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A machine learning approach on SMOS thin sea ice
thickness retrieval
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Abstract—This study proposes a machine learning based
methodology for estimating Arctic thin sea ice thickness (up
to 1 m) from brightness temperature measurements of SMOS.
The approach involves employing the so-called Burke model for
sea ice emission modeling, integrating a suitable permittivity
model and a radiative transfer equation. The training dataset
is generated through a model-based simulation, and is then
used to train and evaluate two machine learning regression
algorithms: Random Forest and Gradient Boosting. Overall,
this machine learning methodology results in great agreement
with the ESA’s official sea ice thickness product. Additionally, a
validation performed by using data from mooring measurements
shows a subtle improvement by the machine learning algorithms
with respect to the ESA’s official product. These results indicate
their potential to surpass the performance of the current SMOS
thin sea ice thickness retrievals.

Index Terms—Soil Moisture and Ocean Salinity (SMOS) satel-
lite, Random Forest (RF), Gradient Boosting (GB), machine
learning, sea ice thickness.

I. INTRODUCTION

SEA ice is an essential component of the Arctic’s physical
environment and serves as a crucial indicator of climate

change. It has a key role in the ice-albedo feedback loop,
as it acts as a reflective surface that helps to regulate the
planet’s temperature by reflecting sunlight back into space,
reducing the amount of solar energy that is absorbed by the
Earth’s surface ([1]). Sea ice extension and thickness have
been decreasing rapidly from the last decades on ([2]). As
highlighted in the latest Special Report on the Ocean and
Cryosphere in a Changing Climate, a component of the IPCC
2019 report ([3]), the Arctic sea ice extent is experiencing a
rapid decline, amounting to approximately 13% per decade
in September. This negative trend has also led to a notable
transition to younger and thinner ice, with a decline of
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30% to 2% in the proportion of ice at least five years old
since 1979. Concurrently, there has been an increase in first-
year ice, ranging from 40% to 60−70% over the same period.

Radar altimeters have been utilized since the 1990’s
decade with the launch of the European Remote Sensing
satellites 1 and 2 to generate Arctic sea ice thickness maps
(ERS-1, 1991 – 2000, and ERS-2, 1995 – 2011). These first
missions presented a too large footprint ([4]), later improved
with their successor Envisat (2002 – 2012). Following the
launch of CryoSat-2 (2010 – present) and ICESat-2 (2018 –
present) altimeters, major advances have been made in the
sea ice thickness retrievals accuracy ([5], [6]). Nowadays, by
measuring the sea ice freeboard, the total sea ice thickness
can be computed for sea ice thicker than 1 m ([7]). Passive
microwave radiometers have been used to observe sea ice
since the launch of the first Earth Observation satellites in the
1970’s, and are still in use today with the European Space
Agency (ESA) mission Soil Moisture and Ocean Salinity
(SMOS) ([8], [9]) spacecraft launched on 2009, along
with the National Aeronautics and Space Administration
(NASA) missions: the past Advanced Microwave Scanning
Radiometers (AMSR, AMSR-E, AMSR-2), and the Soil
Moisture Active Passive (SMAP) ([10]) satellite which was
launched on 2015. Specifically, this study focuses on passive
L-band radiometers like SMOS, which operate at a frequency
of 1.4 GHz and have a penetration depth of up to 1 m or
even more in low salinity sea ice, thus being complementary
to measurements with altimeters ([11]).

