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 Abstract—The identification of optimal landing sites is a 

critical first step for successful missions to the Moon and other 

extraterrestrial bodies, necessitating the integration of various 

environmental factors over large spatial scales. At the lunar 

south pole, site selection must balance engineering safety with 

areas of high scientific interest, requiring extensive analysis of 

potential locations. Although intelligent algorithms have been 

increasingly investigated for this purpose, the application of deep 

learning techniques in landing site selection remains unexplored. 

In this study, we employ one-dimensional convolutional neural 

networks (1D-CNN) to quantitatively assess potential landing 

sites for exploration and lunar base construction, considering 

both scientific and engineering criteria. We also evaluate the 

influence of various factors on site selection using Shapley 

Additive Explanations (SHAP) values. The 1D-CNN model 

demonstrates robust performance across training, validation and 

testing phases. Potential landing sites identified comprise less 

than 1% of the total study area, with factors such as visibility, 

volatile distribution, topography, and geological characteristics 

playing crucial roles. By applying operational constraints, we 

delineate sites suitable for direct landings and further refine this 

subset for base construction based on stringent requirements for 

resource utilization and energy sustainability. The combined use 

of CNN and SHAP enables more effective potential site screening 

and a deeper understanding of the factors influencing selection. 

Our findings offer a valuable framework for future lunar south 

pole expeditions, potentially minimizing manual survey efforts 

and enhancing the precision of landing site selection. 

 

Index Terms—Lunar south pole, landing site selection, 1D-CNN, 

water-ice, factor importance, International Lunar Research 

Station (ILRS). 
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I. INTRODUCTION 

unar exploration, initiated in the last century, has made 

significant achievements that have enriched our 

understanding of the Moon's origin, geological structure, 

and evolutionary history [1, 2, 3]. Currently, lunar exploration 

is entering an exciting new chapter, with multiple nations and 

organizations planning an array of landing missions at the 

south pole, alongside ambitions to establish a human lunar 

base. Notable endeavors include China's Chang'E-7 and 

Chang'E-8 missions, the International Lunar Research Station 

(ILRS) [4], and the United States' Artemis program [5]. The 

lunar south pole features the Moon's largest and most ancient 

impact basins, including the South Pole-Aitken (SPA) basin. 

Extensive water-ice deposits have been detected in this region 

by orbital probes [6], particularly within the permanently 

shadowed, low-temperature large craters [7]. This unique 

environment makes the lunar south pole a key region for 

material and evolutionary studies, and the site selection for 

lunar exploration in this region is an important preceding 

endeavor. 

Landing site selection is a process of identifying regions of 

high scientific value that offer safe and viable conditions to 

facilitate scientific advancements for imminent exploration 

missions to the lunar south pole [8]. It is characterized by 

diverse geological formations and material resources 

distributed across the region [9]. Scientific missions, such as 

in-situ exploration and sample return initiatives, require a 

coordinated approach to effectively explore these diverse 

regions [10, 11]. The capability for scientific discovery must 

therefore play a central role in determining landing sites for 

specific missions [12]. Water-ice is particularly valuable, as it 

is a source of drinking water and can be decomposed into 

oxygen for life support and hydrogen for fuel [13], making it a 

critical factor in site selection. Nonetheless, water-ice rich 

areas often present harsh solar conditions and challenging 

surface environments [7], which complicate direct landing 

efforts. Therefore, a principal challenge in landing site 

selection research is how to choose safe landing sites in 

proximity to priority water-ice reservoirs. 

In recent years, site selection stduies have been conducted 

for the lunar south pole utilizing available datasets [14], with 

most employing a multifactorial overlay approach. Lemelin et 

al. [15] utilized a weighted score methodology to assess 

factors such as hydrogen abundance, the proximity to 

permanently shadowed regions (PSRs), and temperature to 

pinpoint areas conducive to volatile detection. Additional 

L 
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slope constraints were then applied to determine the optimal 

landing sites. Flahaut, et al. [16] focused on areas with 

temperature below 110 K, slope under 20°, and significant 

hydrogen signature (exceeding 100 ppm by weight). They also 

established criteria for solar and Earth visibility, slope, and 

landing ellipse dimensions to aid in the site selection for the 

Luna 25 and 27 missions. Further studies have extended the 

multifactorial overlay analysis technique for south pole 

landing site selection [17-19], considering a wider range of 

factors such as  geomorphological and geological features 

[20]. These studies, by incorporating additional factors in the 

analysis, can be used as references and comparisons for 

landing site selection to improve landing site selection 

methods. However, the substantial variation in environmental 

and geological characteristics across different regions presents 

challenges in applying uniform criteria to evaluate landing site 

suitability over extensive geographic areas, especially in terms 

of scientific interests. Consequently, the process of selecting 

landing sites for lunar missions generally requires substantial 

resources. 

The site selection methodology outlined previously 

involves a synergistic analysis of multiple characteristics, 

highlighting the pressing need for tools that can 

comprehensively evaluate all pertinent factors and 

autonomously identify suitable landing sites. Machine learning 

presents potential solutions and has been tentatively applied in 

lunar landing site selection. Darlan, et al. [21] introduced a 

hierarchical clustering approach that utilizes elevation data to 

categorize potential landing sites across the lunar surface, then 

applies uniform constraints to choose the final sites. Liu, et al. 

[22] developed a blind selection algorithm that employs K-

means clustering to determine a sliding window threshold for 

landing suitability based on slope constraints. Furthermore, 

Cao [23] employed a variety of factors as evidence layers to 

compute the a posteriori probability of landing suitability for 

the entire Moon. These probabilities were then used to train a 

random forest model to predict landing suitability. However, a 

common weakness in these studies is that their focus is on 

broad lunar regions, and the kilometer-scale resolution of their 

analyses is inadequate for capturing areas with rapidly 

changing surface conditions. Additionally, the range of factors 

they incorporate is not exhaustive. To date, intelligent site 

selection tailored to the complex and finely detailed surface 

environments of the lunar south pole remains unexplored. 

Convolutional neural networks (CNNs), along with other 

deep learning algorithms, are adept at automatically learning 

features from complex data for higher-level abstraction, often 

outperforming traditional machine learning methods in 

predictive accuracy [24, 25]. CNNs are capable of executing 

image segmentation tasks through 2D or 3D convolutional 

processes. In scenarios where the spatial relationships between 

data points are insignificant or where there is a scarcity of 

training data, 1D CNNs, which use only one-dimensional 

convolution (i.e., scalar multiplication and addition), offer 

advantages due to their streamlined structure and increased 

efficiency [26]. Consequently, 1D-CNNs hold promise for 

processing site selection factors and identifying potential 

landing areas (PLAs), yet their application in landing site 

selection remains unexplored. Despite their good performance, 

CNNs are often considered "black-box" models because their 

multi-layered hidden structures do not allow for easy revealing 

the decision-making process [27]. To address the 

interpretability issue, Shapley Additive Explanations (SHAP) 

offer a framework for deciphering the predictions of CNN 

model. SHAP values provide insight into the contribution of 

each feature to the prediction outcome by drawing on 

cooperative game theory [28], thus offering a pathway to 

demystify the decision-making process within CNNs. 

