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Abstracts-The Yellow River Basin (YRB) is a major ecological 

functional area in China, and its ecological safety development 

and change have extremely significant impacts on the natural 

environment and human society. However, existing studies on 

the YRB lack spatiotemporal characteristics analysis and 

prediction of ecological safety with vegetation as the core. 

Therefore, this study proposes to construct an ecological safety 

index (ESI) of the YRB based on the comprehensive 

multi-dimensional ecological safety evaluation system 

“vigor-pressure-state-response, ” using the normalized 

difference vegetation index, vegetation carbon sink indicator 

parameters, temperature, precipitation, the digital elevation 

model, population density, and the per capita gross domestic 

product from 2000 to 2020. The spatiotemporal characteristics 

of the ESI were then analyzed for the YRB, and a long-term and 

short-term memory network model was constructed to predict 

the ESI trend of the YRB over the next 10 years. According to 

the results, from 2000 to 2020, the ESI of the YRB showed a 

fluctuating upward trend, and the annual average of the ESI 

changed abruptly in 2015 due to drastic changes in hazardous 

areas. The ESI in most areas of the YRB showed a significant 

upward trend, the stability of ESI changes was weak in some 

areas, and the overall spatial distribution showed significant 

positive spatial agglomeration characteristics. Further, the 

response of ESI to landscape complexity in different reaches of 

the YRB varied. Most of the middle reaches were positively 

correlated with landscape complexity, while most of the upper 

and lower reaches were not significantly or negatively correlated. 

Notably, over the next 10 years, YRB’s ESI growth will slow 

down, with areas with degradation increasing, areas with 

significant growth decreasing, and areas currently showing 

stability improving. 
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I. INRODUCTION 

cological safety is a complex issue involving many 

aspects of nature, the economy, and society. It represents 

the overall integrity and health of the ecosystem. It is 

essential for protecting ecosystem stability, preventing 

environmental disasters, achieving sustainable development, 

and promoting human health and well-being [1]. Due to the 

extremely complex aspects of ecological safety and the many 

influencing factors, the intensity, duration, and spatial scope 

of ecological safety are often quantified by constructing an 

ecological safety index (ESI) [2]-[5]. The composite index 

method is widely used in ecological safety evaluations. The 

focus of this method is on constructing a standard index 

system to characterize ecological safety [6]. Currently, the 

more commonly used index system for evaluating ecological 

safety is the comprehensive multi-dimensional ecological 

safety evaluation system based on the 

“pressure-state-response” (PSR) framework. PSR is centered 

on the “state” dimension, which represents the environmental 

characteristics of an ecosystem. The “pressure” dimension 

reflects the impact of many elements of damage to the natural 

environment. Social and natural manifestations make up the 

“response” dimension [7]. However, due to the differences 

and characteristics of the study areas, there have been other 

multi-dimensional index systems similar to PSR. These 

frameworks generally include dimensions such as climate, 

natural environment, social, and economic conditions, and 

other factors [8]. 

The Yellow River Basin (YRB) is a crucial component 

of China’s ecological safety and is an essential ecological 

functional area in China [9],[10]. However, the ecological 

safety of the YRB also faces many challenges. First, due to 

the complex terrain, there are abundant geomorphological 

types in the region, which leads to the diversity of land use 

and vegetation distribution and increases the vulnerability of 

the ecosystem. Second, the spatial distribution of temperature 

and precipitation is obviously unbalanced, and the difference 

between the east, west, south, and north is obvious, which 

poses a challenge to vegetation growth and water resource 

allocation [11]. Furthermore, social factors, such as continued 

population growth, accelerated industrialization, and 

urbanization, have led to the overexploitation and pollution of 

water resources, making ecosystems more fragile [12]. All 

these factors have intensified the ecological safety problems 

in the YRB, restricting the sustainable development of the 

natural environment and economic society in the region [13]. 

Therefore, given the urgent need to formulate an ecological 
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protection strategy for the YRB, it is necessary to analyze and 

predict changes in ecological safety within the YRB. This has 

important practical significance for improving the local 

ecological environment and coordinating the contradiction 

between economic development and the ecological 

environment protection of the region.  

Vegetation, as the material base in the ecosystem of the 

YRB, plays an important role in the cycling of carbon, 

nitrogen, and other nutrients. It also has an irreplaceable role 

in climate regulation, soil conservation, and air improvement 

[14]. Thus, constructing an ESI with vegetation as the core 

can better capture the dynamic characteristics of the 

ecosystem in the YRB and clarify the trend of ecosystem 

change. However, most existing studies have evaluated the 

ecological safety of the YRB in recent years in terms of land 

cover changes or the identification of ecological protection 

zones [15]-[17]. These studies are slightly insufficient to 

consider the integrated ecological safety problems of the 

natural environment and human society in the YRB, as they 

neglect the holistic and systematic characteristics of the 

ecosystem of the YRB. Further, only a few studies have 

constructed an ESI of the YRB, and their evaluation index 

systems are confusing, failing to verify the validity of the 

constructed index system and the ESI and lacking logical and 

dynamic features [18],[19]. In addition, these studies mainly 

focus on the retrospective evaluation of ecological safety, 

lacking research on ecological safety prediction and early 

warning. 

Therefore, this study adds vegetation as the “vigor” 

dimension to the core of the comprehensive, 

multi-dimensional ecological safety evaluation system, 

“vigor-pressure-state-response,” which includes natural 

geographical conditions, climatic conditions, and human 

activities, to construct an ESI of the YRB and predict the 

future development trend of the YRB’s ESI. The study uses 

data from the normalized difference vegetation index (NDVI), 

gross primary productivity (GPP), temperature, precipitation, 

digital elevation model (DEM), population density, and per 

capita gross domestic product (GDP) in the YRB from 2000 

to 2020. We explore the spatiotemporal variation 

characteristics of YRB’s ESI and the relationship between the 

ESI and different landscape indices in the process of change 

for the past 20 years through statistical analysis. Lastly, we 

use the long-term and short-term memory network (LSTM) to 

predict the ESI changes in the YRB based on the existing 

change characteristics and analyzed the trend of the 

prediction results. Our findings provide data and theoretical 

support for ecological environment construction and 

sustainable economic development in the YRB. 

II. OVERVIEW OF THE STUDY AREA 

The YRB originates from the northern foothills of the 

Ba Yan Ka La Mountains on the Qinghai-Tibet Plateau, and 

flows through Qinghai, Sichuan, Gansu, Ningxia, Inner 

Mongolia Autonomous Region, Shanxi, Shanxi, Henan, and 

Shandong, with a watershed area of 794,600 km2, as shown in 

Fig. 1. 