There exist two SMOS sea ice thickness algorithms for the
non-melting period, i.e. from October to April. The first is the
ESA’s official product, which is a semi-empirical algorithm
developed by the Alfred Wegener Institute (AWI), described
in [12]. A notable drawback is its failure to account for the
presence of snow above sea ice, which is a major limitation
given its relevant effect on emitted L-band radiation ([13])
and subsequent thickness retrieval processes. The second
product is distributed by the University of Bremen (UB), it
is described in [14] and it uses an empirical approach. The
primary shortcoming of the UB product lies in its limited
sensitivity, extending only up to 0.5 m. This study attempts
to advance towards the development of a new SMOS sea ice
thickness product using an artificial intelligence approach.
Previous works have successfully applied machine learning
in sea ice remote sensing. For instance, in [15], sea ice
thickness is derived from the FSSCat ([16]) nanosatellite
data using a neural network approach. Other neural network
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based approach examples can be found in [17] and [18]. The
method proposed in this work inherently takes into account
the presence of snow above sea ice, while also preserving its
sensitivity up to a depth of 1 meter. The machine learning
(ML) methodology will be trained using a sea ice microwave
emission model, given the absence of in situ data. The input
features for this approach include the brightness temperature
(TB) itself, as well as the parameters influencing it at L-band
frequency, the sea ice temperature, salinity, and the presence of
snow. The targeted output variable is the thin sea ice thickness.

The paper is structured as follows. Section II introduces sea
ice microwave emission modeling, presenting the Burke model
and discussing permittivity modeling. Section III provides
an overview of the data collection utilized in this study.
Section IV outlines the workflow followed in the proposed
methodology. Section V presents the results, including an
evaluation against an existing product and a validation using
in situ data. Section VI contains a discussion of the results
obtained with the proposed approach. Finally, Section VII
offers the conclusions.

II. SEA ICE MICROWAVE EMISSION MODELING

The Burke model can be used to simulate the emission of
sea ice layered mediums in polar regions ([19]). This model
considers factors such as thickness, temperature, salinity, and
dielectric constant of the different layers to calculate the
emissivity, so the brightness temperature can be then computed
at a given frequency.

A. Burke model: radiation transfer equation

The Burke model, which is based on a radiation transfer
model for soil microwave emissivity presented in [20], is
chosen in this work to simulate the Arctic sea ice emission.
The model makes certain assumptions, including that the
radiation is treated with the conservation of energy approach
(i.e. incoherent), that there is no emission or attenuation
between the surface and the sensor, and that the sky has an
isotropic brightness temperature of 5 K. Additionally, the
model assumes that the layers are homogeneous, with constant
permittivity, temperature, and salinity throughout each layer,
and that the surface is smooth. Integrating for all the layers,
the detected brightness temperature is a combination of the
radiation emitted by the layered medium and the radiation
reflected by the sky. The original derivation of the radiation
transfer equation can be found in [20].

As this model considers media as layered, four layers are
considered in this work: air – snow – ice – water, with the
first and the last considered to be semi-infinite. The sea ice
temperature and salinity values determine the permittivity, and
are also used as input parameters. The snow layer is assumed
to be isothermal with the underlying ice layer, non-saline, and
it has a thickness equivalent to 10% of the ice thickness, as
suggested in [21]. As shown by [13], the relative impact of the
snow amount can be neglected, as the brightness temperature
measured by the satellite at L-band is not influenced by the

amount of snow above the ice, only by its presence. Lastly,
the seawater is treated as a semi-infinite layer and is assumed
to have typical Arctic values, with a temperature of -1.8◦C
and a salinity of 33.

B. Complex dielectric constant modeling

The dielectric constant of the media is a key parameter
for the sea ice emission modeling. It can be represented in
a complex formulation: the permittivity constitutes the real
part, while the imaginary part is the loss, which is directly
proportional to the electrical conductivity. Higher permittivity
indicates less penetration, whereas higher loss denotes more
energy dissipation. Hereafter, the terms “dielectric constant”
and “permittivity” are used interchangeably, as usually done
in the bibliography. In [22], an empirical linear relationship
between the brine volume fraction and the complex dielectric
constant is established, which is valid for both first-year and
multi-year sea ice. Interpolating the fit parameters at the L-
band frequency, i.e. 1.4 GHz, from [22]:

ϵ′ = 3.1 + 0.0084Vb × 103, (1)

ϵ′′ = 0.037 + 0.00445Vb × 103, (2)

where Vb is the brine volume fraction. This parameter is
obtained from the [23] coefficients for Tice ≥ −2 ◦C, and
from the [24] coefficients for Tice < −2 ◦C. In any case, this
volume of brine is computed as ([22]):

Vb =
ρiSice

F1 − ρiSiceF2
, (3)

where ρi = 0.917− 0.1404× 10−3Tice is the pure ice density
in gm−3 obtained from [25], and Tice and Sice are the
temperature and salinity of the sea ice, respectively. F1 and
F2 are Tice’s polynomial functions of third degree, for which
its constant coefficients can be found in [24].