Centering on the site selection for the lunar south pole, this 

study aims to tackle the following research inquiries: 1) Can 

quantitative site selection factors be utilized in conjunction 

with a 1D-CNN to pinpoint potential landing sites at the lunar 

south pole?, 2) How does each site selection criterion 

influence the landing suitability predictions (sites) generated 

by the 1D-CNN model?, and 3) What characteristics define 

the distribution of potential landing sites for exploration and 

the construction of future lunar bases? To address these 

questions, the study quantitatively evaluated environmental 

factors and the distribution of regions with high scientific 

value surrounding the lunar south pole. We have developed a 

1D CNN model for landing site selection that promises to 

streamline the traditional site selection process, which relies 

on extensive surveys. Additionally, we applied SHAP values 

to ascertain the significance of each site selection factor, 

thereby elucidating the CNN's pattern in determining potential 

landing sites. With the preliminary selection of landing sites in 

hand, we proceeded to analyze the areas suitable for the 

construction of future lunar bases. 

II. STUDY AREA AND DATASETS 

A. Study area 

The lunar south pole represents an optimal locale for future 

International Lunar Research Station (ILRS) development, 

characterized by minimal diurnal temperature variations and 

persistent solar exposure. Within the expansive lunar south 

pole, areas such as the Cabeus crater, the Shackleton-de 

Gerlache ridge, Leibniz β, and the Amundsen crater are 

deemed high-priority for ILRS due to their unique geological 

contexts and abundant water-ice deposits (Fig. 1). This study 

zeroes in on the identification of landing sites that offer 

substantial scientific value and engineering safety within these 

prioritized zones, which collectively span an area of 426.8 km 

by 330.5 km (Fig. 1b). From a scientific perspective, the 

geological backdrop of this sector encompasses a temporal 

range from the pre-Nectarian to Eratosthenian periods [29], 

with Shackleton crater being a prominent feature within the 

extensive SPA basin. The geological diversity here includes 

craters, secondary crater clusters, basins, and plains 

(illustrated in Fig. 1b). Sampling lunar regolith from varied 

geological contexts and epochs is pivotal to understanding the 

Moon's thermal evolution. On the engineering front, the area 

has undergone meteorite bombardment, geological uplifts, and 
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prolonged erosion, contributing to a topography marked by 

large craters and their subsidiary formations. The elevation 

varies from -10,000 to 14,051 meters, with slopes as steep as 

63 degrees, based on a 120-meter baseline. This challenging 

landscape heightens the risks associated with rover landing 

and navigation. Given the compelling scientific prospects and 

the intricate topography of the region, a sophisticated method 

for thorough site selection analysis is imperative to aid 

forthcoming lunar exploration endeavors. 

 
Fig. 1. The terrain and geological context of the study area. (a) 

A digital orthophoto map captured by the Chang'E-2 mission's 

CCD stereo camera; (b) A comprehensive geological map [29] 

of the study area, superimposed on a shaded relief map 

generated from Lunar Orbiter Laser Altimeter (LOLA) terrain. 

B. Lunar south pole spatial dataset 

With the objective of selecting a suitable landing site, we 

meticulously gathered a range of spatial data encompassing 

the area of interest. This collection included two categories of 

datasets related to engineering safety and three related to 

scientific value (Table I). For engineering safety 

considerations, we acquired datasets related to surface 

topography and visibility to other objects. Surface topographic 

data encompassed digital elevation models (DEMs), digital 

orthophoto maps (DOMs), and slope information. These 

datasets were sourced from various repositories, including 

LOLA accessible through the Planetary Data System (PDS) 

(https://ode.rsl.wustl.edu) and the Chang'E-2 mission 

(https://moon.bao.ac.cn), with resolutions ranging from 5 

meters to 120 meters. Additionally, visibility datasets were 

compiled, offering insights into average visibility from lunar 

surface to Earth and the Sun, along with the distribution of 

permanently shadowed regions (PSRs) and areas characterized 

by excellent solar illumination. The visibility datasets were 

generated by time-averaged computational models conducted 

hourly across a span of 18.6 years, as detailed in [7]. 

To assess the scientific potential, we collected data that 

describe geological features, thermal properties, and the 

distribution of water-ice and volatiles. We incorporated the 

comprehensive geologic map published by the US Geological 

Survey [29], which synthesizes lunar geological knowledge, 

categorizing units by type and age. For thermal environment 

insights, we used the Diviner lunar radiometer experiment to 

obtain average bolometric brightness temperature maps for 

lunar summer and winter conditions [30]. The presence of 

water-ice was determined using the Moon Mineralogy Mapper 

(M3) instrument, which identifies water-ice-bearing pixels 

(WIPs) through distinct near-infrared absorption features in 

reflectance spectra [31]. We also examined the thermal 

stability of solid carbon dioxide by analyzing the averaged 

sublimation rates of CO2 over an 11-year period, as measured 

by Diviner [32]. Areas exhibiting low sublimation rates, 

known as cold traps (CTs), could harbor resources for fuel and 

life support material production. Furthermore, we evaluated 

the abundance of water equivalent hydrogen (WEH) within 

the top meter of lunar regolith, using data from Lunar 

Exploration Neutron Detector (LEND), providing WEH maps 

and incorporating findings from the literature [33-35]. 

TABLE I 

THE DATASETS RELATED TO ENGINEERING SAFETY AND SCIENTIFIC BENEFITS 

 

Type Dataset Resolution Source 

DEM 
LOLA DEM 20 m PDS 

Chang’ E-2 DEM 20 m 
Lunar and Planetary Data Release System 

DOM Chang’ E-2 DOM 7 m 

Slope 
LOLA derived slope maps 

120 m 
PDS 

5 m 

Chang’ E-2 slope 20 m Calculated from DEM 

Visibility 

Visibility of the sun 

120 m LOLA derived products (PDS) Visibility of the earth 

PSR map 

High sunlight point - LOLA derived products 

Geologic Map Unfined Geologic Map - USGS Astrogeology Science Center 

Thermal environment Average temperature (summer & winter) 240 m Diviner Lunar Radiometer Experiment 

Ice storage 

Averaged sublimation rate of CO2 240 m Diviner derived product 

WIPs 280 m M3 derived product 

WEH abundance 1000 m LEND derived product 
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Fig. 2. Factors reflecting the engineering safety and scientific benefits of the landing sites. 

 

C. Quantitative site selection factors 

For engineering safety considerations, we focused on 

quantifying favorability for exploration tasks using two terrain 

factors and three visibility factors. Terrain characterization 

was conducted using DEMs and slope data obtained from the 

LOLA, prioritizing areas with flatter topography. Visibility 

factors, also derived from LOLA, included average visibility 

to the Sun and Earth, which are indicative of solar power 

generation and communication capabilities, respectively. 