 

Fig. 1 Geographic location of the YRB 

The terrain of the YRB gradually declines from west to 

east, with an average elevation of more than 4000m in the 

western region, mostly high-altitude mountains; the central 

region,  with mostly high-altitude mountains. The central 

region has an elevation of 1000–2000m and is dominated by 

loess landforms. The eastern region, with an elevation of no 

more than 100m, is mainly constituted by the YRB impact 

plains [20]. The YRB covers three distinct climatic zones in 

the east, center and west, with semi-humid, semi-arid and arid 

climates, respectively. This leads to the obvious geographical 

distribution difference of annual precipitation in the YRB. 

The source area is located in the Qinghai-Tibet Plateau, and 

the annual precipitation is low, generally between 200-400 

mm. In the middle reaches of the basin, especially through 

Shaanxi and Inner Mongolia, the annual precipitation is also 

relatively low, about 400-600mm. In the lower reaches, 

especially in Shandong Province near the estuary, the annual 

precipitation can increase to more than 800 mm. The 

temperature distribution in the YRB also shows significant 

geographical characteristics. The annual average temperature 

of the Tibetan Plateau in the source area of the basin is low, 

especially cold in winter and cool in summer. In the middle 
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reaches, including Shaanxi and Inner Mongolia, the annual 

average temperature is relatively mild, but it is cold in winter 

and warm in summer. The downstream area is affected by the 

ocean, and the climate is relatively mild, warm in winter and 

cool in summer. Against the backdrop of complex 

topography and climate, the YRB is likewise confronted with 

the various impacts of resource depletion, pollution, land 

degradation and climate change. These problems affect 

agriculture, ecosystems and human societies, and their 

ecological safety is becoming more and more prominent. 

III. DATA SOURCES AND RESEARCH METHODS 

This study analyzed the ESI changes and development 

of the YRB in three parts (Fig. 2). The ESI was constructed 

based on a comprehensive, multi-dimensional ecological 

safety evaluation system. The spatiotemporal variation 

characteristics of YRB’s ESI from 2000 to 2020 were then 

explored. The relationship between ESI and the landscape 

index was analyzed. Lastly, the spatial distribution of the ESI 

over the next 10 years was predicted, and the spatiotemporal 

characteristics were analyzed. 

 
Fig. 2. Flow chart of the study 

A.Data sources and processing 

The basic data used in this paper include remote sensing 

data, NDVI, GPP, DEM, road traffic data, GDP data, 

temperature, precipitation data, population density data, and 

the Eco-Environmental Quality Index (EQI). The sources, 

descriptions, and uses of the relevant data are described in 

detail in Table 1. To unify the accuracy, taking into account 

the characteristics of the basic data and the computability, all 

the data were resampled at 1000 m×1000 m. Each data set 

used is described in detail in Table 2.

Table 1 

Data types and sources 

Data name Data time Data accuracy Data sources 

NDVI 2000-2020 1000m https://lpd-aac.usgs.gov// 

GPP 2000-2020 0.05° http://globalecology.unh.edu/data/GOSIF.html 

Road traffic 1995-2020 - http://www.resdc.cn/ 
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DEM -- 30m http://srtm.csi.cgiar.org// 

Land use 2000-2020 1000m http://www.resdc.cn/ 

Temperature and 

precipitation 
2000-2020 1000m http://loess.geodata.cn/ 

PM2.5 2000-2020 0.01° 
https://sites.wustl.edu/acag/datasets/surface-pm2-5/#

V5.GL.02 

Population density 2000-2020 30arcsecond https://www.worldpop.org/ 

Lighting 2000-2020 15arcsecond https://doi.org/10.7910/DVN/YGIVCD 

GDP 2000-2020 1000m http://www.resdc.cn/ 

Value of ecological 

services 
2000-2020 1000m https://doi.org/10.7515/JEE222022 

Soil  1995 1000m http://www.resdc.cn/ 

Eco-Environmental 

Quality Index 
2000-2020 500m https://lpdaac.usgs.gov/products/mod09a1v006/ 

B.Research Methods 

1)Construction of ESI  

The ecosystem of the YRB is composed of 

multi-attribute and multi-level subsystems. Therefore, we 

build an ecological safety evaluation system and combined 

with the characteristics of natural environment and social 

economy in the study area. In the construction of ESI system, 

the vegetation as the core reflects the deep understanding of 

the regional ecosystem function and ecological service value. 

The deep-seated reasons for this approach include plant 

support for biodiversity, carbon fixation and oxygen 

production, regulation of hydrological cycle and soil 

protection [21]. The potential advantages are mainly that it 

emphasizes the comprehensive assessment of ecosystem 

versatility and the use of vegetation sensitivity to track 

ecosystem changes [22]. Compared with the traditional 

ecological safety assessment methods, the multi-dimensional 

and multi-index evaluation system with vegetation as the core 

can provide more timely feedback and early warning for 

ecological safety changes. Further, this approach yields an 

ESI system with better adaptability and flexibility, one that 

can be adjusted and optimized according to the characteristics 

of different ecosystems and the impact of human activities. 

The specific construction process of the evaluation system is 

shown in Fig. 3. 

 
Fig. 3.Flow chart of the construction of the ESI of the YRB 
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a) Ecological safety system 

Vigor is the productivity and metabolic capacity of a 

regional complex ecosystem to maintain its sustainability 

[23]. Therefore, we construct the vigor index layer as the 

basis of the energy cycle in the ecological environment. 
Vegetation, as a major factor in the vitality of ecosystem, is 

not only important in providing food and energy and 

maintaining biodiversity but also participates in the 

regulation of the water cycle and soil protection, and plays an 

important role in climate regulation [24]. Therefore, 

maintaining the ecological function of vegetation is essential 

for the stability of the ecosystem and the sustainable 

development of human beings. NDVI as an indicator of 

vegetation growth state, the greater its value, the denser 

vegetation cover, the more conducive to the stability of the 

ecosystem [25],[26]. GPP refers to the overall quantity of 

carbon sequestered by a terrestrial ecosystem through the 

process of vegetation photosynthesis. It serves as the 

initiation point of the carbon cycle and serves as an indicator 

of the productivity level within terrestrial ecosystems 

[27],[28]. Therefore, we selected two indices, NDVI and GPP, 

to represent vegetation as an index of the vigour injected into 

the ecosystem. 