Finally, it is remarkable that the real part of the complex
dielectric constant for the snow layer is obtained from [26],
while the imaginary part is extracted from [27] and [28]. This
formulation is dependent on the snow density, and a typical
value for the Arctic of 0.3 gcm−2 is used ([29]). Also, the
complex permittivity of seawater is obtained from [30], in
which a standard Arctic Ocean salinity of 33 is assumed.

III. DATA COLLECTION AND MANAGEMENT

A. ESA official SMOS sea ice thickness product

The SMOS L3 Sea Ice Thickness product is produced
by the AWI and distributed by the ESA, and it provides
information on sea ice thickness in the Arctic region
from October to April, covering the period from 2010 to
the present. It was firstly described in [12]. The sea ice
thickness is determined using an iterative retrieval algorithm
that incorporates a thermodynamic sea ice model and a
three-layer radiative transfer model. The radiative transfer
model calculates the emissivity of the sea ice layer and the
underlying seawater, and brightness temperatures are derived
from the emissivity and physical temperatures of the sea ice
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Fig. 1. Diagram of the methodology’s workflow. The variable extracted from different sources are input to an emission model to simulate the sea ice thickness
distribution. After training the algorithm, the same variables, except the modeled sea ice thickness as it is the target variable, are used to perform predictions.

and seawater. The bulk ice temperature is estimated using a
thermodynamic model, which utilizes the 2 m air temperature
from atmospheric reanalysis data as an input parameter, while
the bulk ice salinity is computed from an empirical relation
described in [31]. The retrieval algorithm also accounts for
variations in ice thickness within the SMOS spatial resolution
by using a statistical thickness distribution function based
on high-resolution ice thickness measurements from NASA’s
Operation IceBridge (OIB) campaign.

In this work, the TB intensity measured by SMOS is
obtained from this ESA official SMOS sea ice thickness
product, to be then used as input of the methodology.

B. Surface temperature satellite product

The Arctic Ocean - Sea and Ice Surface Temperature
REPROCESSED product ([32]) provides information on the
Arctic sea and ice surface temperature. The data is based
on reprocessed observations from the Advanced Very High
Resolution Radiometer (AVHRR), the Advanced Along
Track Scanning Radiometers (AATSR), and the Sea and
Land Surface Temperature Radiometer (SLSTR), which are
obtained from various sources, including the ESA Climate
Change Initiative (CCI) project, the Copernicus Climate
Change Service (C3S) project, and the Arctic & Antarctic Ice
Surface Temperatures from Thermal Infrared Satellite Sensors
(AASTI) dataset. The product offers a daily interpolated
field with a 0.05 degrees resolution and covers surface
temperatures in the ocean, the sea ice, and the marginal ice
zone. The computation of the surface temperature utilizes the
optimal interpolation method, utilizing the previous day value
as a first guess field.

In this work, a linear temperature gradient within the ice
is assumed, as it is shown to be reasonably realistic in [33].
Therefore, the bulk ice temperature (Tice) can be computed
as:

Tice =
Tsurface − Tsw

2
, (4)

where Tsurface is the surface temperature obtained from the
satellite product, and Tsw is the seawater temperature, in which
a typical value for the Arctic of −1.8◦C is assumed.