These visibility factors, which are expected to be higher at 

preferred landing sites, were used directly as site selection 

factors. We further sought locations with ample solar 

illumination and minimal durations of continuous shadow, as 

described by [7]. Such sites are optimal for constructing multi-

site solar power systems capable of supporting sustained 

energy supply for future lunar bases. Proximity to these high-

illumination areas increases a region's suitability for future 

missions. Therefore, we employed the distance cost tool to 

calculate the minimum cost path to potential energy supply 

locations, incorporating the normalized value as a site 

selection factor. 

The primary hazards associated with planetary exploration 

include slope, energy availability, and communication 

capabilities [36]. Assuming that available relay satellites can 

furnish communication support, we focus solely on the 

combined weight of terrain and energy costs as the travel cost 

for each grid cell. Lunar vehicles equipped with batteries are 

capable of traversing minor shadowed regions. However, 

hazardous terrain is not permissible. Consequently, we 

assigned a higher weight of 60% to terrain costs and 40% to 

energy costs. Thus, the cost formula can be given by: 

total cost = 60% × terrain cost + 40% × energy cost     (1) 

where terrain and energy costs were scored on a scale from 1 

to 10, following the reclassification of slope and average sun 

visibility data. Grids with lower slopes and higher illumination 

were assigned lower driving costs, reflecting their increased 

suitability for landing and operations. 

To evaluate the scientific merit of potential landing sites, 

we quantified factors encompassing the storage of volatile 

substances, temperature conditions, and geological diversity. 

We identified four factors to gauge volatile storage, two to 

assess thermal conditions, and one to measure geological 

abundance. Water-ice, being a critical volatile resource, was 

directly used as a factor, WEH, to characterize the prospective 

storage of water-ice. The proximity to features such as WIPs, 

PSRs, and CTs is indicative of the possible accumulation of 

volatiles in the vicinity. We employed Euclidean distances to 

measure the proximity to these three features, generating 

corresponding factors for each. Temperature plays a pivotal 

role in the retention of volatiles and imposes thermal 

management challenges on lunar exploration instruments. 

Therefore, we incorporated average summer and winter 

temperatures as two separate factors to depict the thermal 
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environment. The geological diversity of a region enhances its 

scientific value for soil sampling and geological studies. 

Regions surrounded by geological units of varying ages and 

types are likely to yield significant scientific insights. To 

quantify geological abundance, we utilized the kernel density 

tool, which provided a measure of the distribution of 

geological units, subsequently used as a factor in our analysis. 

III. METHODS 

We developed a CNN-based methodology for identifying 

prospective lunar landing sites, as illustrated in Fig. 3. This 

method comprises three primary stages: a) We processed the 

acquired spatial datasets to extract quantitative factors 

instrumental for site selection and generated training samples 

by sampling within demarcated public areas earmarked for 

future landings; b) Utilizing these samples, we trained the site 

selection model and conducted predictions across the study 

area to pinpoint potential landing sites. A subsequent model 

interpretation phase was undertaken to understand the 

predictive factors influencing site selection; c) We then 

grouped the identified potential landing sites and performed a 

statistical analysis on them. Additionally, we established a set 

of evaluation criteria to assess the viability of constructing 

bases at these candidate locations. Our approach harnesses the 

power of lunar big data analytics to facilitate the mining and 

discovery of site selection insights. The objective is to compile 

a database of feasible landing sites in the lunar south pole 

region, utilizing intelligent methodologies to support the 

spectrum of scientific research and commercial exploration 

endeavors anticipated in the future. 

A. CNN-based site selection method 

We developed a 1D-CNN-baed method to extract site 

selection rules. The network comprises several layers: input 

layer, convolutional layers, pooling layers, fully-connected 

(FC) layers, and output layer. The input layer was designed to 

receive and normalize the site selection factor data. The 

convolutional layer employs a distinct set of weights to 

capture local features and structural information by sliding 

over the feature vectors produced by the preceding layer [37]. 

Rectified Linear Unit (ReLU) is employed as the activation 

function, as recommended by [38], for its effectiveness in 

addressing gradient vanishing. The max pooling function 

segments the layer into distinct regions using rectangular 

windows, selecting the highest values from these windows to 

represent the output layer [39].  The FC layer reshapes the 

output of the final pooling layer into a one-dimensional feature 

vector and fully connects it to the output layer [40]. The 

output layer employed the Softmax activation function, which 

converts the inputs into a normalized probability distribution 

that sums to one [39]. 

In addressing the challenge of evaluating landing 

feasibility amidst varying factors, this study introduced a 

tailored 1D-CNN framework, depicted in Fig. 3b and detailed 

in Table II. The model consists of two sequential convolution 

stages, both utilizing 1×2 convolution kernels. It processes 12 

factors from each pixel to determine the landing feasibility 

(PLA or non-PLA). To optimize the identification of potential 

 

TABLE II 

NETWORK ARCHITECTURE PARAMETERS OF THE 1D-CNN 

 

No. Network layer 
Convolution kernel 

Size Number 

1 Conv.1 2×1 16 

2 Maxpool 1 2×1 16 

3 Conv.2 2×1 32 

4 Maxpool 2 2×1 32 

5 FC 2 1 

6 Softmax 2 1 

 
Fig. 3. The workflow of the CNN-based site selection method. (a) Data processing to extract site selection factors followed by 

the creation of a training dataset through sampling; (b) Training of the CNN-based site selection model and the application of its 

generalization capabilities; (c) Analysis of site selection specific to the lunar south pole region. 
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lunar landing sites using a CNN, we focused on minimizing 

the network's loss function. We used the gradient descent 

optimization algorithm to adjust the network's weights and 

biases iteratively, minimizing the loss function and refining 

the model parameters. The cross-entropy loss function can be 

expressed as [41]: 

𝑙𝑜𝑠𝑠 = −
1

𝑛
∑ [𝑦𝑘 ln 𝑡𝑘 + (1 − 𝑦𝑘) ln(1 − 𝑡𝑘)]
𝑛
𝑘=1        (1) 

where n is the number of PLA samples; t is the predicted 

value; y is the true value of the sample. Upon finalizing the 

CNN model, we proceeded with landing site predictions using 

the validation dataset. The training performance of the model 

was quantitatively assessed using the confusion matrix. 

B. Landing site acquisition and optimization 

To ensure engineering feasibility at CNN-predicted landing 

sites, fixed thresholds for factors related to engineering safety 

were determined based on the 60-meter resolution dataset: 

slopes less than 12° and sun visibility greater than 35% and 

earth visibility great than 15%. Any PLAs failing to meet 

these requirements were reclassified as non-PLAs. In addition, 

based on the slope data at a 5 m resolution below 87.5°S and 

at a 20 m resolution above 87.5°S, we further conservatively 

generated a mask to identify hazardous zones characterized by 

slope steeper than 12 degrees. This restriction meets the safety 

redundancy requirements at the current level of rover design 

[42]. Exceeding this slope may cause the rover to become 

unstable and increasing the risk of mission failure. This 

operation excluded small hazardous areas contained in the 

PLAs obtained in the above step. Refined landing areas were 

then encoded within a 5 m resolution raster, with safe 

locations assigned an attribute value of 1, while all other 

regions were assigned a value of 0. 