Pressure is a direct factor in the ecological burden. The 

pressure in the YRB mainly comes from a series of human 

activities in the ecosystem. High population density is usually 

accompanied by a large number of urbanizations, land 

development, and infrastructure construction, which leads to 

the destruction of the habitat of the ecosystem. A high 

population density increases the pressure to consume 

resources, further exacerbating the impact on the ecosystem 

[29]. Light pollution has also become a major threat to the 

destruction of ecology with the intensification of human 

activities. This is usually caused by excessive floodlight and 

artificial light generated by city night lighting. It destroys the 

biological clock and circadian rhythm and has great harm to 

the ecosystem [30]. PM2.5, an indicator of industrial 

pollution, is released in large quantities from industrial 

activities and can interfere with the photosynthesis of plant 

leaves and reduce plant growth and yield. PM2.5 also 

promotes soil acidification and water pollution, which are 

detrimental to the soil quality of the ecosystem and the 

ecology of water bodies [31],[32]. Therefore, we selected 

population density, light pollution, and PM2.5 pollution as 

three typical factors in the main index of pressure. 

State of the region is a realistic representation of the 

ecosystem. Geographical and climatic environments are the 

main factors that make up the state, and they directly 

influence the stability of the ecosystem [33]. Here, we used 

distance from cities, transportation roads, water bodies, soil, 

DEM, and slopes as the topographical state of the ecosystem. 

According to existing studies, we found that the upward trend 

of vegetation decreases with increasing altitude and slope in 

the YRB. Meanwhile, temperature, and precipitation promote 

vegetation growth in the YRB as a whole, and the stronger 

the stability of the soil, the more stable the vegetation growth 

state [34]. Based on the influence trend of these factors on 

vegetation growth, we assessed the relationship between the 

ESI of the YRB and these influencing factors to construct the 

corresponding state. 
Response is the social and natural reflection of the 

ecological environment on vigor, pressure, and state. ESI 

needs to comprehensively consider the relationship between 

nature and human activities, so we chose GDP as a social 

response. The growth of GDP can increase investment in 

environmental protection, promote green technology 

innovation, and raise awareness of ecological protection, thus 

promoting ESI [35].Vegetation coverage reflects the health 

and sustainability of ecosystems as a natural response [36]. 

The value of ecological services is calculated through the 

input of natural data and economic methods as a common 

response between society and nature [37]. Therefore, we 

combined the characteristics of these three indices to 

construct the response. 

b) Calculation of index 

In the process of ecological safety assessment, the initial 

data should be standardized to eliminate inconsistency 

between size and value, which has a great impact on the 

results. In general, all indicators of ecological safety 

evaluation can be divided into negative indicators and 

positive indicators. The larger the positive indicators, the 

better the evaluation object [38]. The normalization method is 

as follows: 

            𝑌 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
                       (1)  

The smaller the negative indicators, the better the 

evaluation object. The normalization method is as follows： 

    𝑌 = 1 −
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
                (2) 

where Xmax is the maximum value of variable X; Xmin is 

the minimum value of variable X, and Y is the normalized 

variable value. 

This study adopted the entropy weight method to solve 

indicator weights. The entropy weight method is an objective 

weighting method that assigns weights to indicators by 

comparing the information differences between indicators. 

This method has widespread application in multi-indicator 

evaluation systems, as it adeptly mitigates the impact of 

human factors on weight assignments [39]. Its specific 

calculation steps are as follows: 

Calculate the information entropy of the jth indicator: 

𝐸𝑗 = −ln (𝑛)−1 ∑ 𝑃𝑖𝑗𝑙𝑛𝑃𝑖𝑗       
𝑛
𝑖=1     (3) 

where𝑃𝑖𝑗 =
𝑌𝑖𝑗

∑ 𝑌𝑖𝑗
𝑛
𝑖=1

⁄ ,Yijis the value of the normalized 

indicator. 
Calculate the weight of the jth indicator: 

        𝑊𝑗 =
1−𝐸𝑗

𝑘−∑ 𝐸𝑗
                                (4) 

Calculation of the ESI： 
The final ESI is determined by weighting     

     𝑍 = ∑ 𝑋𝑖𝑗 ∙ 𝑊𝑗
𝑘
𝑖=1                              (5)
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Table 2 

Evaluation index system of ecological safety in the YRB 

Target level Criterion layer Index layer Safety trend Weights 

 
Vigor 

(weights0.2636） 
NDVI + 0.4590 

  GPP + 0.5410 

  
Distance to 

cities 
+ 0.2070 

  
Distance to 

roads 
+ 0.2204 

  
Distance to 

water bodies 
- 0.1940 

Comprehensive evaluation index of 

ecological safety 

State 

(weights0.2411） 
DEM - 0.1855 

  Slope - 0.1932 

  Precipitation + 0.3654 

  Temperature + 0.3050 

  Soil + 0.3296 

  
Population 

density 
- 0.3312 

 
Pressure 

(weights0.2393） 
PM2.5 - 0.3375 

  Lighting - 0.3313 

  GDP + 0.3436 

 Response（weights0.256） 

Value of 

ecological 

services 

+ 0.3249 

  
Vegetation 

coverage 
+ 0.3315 

 

c) Classification of ESI 

In this study, by referring to the results of previous 

studies and the basis of ecological safety evaluation in the 

region, the ESI artificially sets breakpoints [40],[41].We 

divided ESI into type I hazardous level, type II sensitive level, 

type III critical safety level, type IV comparative safety level, 

and type V safety level. Specific descriptions are shown in 

Table 3.

Table 3 

ESI classification table of the YRB 

ESI Safety level Safety state Description 

0.3-0.44 I hazardous  

Ecological safety has been damaged to such an extent 

that it is difficult to recover, and the ecological 
environment is incomplete and dysfunctional, making it 

difficult to meet the development needs of the ecosystem. 

0.44-0.47 II sensitive  
Ecological safety has been more seriously damaged, 

ecological sensitive is high, ecological functions are 
seriously degraded, and ecological pressure is higher. 
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0.47-0.5 III critical safety 
Ecological safety is affected to some extent, 

ecological structure is intact but there are some ecological 

anomalies and some ecological pressure 

0.5-0.53 IV 
comparative 

safety 

Ecological safety has been slightly damaged, and the 

system is more resilient. The land ecosystem is relatively 
well structured and can withstand most external 

disturbances. It can be restored to a healthy state. 