C. Arctic Ocean Physics Reanalysis model

The Arctic Ocean Physics Reanalysis model product dis-
tributed by CMEMS ([34]) provides physical variables ob-
tained from the reanalysis model TOPAZ (version 4b). It
assimilates a variety of observations, such as sea level anoma-
lies from satellite altimeters, sea surface temperature from
Operational Sea Surface Temperature and Sea Ice Analysis
(OSTIA), in situ temperature and salinity from hydrographic
cruises and moorings, sea ice concentration from OSI-SAF, the
CS2SMOS ice thickness data, and sea surface salinity from the
Barcelona Expert Center (BEC) using SMOS satellite data.
For the purpose of this work, the seawater salinity, the sea ice
thickness and the snow depth variables are extracted from this
model. To obtain the bulk ice salinity, the empirical formula
from [31] is used:

Sice = Ssw(1− SR)e
−a

√
dice + SRSsw, (5)

where Ssw is the seawater salinity and dice the sea ice
thickness in cm, both obtained from the reanalysis model.
The growth rate coefficient, denoted as a, is assumed to be
0.5, while for SR, the salinity ratio of the bulk ice salinity at
the end of the ice growth season, 0.175 is taken. Finally, the
snow presence is simply taken as a boolean variable: if the
snow thickness variable from TOPAZ is greater than 0, then
snow is present, and otherwise it is absent.

D. BGEP mooring data

The Beaufort Gyre Exploration Project (BGEP) ULS are
mooring buoys designed to measure the sea ice draft, which
is the part of sea ice that remains underwater. Therefore, to
obtain the total sea ice thickness, which is the required variable
to validate the proposed methodology, a conversion is needed.
As done in [35], a factor of 1.136 is used to multiply the
ice draft and thus obtain the total thickness. This coefficient
was obtained empirically from almost 400 sea ice drillings
conducted in Fram Strait ([36]). The BGEP ULS data is used
for the methodology validation. It comprises daily averages
of sea ice thickness from three mooring instruments located
within the Beaufort Gyre. The sampling periods cover years
between 2003 and 2021. However, only the data gathered since
the launch of SMOS in 2010 is suitable to be used in this study.
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Fig. 2. Regridding the brightness temperature, the surface temperature, the sea water salinity (and the reanalysis sea ice thickness even though it is now
shown), and the snow presence to the same common grid (12.5 km x 12.5 km NSIDC Polar Stereographic). These transformed variables are then used to
invert the Burke emission model to obtain the sea ice thickness for the training dataset.

IV. METHODOLOGY

The in situ data available for the Arctic region is very
sparse. Since no complete thin sea ice thickness dataset
is available, it can be generated through sea ice emission
modeling. This methodology’s workflow is summarized in
Fig. 1. Prior to this, all the variables are regridded to the
12.5 km x 12.5 km NSIDC Polar Stereographic grid. As
shown, for testing, and also for validation and predicting
in general, the same variable sources are used, with the
difference of the modeled sea ice thickness being only used
during training as it is the target variable, which is predicted.
The training dataset is thus composed of the cells extracted
from the map of each day, after dropping the duplicates, from
15th October 2019 to 15th April 2020 and from 15th October
2020 to 15th April 2021. The testing is performed during
January 2022. Finally, the validation is done with the BGEP
mooring data of the sea ice growth period of each year from
2010 to 2020.

The Burke emission model assuming the Vant formulation
for the ice permittivity is inverted to obtain realistic configu-
rations of Arctic sea ice thickness distributions, with the aim
of generating a reproducing situations as realistic as possible.
This is detailed in Fig. 2. As it is shown, the different variables
detailed in Section III are regridded to the same grid, as
they are then used to invert the physical emission model to
compute the sea ice thickness. It should be noted that the
primary variables extracted from the different sources are
transformed as it is detailed in Section III and in Fig. 1: the
sea ice temperature is computed from the surface temperature
by assuming a linear gradient within the ice, and the sea ice
salinity is obtained through an empirical equation ([31]) that
has the sea water salinity and the reanalysis sea ice thickness
as inputs.

The sensitivity of the brightness temperature to the ice
thickness at this frequency band is highly dependent on the ice
conditions, i.e. temperature and salinity, as shown in Fig. 3. To
avoid an artificial training threshold, for each ice conditions
configuration the maximum thickness that can be retrieved
(the value where the brightness temperature starts to saturate)

is computed. Subsequently, the thickness obtained from the
model inversion is compared to the maximum thickness: if the
latter is smaller, the inverted solution is then this maximum
thickness.