Due to the technical constraints in the aircraft's flight 

control during landing, it is necessary to have a sufficiently 

expansive area surrounding the target landing zone. Based on 

the aerospace engineering department's evaluation, the 

minimum required space should be a circular area with an 

approximate diameter of 260 meters. Thus, we designed a 

circular sliding window with a diameter of 260 m to traverse 

the encoded raster (Fig. 4). At each position, we tallied the 

number of safe landing pixels encapsulated by the window, 

moving the window by one raster unit (5 m) at each step. The 

position with the highest count was deemed suitable for being 

the landing point. To generate the distribution of landing sites, 

we sampled these identified landing point regions at a 

minimum separation of 120 m. Then we spatially clustered 

and grouped the obtained landing sites based on x and y 

coordinates for further statistical analysis of attributes. 

C. Factor importance assessment based SHAP 

To enhance the interpretability of the site selection model, 

we conducted an analysis to elucidate the rationale behind its 

predictive output. This was achieved by calculating SHAP 

values [28], which quantify the influence of each feature on 

the model's predictions for individual samples. By aggregating 

SHAP values across multiple samples, we can discern the 

collective impact of features on model predictions, thereby 

yielding a global interpretation of the site selection model. 

Assuming that the mean of the target variable for all samples 

in the model is ybase, the sample i is xi, and the feature j of the 

sample i is xij, which has a SHAP value of ϕ(xi,j), the model's 

predictive value for sample xi can be given by [28]: 

𝑦𝑖 = 𝑦𝑏𝑎𝑠𝑒 + 𝜙(𝑥𝑖,1) + 𝜙(𝑥𝑖,2) +⋯+ 𝜙(𝑥𝑖,𝑘)         (2) 

where 𝜙 > 0 or 𝜙 < 0 indicates that the feature has a positive 

or negative effect on the prediction of the target value. SHAP 

values not only provide the magnitude of feature influence but 

also the direction—whether a feature contributes positively or 

negatively to each sample's prediction.  

The overall importance of each feature to the model's 

prediction was determined by averaging the absolute SHAP 

values across all samples. The importance of feature j can be 

as calculated by [24]: 

𝐼𝑗 =
1

𝑁
∑ |𝜙(𝑥𝑖,𝑗)|
𝑁
𝑖=1                             (3) 

where Ij is the importance of feature j for model prediction, 

providing a global interpretation of the CNN-based site,  

 
Fig. 4. Methodology for delineating circular landing sites with diameter exceeding 260 m. 
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selection model. The theoretical calculation of a feature's 

SHAP value can be given by [24]: 

𝜙𝑗(𝑓) = ∑
|𝑆|!×(|𝑁|−|𝑆|−1)!

|𝑁|!
× [𝑓(𝑆 ∪ {𝑗}) − 𝑓(𝑆)]𝑆⊆𝑁\{𝑗}    (4) 

where N is the set of all features; S is the subset of features 

that does not contain feature j; 𝜙𝑗(𝑓) is the SHAP value of 

feature j; f(S) is the predicted output of the model given the 

subset of features S. 

Calculating SHAP values for a model can be 

computationally demanding, particularly when dealing with 

numerous features or incomplete feature subsets. To address 

this challenge, the SHAP Python library offers efficient 

algorithms for approximating SHAP values, which can return 

SHAP values as numpy arrays and support visualization. This 

facilitated the identification of factors that positively or 

negatively influence the model's predictions, thereby offering 

enhanced understanding of the model's mechanism. 

D. Lunar infrastructure suitability assessment 

We assessed the suitability of potential lunar landing sites 

identified by the CNN site selection model within our study 

region. These sites are conducive for preliminary explorations, 

where activities like sample collection and analysis of geology 

and volatile materials can be performed with limited extended 

durations. Nevertheless, the mission design and process for  

 

TABLE III 

CRITERIA OF INFRASTRUCTURE SUITABILITY ASSESSMENT 

 

Criteria type Description 

Resource 

utilization 

Evaluates the potential for in situ utilization of 

volatiles, including the assessment of the WIPs in 

proximity, the availability of safe routes with slopes 

under 15° to major CTs, and WEH abundance. 

Energy 

supply 

Assesses the potential for solar energy supply 

through a combined analysis of mean solar visibility 

and the presence of surrounding areas with high 

sunlight exposure. Regions with sunlight availability 

for more than half of the lunar daylight hours 

receive preferential consideration. 

Expandability 

Gauges the potential for future expansion and 

synergy with multiple missions, by considering the 

size of adjacent secure terrain and the connectivity 

to prospective sites for subsequent missions. 

Earth 

visibility 

Considers the potential for communications with 

Earth and moon-based Earth observation, evaluated 

by the average Earth visibility. 

Scientific 

benefits 

Assesses the potential for acquiring additional 

scientific knowledge, determined by the diversity of 

geological unit types surrounding the region. 

 

TABLE IV 

CRITERIA OF INFRASTRUCTURE SUITABILITY ASSESSMENT 

 

Type 
Sample 

Number 
Proportion 

Area/ 

km2 

Block 

number 

PLA 2898 12.50% 10.47 71 

Non-PLA 20282 87.50% 73.02 120 

Sum 23180 - 83.49 191 

establishing a lunar research station is more complex. To this 

end, we enhanced our evaluation of the CNN-predicted 

landing sites by employing a set of infrastructure suitability 

assessment criteria, as delineated in Table III. These criteria 

are instrumental in the identification of candidate base 

construction regions (CBCRs) and facilitate a thorough 

analysis of these regions, enriching our understanding of their 

spatial distribution patterns across the study area. 

IV. RESULTS 

A. Training samples for the CNN model 

We conducted a comprehensive analysis of the potential 

landing sites delineated in the proposed future lunar south pole 

exploration missions and identified six areas, each with side 

lengths ranging from 16 to 27 kilometers, to serve as the 

foundation for our training sample regions (Fig. 3a). Five of 

these areas correspond to the 13 landing zones announced by 

the Artemis program, while the remaining one was situated on 

the periphery of Amundsen Crater, a focal point for 

construction activities within the ILRS initiative.  

The geographic distribution of the six rectangular areas 

within the study area was intentionally dispersed, and the 

environmental and geological characteristics of the different 

areas varied considerably, especially in terms of their 

scientific value, such as the variety of geological types and 

ages of formation or the potential abundance of surrounding 

water-ice reserves. Therefore, areas with different 

characteristics should have their own special site selection 

considerations, and it is necessary to carry out a detailed 

manual assessment within these six areas to evaluate the 

distribution of geologic and water-ice targets as well as the 

environmental and visibility conditions around the areas in 

order to ascertain the most appropriate landing grids for PLA 

samples. This helped the model to comprehensively mine and 

understand the complex siting rules in different regions and 

improve the robustness of our model. The layout of the 

training samples is illustrated in Fig. 5. These samples 

encompassed a diverse array of lunar surface unit types, 

thereby enhancing the model's ability to generalize across 

different terrains. Utilizing the selected PLA and non-PLA  

 

 
Fig. 5. Distribution of datasets used to train the CNN model. 
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Fig. 6. Histogram comparing factor value distributions for PLA and Non-PLA samples. 