0.53-0.7 V safety 
Ecological safety is virtually unaffected and overall 

ecological functioning is sound. The ecological structure is 

intact and the ecosystems in the region are sustainable. 

2)Calculation of landscape indices 

We categorized six land types—grassland, woodland, 

urban, and rural construction land, wetland, arable land, and 

unvegetated areas—according to the current land use status in 

the study area. We utilized these categories to compute four 

landscape indices [42],[43]: cohesion, patch density (PD), 

Shannon’s diversity index (SHDI), and landscape shape 

index (LSI). These four landscape indices can 

comprehensively reflect the structural and functional 

characteristics of the landscape from different perspectives. 

Each indicator focuses on a unique aspect of the landscape 

and together provides a comprehensive description of 

landscape complexity. Further, these indexes are interrelated 

and influence each other. The formulas and ecological 

significance of each landscape index are presented in Table 4. 

 

Table 4 

Landscape indices calculation formula and ecological significance 

Landscape Index Calculation formula Ecological significance 

Cohesion 

𝐶𝑂𝐻𝐸𝑆𝐼𝑂𝑁 = [1 −
∑ pij

m
j=1

∑ pij√aij
m
j=1

[1 −

1

√A
]

−1

] × 100 

Cohesion is often used to measure the degree of 

connection between units in a landscape. where aij refers 
to the area of the j-th patch in the i-th landscape; pij 

represents the perimeter of the j-th patch in the i-th 

landscape; and A is the total area of the landscape. 

PD 𝑃𝐷 =
𝑁

𝐴
 

PD responds to the degree of fragmentation of the 

landscape, with larger values indicating greater 

fragmentation of the landscape, where N is the total 
number of all patches in the landscape and A is the total 

area. 

SHDI 𝑆𝐻𝐷𝐼 = − ∑(pi) log2 pi

m

i=1

 

SHDI reflects the richness and evenness of species 
within the landscape, with larger values indicating 

species with richness and balanced richness among each 

other, where Pi is the proportion of patches of landscape 
type i to all patches in the landscape. 

LSI 𝐿𝑆𝐼 =
0.25E

√A
 

The smaller the LSI value, the more regular the 

shape of the landscape; the larger the LSI value, the more 
complex the shape of the landscape tends to be, where A 

is the total area, E is the total length of all patch 

boundaries in the landscape, and 0.25 is the square 
correction factor. 

3)Statistical analysis 

a) Mann-Kendall mutation test 
In this study, we used the Mann-Kendall (MK) mutation 

test to further explore the temporal variation characteristics of 

the ESI. The MK test is a non-parametric statistical method 

endorsed by the World Meteorological Organization and 

enjoys extensive application. Its advantages are that it does 

not need to assume that the samples follow a particular 

distribution and that it is not susceptible to individual outliers. 

The method has a high degree of quantification, a wide range 

of detection, and ease of computation. Therefore, it is more 

suitable for the analysis of ordinal and typological variables 

[44]. The trend of the time series is determined by calculating 

two statistical variables UFk and UBk. In the test curve, if the 

UFk line in the test curve changes within the critical line. We 

observed that the trends and mutations in the change curve 

were not distinctly evident. A UFk value greater than zero 

indicates that the sequence is on the rise, less than zero 

indicates a downward trend, and a value that exceeds the 

critical line indicates that the upward or downward trend is 

significant. If the two curves of UFk and UBk intersect 

between the critical lines, the moment corresponding to the 

intersection is the time when the mutation begins. If the 

intersection point appears outside the critical line, or there are 

multiple intersections, the method can be combined with 

other test methods to further determine whether it is a 

mutation point. 

b) Spatial autocorrelation analysis 
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We used spatial autocorrelation analysis to explore the 

spatial distribution of the ESI. The Moran’s index (Moran’s 

I) is a common method for assessing the spatial 

autocorrelation of various indicators, which can be divided 

into two forms: global Moran’s I and local indicators of 

spatial autocorrelation (LISA). Moran’s I is used to indicate 

the clustering trend across the region, with negative values 

indicating negative spatial correlation and positive values 

indicating positive spatial correlation, and the magnitude of 

the value reflecting the strength of spatial autocorrelation [45]. 

LISA can further reflect the high- and low-value 

agglomeration characteristics of positive and negative local 

spatial autocorrelation according to the four types of spatial 

correlation between a given location and its neighbors. These 

are the spatial characteristics of high–high agglomeration, 

low– low agglomeration, high– low agglomeration, and 

low–high agglomeration. In this paper, we used GeoDa 

software to calculate the Moran’s I and LISA of YRB’s ESI 

to explore its spatial distribution characteristics. 

c) Trend analysis 
We used Theil-Sen (TS) trend analysis and 

Mann-Kendall (MK) significance tests to explore the spatial 

variation characteristics of ESI. The TS and MK are reliable 

nonparametric statistical trend analysis methods, and TS 

provides more accurate results compared to simple linear 

regression[46],[47]. The calculation principle of TS is to 

divide the time series data into n(n-1)/2 pairs of combinations, 

and then calculate the slope β of the median value of each 

data pair. If β > 0, it indicates an upward trend change; if β < 

0, it indicates a downward trend change. MK is a 

nonparametric test for examining the trend of a time series, 

which has the advantage of eliminating the need to suppose 

that the data follow a particular distribution and allowing for 

the presence of missing values. The MK statistic U takes 

values from －∞ to +∞. If U > 0, the time series has an 

upward tendency; if U < 0, the time series has a downward 

trend. When |U| is less than 1.96, the trend changes 

significantly(p<0.05). 
d) Stability analysis 

To explore the spatial variation characteristics of ESI, 

we used the coefficient of variation (CV) to evaluate the 

stability of ESI [48]. The formula can be written as follows: 
         𝐶𝑉 = 𝜎/𝜇                (6) 

𝜎 = √
1

𝑁
∑ (𝑥𝑖 − 𝜇)2𝑁

𝑖=1         (7) 

𝜇 =
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1             (8) 

where σ is the standard deviation of the annual ESI; μ denotes 

the mean value of the ESI; N represents the number of years 

in the study period; and xi represents the value of the ESI in 

the year i. 

e) Correlation analysis 

We used Pearson’s correlation analysis to explore the 

relationship between ESI and the landscape index. Pearson 

correlation analysis is a commonly used statistical analysis 

method for measuring the degree of linear correlation 

between two variables [49],[50]. It calculates the correlation 

coefficient r between variables based on the concept of 

covariance. The interval of r is [-1,1], when r < 0 means that 

the two are negatively correlated; r > 0, positively correlated; 

r = 0, no correlation. 
f) Structural equation modeling(SEM) 

We used SEM to validate the rationality of ESI 

construction. SEM is a multivariate statistical method that 

uses linear equations to express the relationships between 

observed and latent variables. As a validation model, SEM 

combines factor analysis and path analysis, enabling the 

description of intricate multivariate statistical relationships 

among variables that are not directly measurable[51],[52]. 
There are two kinds of variables in the SEM, one is a 

measurable explicit variable, and the other is a latent variable 

that cannot be directly measured. SEM comprises two 

integral components: the measurement equation and the 

structural equation. The measurement equation elucidates the 

association between latent variables and observed variables, 

and the structural equation delineates the connections among 

latent variables themselves. 