Single data cellspoints from these complete maps are
extracted and input to train the algorithm. Therefore, the
modeled sea ice thickness obtained through model inversion,
along with the sea ice temperature from the sea ice surface
temperature satellite product, and the sea ice salinity and the
snow presence derived from the reanalysis model, are used
to train the ML algorithm. Regarding the snow presence,
even though it increases the ice temperature by acting as an
insulator, it is only the snow – ice interface that affects the
emitted radiation. Therefore, the algorithm is trained for the
only two possible significantly different situations, i.e. sea
ice free of snow, and sea ice with any amount of snow above it.

Focusing on supervised learning, in particular on regression
methods, the machine learning algorithms selected for this
purpose are the Random Forest (RF, [37]) and the Gradient
Boosting (GB, [38]). Random Forest for regression builds an
ensemble of decision trees. Each tree is trained on a random
subset of data and features. During prediction, individual tree

Fig. 3. Brightness temperature as a function of the sea ice thickness for
different combinations of sea ice conditions, computed with the Burke model.
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Fig. 4. a) Upper: Histograms of the difference between the ESA’s official sea
ice thickness product and the predicted sea ice thickness using the Random
Forest and the Gradient Boosting algorithms, respectively, for January 2022.
b) Lower: Arctic sea ice thickness maps generated with the Random Forest
and Gradient Boosting algorithms, respectively, for 31st January 2022.

outputs are averaged to get the final result. This technique,
called bagging, reduces overfitting and improves generaliza-
tion. Gradient Boosting builds also an ensemble of decision
trees sequentially, where each tree corrects errors made by
the previous one. During training, each new tree focuses on
the residuals (the differences between the actual and predicted
values) of the ensemble so far. Their learning process involves
adjusting the parameters of each tree to reduce the residuals,
and the final prediction is the sum of predictions from all trees.

Therefore, both algorithms are more powerful generaliza-
tions of the decision trees, and although they have many sim-
ilarities, they differ in how the trees are build and combined.
Both have common advantages for which seem reasonable
to be selected for this work, such as that they generally
require less data cleaning and preprocessing compared to
neural networks. They are also little influenced by outliers,
and they present good scalability, being applicable to datasets
with numerous observations. Furthermore, the computation
resources required by these algorithms are considerably lower
than in a neural network approach. A drawback of these RF
and GB algorithms is that the interpretability compared to
models based on a single tree is reduced, because in this case
multiple trees are combined. Both algorithms are directly im-
plemented from the Python’s library scikit-learn (https://scikit-
learn.org). Specifically, they are used with 50 estimators, as it
is found as a reasonable number after trying other options
ranging from 10 to 1000. No more hyperparameters are tuned
after testing without improving the results.

V. RESULTS

To test the methodology, the predictions performed as
shown in Fig. 1 are compared with ESA’s official sea
ice thickness product in a suitable period which does not
correspond to the training period: January 2022. Fig. 4a

Fig. 5. Scatter plots of the ESA official product and the machine learning
algorithms, the RF and the GB, as a function of the BGEP moorings in situ
data.

shows the differences between the ESA’s official sea ice
thickness product and the values predicted using the RF and
GB algorithms for each day of January 2022. The distribution
is similar for both algorithms, with the major number
of differences being around zero. Therefore, the machine
learning approach presents a similar distribution compared
to the ESA’s product. An equivalent number of values are
under and overestimated by the RF and the GB, although the
RF has a more symmetric distribution while the GB presents
more predictions with no difference with ESA’s. Remarkably,
both algorithms have similar 2σ ranges, thus resulting in
equivalent differences. Overall, the metrics computed from
this comparison result in a correlation coefficient of 0.956
for the RF and of 0.955 for the GB, and a mean absolute
error of 0.099 m for the RF and of 0.104 m for the GB. Fig.
4b shows 31st January 2022 as an example, and it depicts
this similarity between the RF and GB, presenting alike maps.