 

samples, in conjunction with the compiled dataset of study 

area factors, we developed the training dataset for the CNN-

based site selection model. 

The completed sample dataset comprises 23,180 data 

entries. Each entry includes 12 factors and one label indicating 

whether it is a PLA or a non-PLA. Table IV presents the 

statistical breakdown: 2,898 entries are PLA samples, making 

up 12.5% of the dataset and spread across 71 blocks, while 

20,282 are non-PLA samples, constituting 87.5% of the total, 

dispersed over 120 blocks. We allocated 80% of this dataset 

for training the CNN model and reserved the remaining 20% 

as a validation set to assess the model's performance. 

Additionally, we conducted an analysis to examine the factor 

value distributions for PLA and non-PLA samples, which 

were graphically represented in Fig. 6, which included 

histograms of the distributions and a purple line depicting a 

meticulously fitted normal distribution to the data. 

B. Model training and prediction 

The sample dataset acquired from the preceding analysis 

was utilized to train the CNN-based site selection model. The 

model's performance, as delineated by the confusion matrix in 

Table V, demonstrated exceptional accuracy, with results 

surpassing 99% for both training and validation datasets. The 

consistent prediction accuracies across training and validation 

sets underscores the model's precision in identifying viable 

landing sites. The acquired CNN model was then tested for its 

generalization and reliability capabilities in the study area, 

yielding predictions of 0.9% for PLA areas and 99.1% for 

non-PLA areas. Given the harsh surface conditions prevalent 

at the lunar south pole, the lower predicted proportion of PLAs 

aligned with expectations.  

Subsequent to the predictions, high-resolution terrain data 

(at 5m/20m resolution) were employed to detect and exclude 

small hazardous zones within the anticipated PLA regions, 

taking into account the minimum size requirement for a 

landing site. Consequently, we identified 16,423 potential 

landing sites after refining the results. These sites were spaced 

at a minimum of 120 meters apart, as depicted in Fig. 7. For 

organizational purposes, the landing sites were classified into 

22 categories based on their geographical distribution, which 

is illustrated within the yellow boxes in Fig. 7. The landing 

sites in the same cluster only represent their geographic 

proximity. Notably, many sites are situated on the peripheries 

of large impact craters (e.g., group 13 in Fig. 7b) and on the 

moderate slopes of towering mountain ranges (such as group 5 

in Fig. 7d), as well as on the subtle inclines at the 

TABLE V 

TRAINING AND VALIDATION PERFORMANCE OF THE CNN-BASED SITE SELECTION MODEL 

 
Train confusion matrix   Validation confusion matrix 

 Predicted  
PA (%) 

   Predicted 
PA (%) 

Real PLA (Pixel) Non-PLA (Pixel)   Real PLA (Pixel) Non-PLA (Pixel) 

PLA (Pixel) 2329 8 99.7   PLA (Pixel) 583 4 99.3 

Non-PLA(Pixel) 4 15856 100.0   Non-PLA(Pixel) 2 3960 99.9 

UA (%) 99.8 99.9    UA (%) 99.7 99.9  
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Fig.7. Distribution of potential landing sites that are clustered into 22 groups. 

 

edges of plains (e.g., groups 12, 21, and 22). The areas 

surrounding these landing sites are marked by a diverse array 

of geomorphological features, and our predicted landing sites 

coincide with most of the 13 high-value landing zones 

announced by Artemis. 

C. Factor importance by SHAP value 

The relevance of 12 site selection factors in identifying 

PLAs was quantified using SHAP values. The SHAP values 

provide insights into the feature importance within our neural 

network model. We computed the SHAP values for each 

feature across all samples and visualized these in Fig. 8a. This 

analysis revealed the most influential features and quantifies 

their effects on model predictions. The Y-axis of Fig. 8a 

represents the individual site selection factors, arranged in 

order of their average impact on the model's output (as 

depicted in Fig. 8b). The X-axis of Fig. 8a represents the 

SHAP values, indicating the degree to which each feature 

drives the model's predictions. In this context, a SHAP value 

less than 0 implies that the corresponding feature positively 

influences the likelihood of a site being a potential landing 

area. Each point on the plot corresponds to the SHAP value 

for a particular sample and the overlapping scatter is dithered 

in the y-axis direction, with the color of the point denoting the 

actual feature value. This color-coding scheme allows us to 

discern the impact of raw feature values on the model's 

predictive behavior. 

In terms of scientific value, for example, for the 

geodiversity, samples with higher feature values (pink points, 

corresponding to areas rich in surrounding geologic unit types) 

tend to have SHAP values less than 0 and high absolute 

values, indicating that high geologic value attributes in these 

areas are of high importance to the model in predicting PLA 

results. Similarly, the high WEH abundances and short 

distances to volatiles can be seen to be of importance when the 

model makes PLA decisions. Certainly, the engineering safety 

related factors also clearly shows the impact of a single metric 

take on the model predictions. Peculiarly, when winter 

temperature was moderate, the model was more likely to 

produce PLA results. While summer temperature doesn’t 

show this feature clearly, probably because of its strong 

correlation with winter temperature. The above analysis 

reveals that our model is consistent with the reported site 

selection criteria considered in the actual task [43], indicating 

that our model mined the correct site selection rules. 

SHAP also offers a comprehensive approach to mapping 

global feature importance. It considered the cumulative dataset 

and computed the mean absolute SHAP value for each factor, 

as illustrated in Fig. 8b. Among the 12 evaluated factors, sun 

visibility and distance to WIPs emerges as the most significant 

contributor to identifying PLAs. Slope and distance to PSR 

rank as the next most influential factors. Lesser contributing 

factors include cost to high sunlight point and summer 

temperature. These findings underscore the varying degrees of 

impact that each factor has on the determination of potential 

lunar landing sites. As shown in Fig. 8a, scatters with SHAP 

values near 0 have a higher distribution density (maximum 

dithering in the y-axis direction). These scatters have limited 

impact on prediction. 

We further quantified the relationship between the values 

of different factors and their SHAP values (Fig. 9). As well,  
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Fig. 8. SHAP value of each factor and the average impact of each feature on the model's predictions. 

 

 
Fig. 9. Partial dependence plot of 12 factors. The horizontal coordinate shows the attribute value of the factors, and the vertical 

coordinate is the SHAP value of the feature, where SHAP value less than 0 means that the model predicts the result as PLA. 

 

SHAP value of less than 0 means that the corresponding factor 

positively influences a site as a PLA. Specifically, in Figs. 9e, 

9f, and 9g, the regions closest to the volatiles have larger 

absolute values of SHAP and are more inclined to be PLAs. 

For Fig. 9f, when the value of the attribute is larger, the 

absolute value of SHAP is larger overall. Thus, the model is 

more inclined to recognize areas with geodiversity greater 

than 0.04 as PLAs, which indicates that, overall, the landing 

zone possesses a more abundant geologic background. The 

above analysis shows the correctness of the site selection 

process in this paper from the perspective of model 

interpretation by SHAP, matching site selection requirements. 
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Fig. 10. Box plots illustrating factor distributions for the 22 landing site groups. 