4)Spatiotemporal prediction model 

The LSTM network is a specific recurrent neural 

network (RNN) architecture that excels in time-series 

prediction. It learns potential patterns and trends in 

time-series data that can be utilized to predict future values 

and changes [53],[54]. In this paper, based on the 2000-2020 

time series ESI data, a spatiotemporal prediction model of 

ecological safety was constructed based on an LSTM neural 

network. The specific process is as follows: 

Data preparation: Initially, time series images spanning 

2000 to 2020 were read and amalgamated into a matrix, with 

the time dimension designated as the third dimension. 

Subsequently, effective pixels were extracted and 

differentially processed. Considering potential blank pixels 

due to surrounding areas or river changes at certain time steps, 

the extraction criterion was that the time series would be 

completely non-empty. 

Dataset segmentation: In alignment with the prediction 

model design, the dataset was segmented for each pixel time 

series based on the input time step. As the prediction model 

involved a many-to-many output, multiple time steps were 

employed to predict a single time step. Subsequently, a 

sliding window was employed to section the dataset, where 

the window width equaled the length of the input time step, 

and the step size was set to 1. The last five datasets served as 

test sets, while the remaining data were partitioned into 

training and validation sets at a ratio of 4:1. 

Model construction and training: The model devised in 

this study adopted a linear encoder-predictor-decoder 

framework. Fig. 4 illustrates the model structure and setup. 

For model training, an Adam optimizer and Logcosh loss 

function were employed. The training cycle (epoch) was set 

at 128, with each epoch comprising 64 steps. The batch size 

was set to 512, and the initial learning rate was fixed at 

0.0001. 

Model prediction applications: The trained model was 

applied to predict each effective pixel, and the predicted 

difference sequence data were augmented with the initial 

value to derive the predicted sequence. Subsequently, the 

prediction sequence of the effective pixel was stored in a 
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matrix corresponding to the original pixel position. Lastly, the 

matrix was sliced along the time dimension and output as 

raster data for various time steps. 

 
Fig. 4.Predictive model structure setup 

IV. RESULT 

A.Spatiotemporal characteristics of the YRB’s ESI 

1）Temporal change characteristics of the YRB’s ESI 

We linearly fitted the trend changes in ESI from 2000 to 

2020 and explored the interannual variation characteristics of 

ecological safety in the YRB, as shown in Fig. 5a. From 2000 

to 2020, the ESI of the YRB showed an upward trend, at a 

rate of 0.0016/a, indicating that the overall ESI has shown a 

good development state in the past 20 years. The change in 

the ESI index had obvious stage characteristics. The ESI 

showed a significant downward trend from 2000 to 2002, 

reaching the lowest value of 0.45 in 2002. There were also 

significant fluctuating changes from 2003-2016, and starting 

in 2016, the ESI showed a significant increase, reaching a 

maximum value of 0.51 in 2019. Combined with Fig. 5b, the 

ESI mutated in 2015.

 
Fig. 5. Time-series changes of ESI in the YRB from 2000 to 2020 (a) mutation test (b) 

For a deeper exploration of the reasons for the mutation 

in 2015, we visualized the area shift of the different levels of 

ESI in four time periods during the 2 years before and after 

the mutation point 2015 in the form of Sankey diagrams. As 
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shown in Fig. 6, from 2013 to 2014, the YRB showed a 

gradual shift in ESI from a good state to a bad state. Most of 

the sensitive areas were converted to hazardous levels. From 

2014 to 2015, there was a cascading shift from bad to good 

ESI regions. The hazardous area was reduced in one large 

area, which was mainly transformed into a sensitive area and 

a critical safety area. Most of the sensitive areas became 

critical safety states, and the increase in the safety state area 

mainly came from the transfer of comparative safety and 

critical safety areas. The hazardous area increased during 

2015-2016, with more than 50% of sensitive areas moving to 

hazardous areas. Some of the safe areas turned into 

comparative safe areas, and the overall trend of degradation 

appeared. There was a large reduction in hazardous areas 

during 2016-2017, with a major shift to sensitive areas and a 

corresponding increase in the size of safe areas. In summary, 

the main reason for the mutation of the annual average ESI in 

2015 was the sharp decrease in the proportion of dangerous 

areas in 2014-2015 and the sharp increase in the proportion of 

hazardous areas in 2015-2016. In addition, different levels of 

ESI showed fluctuating step-by-step transfers. This shows 

that ESI improvement is a relatively slow time course and 

that changes are erratic, requiring control and governance 

over a long period of time. 

 

Fig. 6. Area transfer of ESI in the YRB, 2013-2017(km2) 

2) Spatial change characteristics of the YRB’s ESI 

The spatial distribution and proportion of different levels 

of the ESI in 2000-2020 are shown in Fig. 7a. We observed 

that the spatial distribution of the ESI was quite different in 

the YRB. For example, hazardous areas and sensitive areas 

accounted for 16.6% and 27.9%, respectively. They were 

mostly distributed in the upper reaches of the Hetao Plain, the 

Ordos Plateau, the Ningxia Plain, the western part of the 

Qinghai-Tibet Plateau, and the eastern part of the Loess 

Plateau. Most of the regions were mainly composed of arid 

and semi-arid regions, such as the Kurchi Desert and 

Maowusu sandy land. There was very little annual 

precipitation here, and it was affected by human activities, 

such as overgrazing and mining. This made the soil in these 

desert areas prone to desertification and loss of soil fertility 

and resulted in infertile vegetation, sparse species populations, 

loss of many ecological functions, and fragile ecosystems 

[55]. The ESI in a small number of urban areas with rapid 

development was also hazardous and sensitive, which was 

caused by a large number of land development and 

construction activities, pollutant emissions, and unreasonable 

land use in the process of urbanization. We observed a trend 

of gradual diffusion to their surroundings, and these diffusion 

areas showed critical safety levels. The proportions of safe 

areas and relatively safe areas were 12.7% and 18.4%, 

respectively. They were mainly distributed in the southwest 

and Qilian Mountains in the upper reaches and in the south 

and lower reaches in the middle reaches. The critical safety 

area accounted for 24.3%, which was mainly distributed 

between the safety area and the hazardous area as a buffer 

zone. 