Despite the satisfactory results obtained after the com-
parison with the ESA’s official product, it cannot be fully
concluding as the ESA product also relies on a semi-empirical
model. For this reason, a source of ground truth data is
required to further validate the methodology. The mooring
data from the BGEP ULS is used for this purpose. The ESA,
RF, and GB sea ice thickness’ are interpolated to the exact
position of each mooring for each day during the periodical
measurements from 2010 to 2021. Fig. 5 shows the scatter
plots of the ESA, RF, and GB predictions interpolated to the
mooring coordinates as a function of the BGEP moorings data.
It is remarkable that only the points below 1 m are considered
in the analysis. Although the metrics are reasonable for the
three algorithms as shown in Table I, the ML algorithms
present a higher correlation and a lower error than the ESA
product when comparing to the in situ data, as well as less
biased predictions as depicted by the std-MAE. Furthermore,
they all present many values around 1.4 m. These points are
identified to be mainly the same for the ESA product and the
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TABLE I
R2 CORRELATION COEFFICIENT, MEAN ABSOLUTE ERROR (MAE) AND

STANDARD DEVIATION OF THE MEAN ABSOLUTE ERROR (STD-MAE) OF
THE VALIDATION USING BGEP MOORING DATA.

Metric ESA RF GB
R2 0.673 0.714 0.706

MAE (m) 0.424 0.405 0.389
std-MAE (m) 0.287 0.271 0.262

ML methodology. It can be hypothesized that it is because
when the ice reaches this thickness’, given the temperature
and salinity conditions, the saturation region shown in Fig. 3
is reached.

VI. DISCUSSION

The results presented in Section V suggest that the proposed
methodology has the potential to improve the current SMOS
thin sea ice thickness retrievals. Even thought great results
have been obtained, some aspects can be discussed to assess
the robustness of the methodology.
An important observation is that, even though these ML
algorithms are trained to predict the sea ice thickness point
by point, the maps from Fig. 4 show a continuous and smooth
distribution around the whole Arctic. Fig. 2 shows the different
input variables for 31st January 2022, after the processing de-
picted in Section IV, presenting also continuous and spatially-
coherent distributions. The nearby similar conditions from
these inputs help in predicting robust thickness maps. This
highlights the power of this methodology to generalize, as
solid and coherent maps are predicted for any period of time
after training with only two seasons (2019 – 2020 and 2020
– 2021).
Another key for the possible success of this methodology
is its simplicity and the limited amount of computational
resources that it needs. As stated in Section IV, the RF and GB
algorithms require much less resources than neural network
approaches, or even classical algorithms. Furthermore, no
in situ data is needed to feed these algorithms, given the
promising results obtained in the in situ validation. However,
it is important to mention that new in situ measurements
may improve the sea ice emission modeling that thus would
increase the quality of the retrieval.
Ultimately, despite the evident spatial coherence in the pre-
dicted maps, there remains an opportunity to explore more
advanced deep learning algorithms to incorporate not only
spatial but also temporal consistency. Therefore, this is left as
future work to improve the current version of the algorithm.

VII. CONCLUSION

A machine learning based methodology to retrieve Arctic
thin sea ice thickness from SMOS brightness temperature
measurements has been successfully developed. Two different
algorithms, a Random Forest and a Gradient Boosting, have
been trained by extracting realistic data points from maps
generated through inverting a sea ice L-band emission model.
The evaluation of such algorithms by comparison with the
current ESA official sea ice thickness has shown their high

correlation and an almost negligible averaged absolute error.
This indicates that this methodology is able to reproduce the
predictions from the classic approach, reducing the complexity
and the computational resources. The validation using the
moorings’ data as ground truth indicate a slight improvement
by the ML algorithms. Finally, remains challenging to choose
between the RF and the GB as they present similar results
in the conducted analysis. These work shows the potential of
the machine learning techniques to improve the current SMOS
thin sea ice thickness retrievals.
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