 

D. Analysis of the landing site groups 

The analysis of the 22 landing site groups assumes that 

sites within each group, due to their proximity, share similar 

characteristics (but were not always in the same geomorphic 

unit, like groups 19 and 21, respectively, in proximity to 

Sverdrup and Amundsen craters). To elaborate on this, the 

factor distributions for these groups were meticulously 

represented via box plots in Fig. 10. We compiled data on the 

factors pertaining to 16,423 landing sites, where the attributes 

of each site are estimated using the values at the coordinates of 

its geometric center. In the box plots, the central blue boxes 

encompass 50% of the median data for each group. The box's 

whiskers extend to cover approximately the next 25% of the 

data points at the higher and lower ends of the range. The 

extremities are denoted by black horizontal lines, representing 

the maximum and minimum factor values of the group. Data 

points that fall outside the range of the whiskers are outliers 

and are marked with red cross symbols. The median value for 

each group is indicated by a red line located at the center of 

each box. 

E. Assessment of the candidate lunar base locations 

In our study, we refined the process of selecting sites for a 

lunar base by incorporating criteria tailored to the construction 

feasibility of potential landing zones previously identified by 

CNN. The initial phase involved scrutinizing the 22 groups of 

landing sites to pinpoint potential CBCRs. Adequate solar 

irradiation is the basis for the continued operation of a lunar 

base. Thus, we began by examining the average illuminance 

across the sites within each group. The site with best sun 

visibility in each group was designated as a primary CBCR. 

Additionally, economically viable sites situated a reasonable 

distance from sites with excellent solar illumination were also 

regarded as potential candidates. Table VI listed the 31 

preliminary CBCRs from the 22 landing site groups. 

Subsequent to the preliminary selection, we conducted a 

comprehensive assessment of the base construction potential 

of the identified candidate sites based on several key criteria 

outlined in Table III. These criteria prioritized the availability 

of water resources, the capability to sustain energy 

requirements for lunar base operations, the prospects for base 

expansion, and the opportunity for further geoscientific 

exploration. We employed Geographic Information System 

(GIS) software as a visualization and distance-measurement 

tool, which aided us in manually mapping out secure routes 

from the CBCRs to substantial volatiles reserves, as well as in 

making preliminary calculations of the distances involved. 

The outcomes from this suitability evaluation for the initial 31 

sites were delineated in Table VI. It is important to clarify that 

the high storage probability of volatiles in Table VI refers to 

the fact that this CBCR is located in an area where WEH is 

abundant and there are large CTs nearby with aggregated 

WIPs inside, which does not represent the exact content of 

volatile substances. 

The analysis of potential volatiles storage, as depicted in 

Fig. 11, indicates that strong volatiles potential is present 

around the CBCRs below 86°S latitude. These sites are rich in 

WEH and the majority of WIPs are predominantly found in 

large impact craters within this region. Additionally, 
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TABLE VI 

SUITABILITY ASSESSMENT FOR LUNAR BASE CONSTRUCTION ACROSS 22 GROUPED REGIONS 

 

CBCS 
Sun/Earth 

visibility (%) 

Storage of 

volatiles 

Safe path 

(km) 

Nearby 

GeoUnits 
CBCS 

Sun/Earth 

visibility (%) 

Storage of 

volatiles 

Safe path 

(km) 

Nearby 

GeoUnits 

G1-1 55/63 High probability  20 1 G11-2 49/47 Few large CTs 32 1 

G1-2 56/92 High probability  32 2 G12 43/49 Few WEH/WIPs Non 1 

G2-1 69/59 High probability  15 2 G13 65/58 High probability 7 2 

G2-2 45/70 Few large CTs Non 2 G14-1 59/58 High probability 14 2 

G3-1 58/71 Few WEH/WIPs 15 3 G14-2 66/54 High probability 23 2 

G3-2 58/70 Few WEH/WIPs 15 3 G14-3 85/57 High probability 26 2 

G4 60/68 Few WEH Non 2 G15 78/52 High probability 18-20 2 

G5-1 60/71 Few large CTs 48 2 G16 54/51 High probability 13 2 

G5-2 86/60 Few large CTs 40 2 G17 60/53 Few large CTs Non 2 

G5-3 49/73 Few large CTs 36 2 G18 77/58 Few large CTs Non 1 

G6 53/71 Few WEH 3 2 G19 55/44 High probability 8 2 

G7 54/78 Few WEH 33 3 G20-1 71/46 High probability 7 2 

G8 56/56 Few large CTs 50 1 G20-2 66/49 High probability 14 3 

G9 53/50 High probability 20 3 G21 49/35 Few WEH/WIPs 20 1 

G10 48/44 High probability 12-20 3 G22 56/41 Few WEH/WIPs Non 3 

G11-1 58/51 High probability 15 1      
 

 
Fig. 11. Visualized distribution of volatile substances and CBCRs. The map background is a WEH abundance map overlaid on a 

rendering of LOLA terrain, with WIPs (yellow point) and CTs (blue polygon) qualitatively illustrating good water ice storage. 

Orange and purple circles represent CBCSs, where purple circles have excellent illumination conditions. 

 

Cabeus, Amundsen, and Leibniz (above 86°S) also boast 

significant WEH quantities and are situated in close proximity 

to extensive CTs. The majority of CBCRs are connected by 

secure routes to substantial volatiles, facilitating short-distance 

resource extraction. Visibility factors as presented in Table VI, 

suggest that most sites can maintain solar illumination for over 

half the lunar day and afford nice visibility of Earth. Some of 

the CBCRs could offer near-constant solar exposure (the 

purple circles in Fig. 11). In particular, these CBCRs are 

generally found near geological boundaries and are encircled 

by diverse geological units. Conducting geological exploration 

within these sites could yield additional scientific insights. 

F. Lunar base site selection analysis 

Detailed regional analysis of CBCRs reveals significant 

insights into the terrain and potential resources of the core 

regions. The three-dimensional topography of four notable 
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regions, Cabeus, Leibniz β, Shackleton, and Amundsen, is 

displayed in Fig. 12, with vertical dimensions exaggerated by 

a factor of 1.5 to enhance topographical clarity. Each of these 

regions possesses distinct scientific interest and is encircled by 

various sites previously identified as viable for station 

construction. Within these findings, the potential site for a 

lunar research station is further scrutinized. 

As depicted in Fig. 12a, the Cabeus cater, a vast impact 

crater, hosts extensive CTs, with a higher concentration of 

WIPs on its interior's left side. The nearest CBCRs are 

designated as G1-1 and G1-2. G1-2 resides atop an elevated 

hill, encircled by challenging terrain, making access difficult. 

The paths from G8, G2-2, and G2-2 to Cabeus's volatile sites 

are considerably long. G2-2, situated on the extended 

Malapert Massif, lies 20 km away from a high sunlight point 

atop its summit. However, the vicinity is characterized by 

sparse volatile resources, such as water-ice. G2-1 is located 

closer to Haworth. Therefore, G1-1 emerge as the most 

advantageous locations for direct exploration of Cabeus's 

interior and for In-Situ Resource Utilization (ISRU) activities, 

due to the proximity to water-ice and accessible terrain.  