To elucidate the spatial distribution of ESI more 

distinctly, we conducted a spatial autocorrelation analysis on 

ungraded ESI. The Moran’s I for ESI was 0.957, with a 

p-value below 0.05. Fig. 7b shows that the spatial 

agglomeration of YRB’s ESI from 2000 to 2020 was mainly 

characterized by high-high aggregation and low-low 

aggregation, with an area ratio of 27.60% and 32.2%, 
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respectively, showing a continuous sheet distribution. The 

areas of high-low aggregation and low-high aggregation were 

very small, both of which were 0.04%, showing a scattered 

distribution, and the agglomeration effect was not obvious. 

Compared with agglomeration in Fig. 7a, the high-high 

aggregation mainly corresponded to the safe and relatively 

safe area, the low-low aggregation mainly corresponded to 

the hazardous area and sensitive area, and the non-significant 

area corresponded to the critical safe area, which further 

showed that our level setting was reasonable. 

 In summary, the ESI distribution showed obvious 

spatial differences in the YRB. Hazardous areas and sensitive 

areas were mainly concentrated in upstream and midstream 

urban areas. The critical safety area acted as a buffer area 

between low ecological safety and high ecological safety. The 

spatial autocorrelation analysis showed that the ESI exhibited 

significant positive spatial clustering characteristics in the 

YRB. 

 
Fig. 7. (a) Spatial distribution of ESI in the YRB from 2000 to 2020; (b) Spatial autocorrelation of ESI in the YRB from 2000 to 

2020  
Based on the spatial distribution of the constructed ESI, 

we analyzed the spatial changes in the ESI of the YRB from 

2000 to 2020, as shown in Fig. 8a. As shown in the diagram, 

the areas of significant improvement and slight improvement 

accounted for a large proportion, which were 71.9% and 

21.7%, respectively. The desert arid area showed a good 

improvement trend in some parts of the northwest. The areas 

of severe degradation and slight degradation were very small, 

at only 0.2% and 0.4%, respectively. Most of them were 

urban areas with a high intensity of human activities. It was 

mainly distributed in Dongying (a), Tai’an (b), Zhengzhou 

and Luoyang (c), Taiyuan (d), Xi’an (e), Hohhot (f), 

Yinchuan (g), Lanzhou (h), and the northwestern part of 

Qilian Mountains (i). The downward trend of the ESI in the 

above area diverged from the city center to the surrounding 

area and gradually weakened. The stable and unchanged areas 

accounted for 5.8%. Their primary distribution was observed 

in the Hetao Plain, the Ordos Plateau, and the Ningxia Plain, 

as well as in regions where the divergence of the degradation 

trend weakened toward the surrounding area. Further, 

according to the coefficient of variation that we calculated, 

the stability of the ESI in the southwest region of the YBR 

was the best (Fig. 8b). The regions experiencing significant 

fluctuations were predominantly concentrated in the 

northwest region of the upper reaches, characterized by 

severe desertification, and in the more developed animal 

husbandry area in the western part of Sichuan Province. In 

summary, except for the slight improvement in the northwest 

region, ESI in most areas of the YRB showed a significant 

improvement trend. Degraded areas were primarily found in a 

limited number of urban areas characterized by intense 

human activity. Stability was weaker in regions with high 
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desertification, developed animal husbandry, and high ESI values on the Loess Plateau. 

 

Fig. 8.(a) Spatial distribution of ESI trends in the YRB from 2000 to 2020; (b) Spatial distribution of ESI variation indices in the 

YRB from 2000 to 2020 

 

B. Relationship between ESI and landscape indices 

The spatiotemporal changes in ESI are closely related to 

the evolution of landscape indices. This is due to the change 

in landscape spatial structure, which will be reflected in the 

structural composition of the ecosystem, thus affecting the 

development and change of ESI [56],[57]. Therefore, we 

studied the correlation between ESI and cohesion, PD, SHDI, 

and LSI. Cohesion was positively correlated with the ESI 

over a large area in the eastern region of Qinghai Province in 

the upper YRB, as shown in Fig. 9a. This shows that the 

higher the spatial compactness and connectivity of the 

landscape in the region, the more conducive it is to improving 

the ESI. This suggests that the positive impact of connectivity 

in the region on ESI is reflected in its ability to improve the 

overall stability of the ecosystem and its resilience to external 

disturbances. Higher connectivity facilitates the migration 

and gene exchange of biological populations, thereby 

maintaining biodiversity and ecosystem services [58],[59]. 

Most of the other regions were negatively correlated. One 

possible reason is that higher cohesion leads to a smaller 

number of species within the region and a decline in 

ecosystem service functions. As a result, the ESI was also 

reduced [60].To further verify these notions, we analyzed the 

correlation between the PD, SHDI, LSI, and ESI (Fig. 9b,c,d). 

These three indices were found to have large positive 

correlations with the ESI in the middle reaches of the YRB 

region. This demonstrated that the more complex and 

species-rich the landscape in the region, the greater the 

contribution to the ESI. Increased PD and SHDI indices 

imply higher biodiversity, which is essential for the provision 

of ecosystem services. Ecosystems with high biodiversity are 

typically more productive, recycle nutrients and water more 

efficiently, and enhance ecosystem resilience to 

environmental change, thereby increasing ESI [61],[62]. The 

LSI reflects the complexity of landscape boundaries, with 

higher LSI indicating increased landscape heterogeneity. 

Increased landscape heterogeneity can provide more 

ecological niches and habitat types, promote species diversity 

and diversification of ecosystem functions, and enhance 

ecosystem resilience to disturbances and self-recovery 

[63],[64]. Landscape complexity and ESI showed a large 

negative correlation in the upstream eastern region of Qinghai 

Province. This showed that spatial tightness and connectivity 

had a promoting effect on ESI in this region. The response of 

the ESI to the landscape index was not significant in the 

Ordos Plateau, the Hetao Plain, the Ningxia Plain, and the 

hinterland of the Loess Plateau. This was related to the low 

complexity and diversity of the region’s ecological landscape. 

