvement methods. Furthermore, Zhao, et al. [273] 
proposed a new method that combines aerospace SAR and 
GNSS-R technology for ship detection. By analyzing the 
characteristic information of SAR images and GNSS-R 
DDM and combining them, the accuracy and robustness of 
target detection can be improved. 

GNSS-R is a promising tool for sea surface target 
detection and monitoring, and future research should focus 
on improving the accuracy and reliability of GNSS-R data, 
optimizing the acquisition geometry and polarization 
Settings, and developing new sea surface target detection 
and monitoring algorithms. 

E. Sea Surface Microplastics Detection Using Spaceborne 
GNSS-R 

Sea surface microplastics refer to small particles or 
fibrous plastic particles distributed on the ocean surface. The 
size of sea surface microplastics is generally below 5 
millimeters and can even reach the nanometer level. 
Addressing the issue of sea surface microplastics requires 
global action. Therefore, conducting global-scale detection 
of sea surface microplastics is highly necessary. It can help 
us understand the temporal and spatial distribution of sea 
surface microplastics, enabling better responses to the issue 
and safeguarding the health and sustainable development of 
marine ecosystems. 

Radar measurements are employed to estimate the 
concentration of microplastics in the ocean. Such a method 
entails examining the deviation between the measured ocean 
roughness and that predicted by a model based on surface 
wind speed. According to the research conducted by Evans 
and Ruf [274], roughness can be characterized by the mean 
square slope (MSS) of surface height, and there exists a 
robust correlation between MSS anomalies and simulated 
microplastic concentrations. Standardized MSS exception is 
defined as: 

 obs mod
anom
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where obsMSS  is the MSS measured by CYGNSS, and 

modMSS  is the model predicted MSS. 
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where U  is the ocean surface wind speed. 
In recent years, GNSS-R has gained significant attention 

in the field of ocean remote sensing. The pollution caused by 
marine microplastics has emerged as a crucial environmental 
issue worldwide. To tackle this problem, researchers have 
started exploring the potential of GNSS-R technology for 
detecting and imaging microplastics in the ocean. 
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Gonga, et al. [275] conducted an experimental study 
focusing on the detection of marine microplastics. They 
created a simulated ocean environment in a tank and 
performed experiments using the reflection signals observed 
through GNSS-R. By analyzing the characteristics of the 
reflected signals, they successfully detected microplastics in 
simulated seawater and conducted quantitative analysis. The 
research findings suggest that GNSS-R technology holds 
promise for monitoring marine microplastics. However, it is 
important to note that the research on using GNSS-R 
technology for microplastic detection is still in its early 
stages, requiring further experimental verification and 
algorithm refinement. 

Future research endeavors can focus on developing more 
accurate and efficient GNSS-R data processing algorithms. 
Additionally, designing advanced instruments and 
equipment and integrating other remote sensing technologies 
for multi-source data fusion can enhance the accuracy and 
feasibility of marine microplastic detection. 

VIII. SUMMARY AND FUTURE PROSPECTS 

The article provides a comprehensive overview of recent 
advancements in the application of GNSS-R technology in 
marine remote sensing. It covers various innovative 
applications such as sea surface wind speed and direction; 
hurricanes, typhoons, and tropical cyclones; tsunamis and 
storm surges; sea surface height and waves height (e.g., 
SWH, Swell height), sea ice; rainfall, and ionosphere and sea 
surface salinity. 

In addition to the aforementioned hot research topics on 
spaceborne GNSS-R, there are several other valuable 
scientific research areas that have gained widespread 
attention. For instance, Hoseini, et al. [276] pioneered the 
use of spaceborne GNSS-R technology to detect mesoscale 
ocean eddies. They demonstrated the feasibility of using 
normalized bistatic radar cross-section to identify the center 
or edge of these eddies. This study holds great significance 
in advancing the detection of mesoscale ocean eddies 
through spaceborne GNSS-R. Hoseini and Nahavandchi 
[277] analyzed the detectability of sea surface currents using 
spaceborne GNSS-R data and compared it with wind and 
near-surface ocean current measurements. They confirmed 
the impact of sea surface currents on spaceborne GNSS-R 
normalized bistatic radar cross-section (NBRCS) 
observations. While their study primarily focused on the 
combined effect of wind and ocean currents on GNSS-R, it 
is important to consider other factors such as swell, 
surfactants, and precipitation that may influence GNSS-R 
observations in future research. The spaceborne GNSS-R 
carrier phase measurement method was proposed in [278] 
and [279] to estimate sea ice height. The measurement 
values of ICESat-2 (or Mean Sea Surface (MSS) model) 
were compared with GNSS-R retrieval results, showing 
good consistency. Although the main source of error in sea 
ice height retrieval is caused by the delay in the troposphere, 
these studies demonstrate the potential of using coherent 
carrier phase observations to achieve centimeter level ice 
height measurement accuracy. However, Future research in 

spaceborne GNSS-R sea ice height should prioritize 
tropospheric delay correction to enhance retrieval accuracy.  

Recently, Buendía, et al. [280] utilized grazing angle 
GNSS-R to retrieve sea ice height and validated the results 
using Digital Elevation Models (DEMs). Their findings 
confirmed the feasibility of using grazing angle GNSS-R for 
measuring sea ice height. Notably, in 2023, Wang [281], 
[282] was the first to use Grazing-angle GNSS-R to measure 
tropospheric delay and water vapor content. He estimated 
tropospheric delay using dual frequency GPS signals 
collected by Grazing-angle from sea ice reflection, and 
compared them with ERA5 products. The results showed 
that the GNSS-R method had good consistency with ERA5. 
The study broadens the application scope of GNSS-R in the 
field of ocean remote sensing. 

Although spaceborne GNSS-R has made significant 
progress in marine remote sensing in recent years and 
introduced many new concepts and methods, the technology 
is not yet mature. One challenge lies in the limited generality 
of the developed empirical and semi-empirical models, 
which restrict their applicability to specific scenarios. 
Additionally, machine learning and deep learning models 
often lack strong generalization capabilities and can be prone 
to underestimation or overestimation due to imbalanced 
training data distribution. Therefore, there is a pressing need 
to enhance the robustness and generality of these models to 
facilitate their widespread application. 

As an emerging remote sensing technology, it is necessary 
to develop advanced spaceborne GNSS-R modeling 
algorithms suitable for different applications, producing new 
products with performance comparable to traditional remote 
sensing techniques or combining with other technologies to 
achieve improved products. Additionally, conducting 
ground-based and airborne experiments for new GNSS-R 
applications is crucial to refine the fundamental 
theories/models (electromagnetic scattering models for L-
band signals) and further develop spaceborne GNSS-R. To 
further enhance the capabilities of spaceborne GNSS-R, it is 
essential to optimize the design of next-generation 
instruments and perform in-orbit experiments to enable 
multi-frequency/multi-system, multi-polarization, and 
multi-observation mode capabilities. Expanding the 
application fields and scenarios of spaceborne GNSS-R to 
retrieve additional geophysical parameters and detect other 
natural events or phenomena is also a pressing goal for the 
future. This will contribute to the continued growth and 
utilization of spaceborne GNSS-R in a wide range of remote 
sensing applications. 
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