The Leibniz β region is characterized by its highland 

terrain, with the eastern portion bordering the Nobile crater. 

This crater boasts extensive CTs and numerous water-ice 

deposits, as visualized in Fig. 12b. Within Leibniz β, all three 

CBCRs benefit from outstanding solar illumination, attributed 

to high sunlight points nearby. The primary challenge faced by 

these sites is the topographic barrier exceeding 15 degrees 

(Fig. 11d), which impedes direct access to adjacent water-ice-

rich areas. Nonetheless, our analysis suggests that near site 

G5-3, a navigable path to Nobile's internal water-ice zone 

could be established if the slope constraint is moderated to 20 

degrees. This adaptation would necessitate the future 

innovation of lunar rovers capable of traversing rugged terrain. 

In contrast, Shackleton crater, as illustrated in Fig. 12c, is 

delineated by its precipitous sidewalls, rendering it unsuitable 

for vehicular exploration. Alternative investigation methods, 

such as aerial fly-in to conduct reconnaissance, must be 

employed. The candidate sites we have identified are 

strategically placed in the surrounding regions to exploit this 

unique topology. Sites G14 (1-3) and G15, in particular, are 

favored by their proximity to high sunlight points, which 

ensures an abundant energy supply. It can be suggested that 

these sites are optimally positioned for the extraction of 

volatiles from the larger CTs in the vicinity, including those 

within Sverdrup, Henson, and de Gerlache craters.  

The Amundsen crater, a significant impact feature with a 

level floor, is captured in Fig. 12d. Despite its flat interior, the 

crater does not receive adequate solar radiation (> 50%) to 

sustain long-term base operations. Consequently, the sites we 

recommend within this region are situated along its periphery. 

Both G11-2 and G21 offer access routes into the crater. For 

G11-1, no route is available, but there is easy access to carry 

out surveys of the adjacent Faustini area. Compared to G11-2, 

G21 benefits from a superior energy profile and proximity to 

the crater's interior. To mitigate transportation challenges, 

establishing an energy relay station on the flat base of 

Amundsen, would be beneficial to support operations 

emanating from G11-2 as a lunar base. 

 

 
Fig. 12. Mapping of CBCRs in four regions overlaid on three-

dimensional terrain representations. (a) Cabeus; (b) Leibniz β; 

(c) Shackleton; (d) Amundsen. 

V. DISCUSSION 

A. Prediction of potential landing areas 

Our research demonstrates that 1D-CNN can effectively 

extract complex features from site selection factors. This 

approach provides an automated, data-driven method to 

evaluate potential landing sites based on quantitative factors, 

enhancing the efficiency of mission planning process. The 

parameter sharing scheme of 1D-CNN can reduce the number 

of model parameters, decrease the risk of overfitting, and 

improve the model's generalization ability [40]. However, it is 

crucial to carefully curate and validate the effectiveness of the 

model in predicting potential landing sites. 

The vast expanse of the lunar south pole poses various 

challenges for site selection, including extreme environmental 

conditions, complex geological and resources distribution. 1D-

CNN offers unique advantages compared to other methods. 

Empirical methods such as weighted superposition and 

threshold screening are the most convenient choices, with the 

setting of weights and threshold parameters being crucial [44, 

45]. Such unified rules are applicable to partial regions and 

cannot be effectively applied to the whole region with 

complex features in the lunar south pole. Weighted overlay 

can obtain landing sites with better overall performance, but 

the performance of each indicator cannot be guaranteed and 

may lead to the omission of some areas. The threshold 

screening method essentially identifies the concatenation of 

regions that satisfy the limitations of multiple factors. 

However, if many metrics are involved, finding areas that 

satisfy all conditions may be challenging. Typically, the 

problem of abstract site selection was projected into the space 
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of heuristic algorithms using a multi-objective function [46, 

47], and the solutions are highly related to the function design 

and the generated initial solution selection [48]. The definition 

of the initial solution could greatly affect the final solutions 

and thus the site selection results. 

1D-CNN can automatically learn patterns and rules, 

allowing for adjustments and optimizations based on different 

datasets and site selection objectives [49, 50], thus breaking 

free from fixed parameters choice and obtaining good 

adaptation and generalization capabilities. The mining of site 

selection rules for a large-scale region can be achieved with 

high-quality training samples labelled by finite manual 

surveys, supporting a comprehensive and efficient screening 

of potential landing sites. Overall, our 1D-CNN approach 

complements existing methods for determining landing sites 

with outstanding robustness and reliability in large-scale 

landing site screening. We believe that under different mission 

scenarios and site selection requirements, the appropriate 

method should be selected to meet circumstances. 

In terms of specific implementation, our approach follows 

a logical process from training to validation and then testing. 

The training and validation of the 1D-CNN model are based 

on manually sampled extensive datasets, both demonstrating 

exceptionally high accuracy. Detailed manual surveys 

revealed significant geological and environmental variations 

across these six regions, each with unique considerations 

regarding scientific value. During the testing phase, we 

applied the 1D-CNN model to a large lunar region to evaluate 

its generalization capability and reliability, as well as assess 

the feasibility of predicted PLAs. Specifically, we used box 

plots to analyze 12 site selection factors, demonstrating high 

feasibility of PLAs. SHAP analysis confirmed the correctness 

and reliability of the prediction process, highlighting the 

model's strong generalizability across different datasets.  

From the site selection results, our predicted landing areas 

show high scientific potential in terms of volatiles storage and 

geological richness. Specific space missions have considered 

additional features beyond the 12 factors we employed, such 

as restriction of ground launch systems, crew landing and 

return modules, and specific geological background 

requirements of the landing area. Therefore, the landing points 

chosen for the specific space missions represent subsets of our 

predicted landing sites. In conclusion, our study provides 

valuable insights for the large-scale screening of landing sites. 

B. Site selection factors and strategic considerations 

The SHAP analysis of the model indicated that the factors 

considered in our site selection analysis align with that in 

other space missions, with volatiles being the primary 

scientific targets. The key factors influencing the selection of 

landing sites are visibility, volatile deposition, slope, and 

geologic richness, which are also consistent with those in 

related studies [16, 51]. The presence of volatile substances 

such as water ice around the region is mainly indicated by the 

distance to WIPs, PSRs, CTs and WEH abundance in an 

integrated manner. However, the storage was only assessed 

qualitatively, and the storage depth and content of volatile 

substances were not mentioned, which requires more accurate 

remote sensing products. 

The selected five engineering safety factors are all key 

drivers in identifying the PLAs, particularly sun visibility and 

slope, among them the sun visibility has the largest SHAP that 

indicates the most significant impact. Subject to the strict 

constraints on slope, areas with very high sun visibility have a 

very stable supply of energy, and therefore it is more 

reasonable to choose these areas as landing sites. For example, 

if the landing site meets the requirements of all factors (see the 

scatters with SHAP less than 0 in Fig. 8a), sun visibility tends 

to be prioritized as a factor with a larger SHAP than other 

factors, particularly the scatters with absolute SHAP values for 

sun visibility greater than 0.15. This prioritization is intended 

to ensure that landing sites with sufficient energy supply are 

selected. The seven factors associated with scientific benefits 

are also all very significant for identifying the PLAs, with 

distance from WIP showing a larger SHAP value. 