In this case, even if there was some environmental change or 

disturbance, the response of landscape indices to ESI may not 
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be significant due to species homogeneity [65]. In summary, 

we found that the relationship between landscape indices and 

ESI is manifested by influencing ecosystem stability, 

biodiversity, resilience to disturbance, and the provision of 

ecosystem services. Different regions of the YRB respond 

differently to landscape complexity, and site-specific 

planning and design should be adopted in future development. 

The ecological safety level of the YRB can be effectively 

enhanced by optimizing the landscape configuration. 

 

Fig. 9. Spatial distribution of correlation coefficients between ESI and landscape indices(a) Cohesion；(b)PD；(c)SHDI；(d)LSI 

C. Future trends of the YRB’s ESI 

1) Characteristics of future temporal changes in ESI in 

the YRB 

In this study, we used the constructed LSTM to predict 

the spatial pattern of the YRB in 2021-2030, and calculate the 

annual average of ESI in the next 10 years. By linearly fitting 

the trend of ESI, the interannual variation characteristics of 

ESI are described, as shown in Fig. 10. Overall, the ESI of 

the YRB will show a fluctuating upward trend, and the rising 

rate is 0.0014/a, which is less than the historical data. The 

highest and lowest values of ESI will be in 2029 and 2024, 

with values of 0.51 and 0.48, respectively. In summary, YRB’
s ESI will show an upward trend in the next 10 years, but the 

rate of increase will be smaller than that in the previous 21 

years.

 

 

Fig. 10. Change in ESI future annual averages 
2) Characteristics of future spatial changes in the YRB’s 

ESI 

We used the prediction model to obtain the ESI spatial 

distribution results of the YRB over the next 10 years, as 
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shown in Fig. 11. The spatial distribution of the predicted 

results shows an increase in hazardous areas in the 

downstream basins of Jinan and Tai’an in the future. The 

distribution of other regions will be roughly the same as the 

historical data. 

 

 
Fig. 11.Future spatial distribution of ESI 

 

In this study, the TS trend analysis and the MK test were 

performed on the forecast results of ESI, and the results are 

shown in Fig. 12a. Most of YRB’s ESI will show an upward 

trend in the next 10 years.

  

 

Fig. 12.(a) Spatial distribution of ESI trends over the next 10 years; (b) Spatial distribution of ESI variance indices over the next 

10 years 
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However, compared with the past 21 years, the area with 

significant growth will decrease, and the area with slight 

growth will increase. Areas with severe degradation and 

slight degradation will increase. The areas that will 

experience an increase will be mainly distributed in the 

southwest and central part of Gansu Province, Hetao Plain, 

Ordos Plateau and Jinan, Tai ‘an and other regions in the 

central part of Shandong Province. Other degraded areas are 

consistent with historical areas. From the CV of the ESI, the 

changes in the northwest region of the YRB remained 

unstable(Fig. 12b). However, these regions in western 

Sichuan Province and the Loess Plateau will be more stable 

in terms of ESI than before. In summary, the upward trend of 

most areas of the YRB in the next 10 years will decrease 

compared to the previous years, and the proportion of 

degraded areas will increase. YRB’s ESI will be more stable 

in the future, but changes in the desert regions of the 

northwest will remain volatile. 

V. DISCUSSION 

A. ESI accuracy analysis  

Based on the important role of vegetation in the 

ecosystem of the YRB, this study constructed a 

comprehensive, multi-dimensional ecological safety 

evaluation system, “vigor-pressure-state-response,” for the 

study area of the YRB, with vegetation as the core of “vigor”. 

The logical relationships of the constructed index system 

were then verified using SEM. The final fitted SEM model is 

shown in Fig. 13. The goodness-of-fit indices were: CFI = 

0.98, RMSEA < 0.001, SRME < 0.001, indicating a good 

model fit. According to the results, pressure had a significant 

negative impact on vigor and state. Vigor had a significant 

positive effect on state and response, and had the most 

significant effect on response. Pressure had a slight positive 

impact on response because it included economic aspects. 

The state of the region had a slight negative impact on the 

response due to the constraints of the geographical 

environment. Thus, we can conclude that the final 

model-fitting results coincide with the logical preconception 

of constructing the index, indicating that the constructed 

comprehensive multiscale evaluation system is reasonable. 

 
Fig.13. Relationship between the effects of different factors 

The eco-environmental quality index (EQI) is a 

comprehensive evaluation indicator. It consists of a 

combination of atmospheric, water, surface temperature, and 

biodiversity data to assess the health of the ecosystem [66]. A 

higher EQI usually means better environmental quality, 

relatively stable ecosystems, and higher species richness. 

These are essential for ecological safety. Conversely, if the 

EQI is low, the ecosystem will face threats that could lead to 

ecological disasters, posing significant risks to humans and 

other organisms. Thus, there is a close and mutually 

reinforcing relationship between EQI and ESI [67]. To verify 

the accuracy of the constructed ESI, we calculated a linear 
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regression of the EQI on the ESI for the years 2000-2020 (Fig. 

14). The R2 was calculated to be 0.68, indicating a strong 

correlation between them. This verifies that the ESI we 

constructed is plausible.

 

 

Fig. 14. Scatterplot of ESI vs EQI correlation 

B. Analysis of spatiotemporal changes in the ESI 

The ESI of the YRB showed an upward trend year by 

year, reflecting the initial results of ecological protection and 

management measures in recent years [68]. However, the 

volatility of ESI was large, indicating that the improvement 

process of ecological safety was unstable and vulnerable to 

many factors. Spatially, the ESI showed obvious regional 

differences. The risk level and sensitive level areas of the 

northwest desert arid area and some urban areas were 

concentrated. This reflects differences in ecological pressure 

and the intensity of human activities in different regions. 

From the perspective of spatial change trends, the ESI in the 

arid area of northwest China has greatly improved. This may 

be due to ecological restoration projects and reduced human 

activity interventions in recent years [69]. In rapidly 

developing urban areas, due to high-intensity industrialization 

and urbanization, the pressure on the ecological environment 

has increased, resulting in a decline in the ESI. The prediction 

showed that the ESI of the YRB will continue to improve in 

the next 10 years, but the improvement rate will decline. 

Especially in most areas of the middle reaches of the Loess 

Plateau and the upstream areas of rapid urbanization, the 

problem of ecological degradation will be more significant. 