Specifically, there is a correlation between the cost to high 

sunlight point and the average illuminance rate, therefore the 

cost factor is less important. Geological diversity signifies the 

range of geological formation processes represented within an 

area, with a notable concentration of indicator values in 

contiguous regions (Fig. 10k), hence the low contribution. Our 

predicted landing site features relatively moderate temperature 

conditions (Fig. 8a), and temperature's minor influence is due 

to the dependency on solar irradiance, which correlates with 

sun visibility conditions. It should be noted that for the factors 

in Fig. 8b that have a low mean SHAP value are of low 

importance from a global perspective. However, these factors 

may be important to consider for localized area predictions (as 

shown in Fig. 8a), such as the WEH abundance, which 

contribute more for sites with larger WEH values (the purple 

scatters) and tends to promote PLAs output for these sites. 

For site selection results, the predicted landing sites are 

distributed around the high-value regions [16, 51] of the lunar 

south pole, largely overlapping with most of the 13 high-value 

landing zones identified by Artemis. Specifically, landing sites 

are concentrated along the edges of large impact craters and 

plateau regions. Examples include the Leibnitz β plateau, as 

well as areas near craters such as Scott, Amundsen, 

Shackleton, and de Gerlache (Fig. 7). It is reasonable to 

believe that these sites will be prime candidates for future 

exploration missions. For lunar base construction site selection, 

we have chosen high-altitude base sites with optimal sun 

visibility. This strategic decision enables extensive traverses 

and sampling of various geological units surrounding the 

region. For above critical landing sites with excellent solar 

illumination and water-ice reserves, appropriate protection and 

equitable resource allocation are indispensable among 

different countries and agencies. 

Our studies on the geological value of the Moon are 

discussed only in terms of qualitative geologic richness, and 

we have chosen areas rich in geologic units as landing sites 

because they are likely to preserve more evidence of geologic 

evolution, while we have made little mention of the specific 
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evolutionary history and geology of the Moon. Actually, many 

sites could benefit from a variety of additional geological and 

mineralogy studies [52], promising to provide rich scientific 

finding. A specific assessment of the scientific potential of this 

level will require a great deal of future expert work. 

C. Prospects for future site selection 

The contribution of this study is to propose an end-to-end 

lunar south pole landing site selection framework based on 

1D-CNN. This method takes designed quantitative factors as 

input, directly outputs results, and has the potential for 

extension to other site selection objectives. The scientific 

goals of lunar south pole exploration are diverse, with the 

presence of water ice being a primary consideration for 

landing site selection and establishing research stations [53]. 

Therefore, our method is primarily tailored for water ice 

detection (including qualitative assessment of geological 

richness through kernel density) and is well-suited for this 

purpose. As technological advances and mission requirements 

are subject to change, lander design and mission objectives 

may also evolve. Therefore, site selection research needs to 

keep pace with the latest technological developments and 

mission requirements, making corresponding optimizations. 

Under different site selection requirements, varying 

resolutions or sources of data is needed. Our proposed 1D-

CNN site selection framework exhibits good adaptability in 

this regard. We have used data from multiple sources, which 

has demonstrated that 1D-CNN has the ability to be applied to 

a wide range of datasets. Through data preprocessing and 

quantitative evaluation (including methods such as Euclidean 

distance, cost distance and kernel density estimation), multi-

source spatial data is transformed into factor dataset with 

uniform resolution. By utilizing convolutional operations and 

pooling layers, 1D-CNN can effectively learn features of 

different data types and make predictions. Thus, our site 

selection framework can be conveniently extended to a wider 

range of data types. In the future, increasing the diversity of 

data for different site selection objectives into the site 

selection framework, will aid in broad screening of landing 

sites. For example, integrating geologic factors and 

performing model training to facilitate exploration of geologic 

targets can help identify optimal landing sites. 

From an operational perspective, the datasets utilized in 

this study have a resolution ranging from 5 m to 1 km, 

carefully chosen to strike an optimal balance between 

computational efficiency and result accuracy by segmenting 

the study area into 60 meters grid squares, where landing 

feasibility is assessed based on 12 factors within each grid. 

The resolution of some datasets (e.g., WEH abundance) is not 

high enough, so future improvements of our analyses will be 

required using finer datasets (especially those relevant to 

scientific value). Additionally, this study employed the 

Euclidean distance to quantify the distribution of targets for 

the convenience of rovers or spacecraft to directly access and 

explore water-ice. We did not consider the actual accessibility 

of these target areas. While earlier studies (e.g. reference [54]) 

have investigated the accessibility of large CTs, which is 

crucial for ensuring water resources. Moreover, we do not 

consider the dimensions of the target areas in our selection 

process, except for setting a minimum size threshold—only 

PSRs or CTs larger than 0.4 km2 are considered. In practice, 

larger areas with concentrated water ice are likely to hold 

greater appeal to mission planners. Such preferences should be 

incorporated into actual landing site selection efforts. 

VI. CONCLUSIONS 

We established quantitative factors to evaluate the 

feasibility of landing and the scientific value of areas near the 

lunar south pole. To predict potential landing sites on a large 

scale, we developed a high-performance CNN model. SHAP 

was employed to interpret the site selection model. Our results 

indicated that the suitable landing areas within the study 

region comprised less than 1% of the total area. By applying 

fundamental constraints, we finally identified 22 sets of 

landing sites across various regions meeting the necessary 

landing criteria. These sites conformed to a minimum size 

requirement of a circle with a diameter of 260 meters, 

exhibited smooth topography, favorable illumination 

conditions, and temperatures that were neither excessively 

cold nor hot. Such areas are conducive to volatile material 

studies and geological sampling in future dynamic exploration 

missions, such as rovers or flybys, offering additional 

geoscientific insights. The SHAP-based analysis showed that 

sun visibility and slope were the primary factors for landing 

site selection among those related to engineering safety. From 

a scientific perspective, the presence of water-ice, proximity to 

CTs, PSRs, and the diversity of geological units were key 

considerations. This prioritization ensures that the chosen 

landing sites are not only safe for landing but also of high 

scientific interest. 

The predicted landing sites are dispersed across a broad 

geographic area, exhibiting significant variations in 

environmental indicators and scientific value. To enhance the 

utility of our findings, we conducted a feasibility assessment 

for lunar base construction at each candidate landing site 

cluster, focusing on vital criteria such as ISRU potential, solar 

energy availability, and the prospects for base expansion. 

Given the variety of mission designs for exploring the lunar 

south pole, no uniform approach exists for in situ analysis and 

sampling. Consequently, mission planners should select 

landing sites based on the specific requirements of each 

mission. Our comprehensive database of proposed landing 

sites serves as a foundational resource from which mission-

specific locations can be further refined and chosen to align 

with distinct exploration objectives and requirements. 
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