Based on the above results, we propose the following 

control strategy recommendations: First, stakeholders should 

strengthen the ecological restoration of the region. Ecological 

restoration projects, such as returning farmland to forest and 

grassland, soil, and water conservation, and ecological water 

network construction, should be implemented in the arid 

areas and severely degraded areas in the northwest to improve 

the self-recovery ability of the ecosystem. Strict land use 

planning and construction standards can then be formulated 

for rapid urbanization areas. Further, unreasonable 

industrialization and urbanization development should be 

restricted to reduce the negative impact on the ecological 

environment. Finally, an ecological safety monitoring and 

early warning system of the YRB should be established and 

improved while improving the response speed and processing 

capacity of ecological changes and taking timely measures to 

deal with possible ecological risks. 

C. Predictive model performance analysis 

To visually verify the reliability of the LSTM-based 

spatiotemporal forecasting model for extracting ESI, we 

performed correlation calculations on the 2000-2020 ESI and 

forecast data, as shown in Fig. 15a. The correlation 

coefficient was 0.94, and the two correlations were high, 

indicating that the experimentally trained LSTM prediction 

model in this study was effective. Fig. 15b shows the results 

and the difference between the true and predicted values of 

the annual average ESI. In general, the smaller the MAE and 

RMSE values of the true and predicted values, and the closer 

the R2 and EVar values were to 1, the better the model 

predicted. The MAE and RMSE values were calculated to be 

0.001 and 0.002, and the R2 and EVar values were 0.97 and 
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0.98, respectively. These outcomes quantitatively illustrate 

that the constructed LSTM model has high accuracy and can 

successfully capture fluctuations in ESI data. 

 

Fig. 15. (a) Scatterplot of the correlation between the true and predicted ESI values for the years 2000-2020; (b) Deviation values 

of the true and predicted ESI values for the years 2000-2020 

D.Innovation and prospects 

In this study, we improved the ecological safety 

evaluation model based on existing studies to better adapt it 

to the ecological characteristics of the YRB. We also 

validated the logical soundness and empirically tested the 

improved evaluation model. The innovations of the article are 

compared in detail with the differences of previous studies in 

Table 5. 

Table 5 

Research Comparison 

Difference Previous studies   This study Strengths of this study 

Construction of  

evaluation model 

Ecological safety evaluation 
model was constructed based on 

socio-environmental management[18]. 

Ecological safety evaluation 
model is constructed based on 

vegetation change characteristics. 

Good adaptability and 
flexibility to track ecosystem 

changes using vegetation 

sensitivity, thus providing more 
timely feedback and early 

warning. 

Positive and 

negative 

judgement 

Based on the subjective 

experience, they assessed the positive 
and negative effects of different 

influencing factors on the ecological 

safety of the whole study area [71]. 

Based on the existing response 
mechanism of vegetation change in 

the YRB, it assessed the positive 

and negative effects of different 
influencing factors on ecological 

safety [33],[70]. 

Avoids the error of 
determining the positive and 

negative effects of ecological 

safety indicators due to human 
subjective factors, making the 

determination more objective. 

Spatiotemporal 

scales of the ESI  

The temporal and spatial changes 

of ecological safety were studied 

based on the county spatial scale and 
the intermittent time scale[38]. 

Long time series analysis of 
ecological safety in the region is 

carried out based on pixel scale. 

Provides a more detailed 

spatial and temporal resolution, 

which can more accurately 
identify ecologically fragile areas, 

ecological degradation 

phenomena, and potential threats 
to ecological safety, thus 

providing a more precise 

evaluation of the ecological safety 
status. 

Evaluation model 

reasonableness  

The logic of the evaluation model 
and the accuracy of the ESI were not 

tested[72],[73]. 

The logical relationship of the 

index system is verified by SEM. 

The accuracy of the ESI is verified 
using the EQI. 

The ecological safety 

evaluation model is more 

convincing and improves the 
accuracy of the model. 

The ecological safety of the YRB covers a wide range of 

aspects. It includes climate change, environmental pollution, 

changes in land use types, and the expansion of urban 

agglomerations. All of these have implications for ecological 
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safety. Future studies should consider adding more factors 

that have an impact on ecological safety to improve the ESI 

and reflect the real situation of ecological safety in the YRB 

more comprehensively and accurately. Further, using remote 

sensing data, such as NDVI, introduces their inherent 

uncertainty, which has an impact on the construction of the 

index. These uncertainties come from many aspects, 

including sensor errors, atmospheric effects, data processing 

methods, and differences in model parameters. Therefore, in 

the process of data processing, the influence of these 

uncertain factors on the results should be taken into account, 

and corresponding error analyses and controls should be 

carried out. In addition, this study analyzed only the changes 

in ESI and did not explore the characteristics of the changes 

in its internal criterion layers 

(“vigor-pressure-state-response”). Therefore, future studies 

should pay attention to the changes in intrinsic factors to gain 

a deeper understanding of the internal causes of ESI. 

VI. CONCLUSION 

Based on the“vigor-pressure-state-response”model, this 

study constructed the ESI of the YRB from 2000 to 2020. The 

change characteristics of the ESI were then analyzed, and the 

relationship between the ESI and the landscape index was 

explored. The LSTM model was used to predict the 

ecological safety changes in the YRB over the next 10 years. 

The ESI of the YRB showed a fluctuating upward trend at a 

rate of 0.0016/a during 2000-2020. The spatial distribution of 

ESI showed significant differences. The spatial distribution 

showed significant positive agglomeration characteristics, 

dominated by the spatial characteristics of high-high 

agglomeration and low-low agglomeration. The ESI for the 

desert arid regions in the upper reaches and some urban areas 

in the middle and lower reaches were hazardous and sensitive. 

The spatial change trend of the ESI showed a significant 

increase in most of the regions, except for the northwestern 

region of the YRB, which showed a slight improvement. A 

small number of degraded areas were mainly urban areas with 

high levels of human activity. The stability of the ESI was 

weaker in regions with high desertification, developed animal 

husbandry and high ESI values on the Loess Plateau. 

Combined with the landscape index study, we found that the 

ESI in most of the middle reaches of the YRB was positively 

correlated with the complexity of the landscape, while some 

of the upstream and downstream areas showed 

non-significant or negative correlations. The rate of increase 

in YRB’s ESI will slow down in the next 10 years, and more 

ecological hazard class areas will appear in the upstream zone. 

In terms of spatial trends, the proportion of degraded areas 

will increase, while the proportion of areas with significant 

growth will decrease. The stability of future ESI changes will 

improve, but changes in the northwest desert region will 

remain volatile. 
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