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A New Spatiotemporal Filtering Method to
Reconstruct Landsat Time-Series for
Improving Estimation Accuracy of Forest
Aboveground Carbon Stock

Kai Huang *“, Chenkai Teng *“, Jialong Zhang ", Rui Bao

Abstract—Landsat time-series (LTS) archived the multitempo-
ral hyperspectral images, providing freely accessible and long-term
optical data for estimating forest aboveground carbon stock (ACS).
Due to LTS carrying noise, there were such issues as bias, outliers,
and missing values in ACS estimation. Hence, a new filtering
method named terrain-perceive spatiotemporal filtering (TP-STF)
was developed to improve the estimation accuracy. In TP-STF,
landforms were classified based on the terrain data. A computer-
recognizable identifier was generated by perceiving each terrain
unit. Combining the discriminative criteria with the spatiotemporal
information, the TP-STF adaptively selected performant filtering
to reconstruct LTS. Then, the random forests regression (RFR) was
employed to estimate ACS of Pinus densata in Shangri-La, Yunnan,
China. Compared with the other filtering, the TP-STF method’s
reconstructed LTS had the best modeling accuracy and the highest
prediction accuracy, with R?> = 0.903, RMSE = 17.049 t/hm?,
P = 81.080%, and rRMSE = 19.691%. The ACS results using
TP-STF and RFR were: 6.56 million tons in 1987, 6.44 million tons
in 1992, 6.33 million tons in 1997, 6.35 million tons in 2002, 6.72
million tons in 2007, 6.70 million tons in 2012, and 7.04 million
tons in 2017. The TP-STF could effectively denoise the LTS images
in high-altitude regions, providing a new approach to improve the
accuracy of remote sensing-based forest ACS estimation.
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1. INTRODUCTION

OREST aboveground carbon stock (ACS) is a significant

F indicator that reflects the reserve of carbon elements in
forest ecosystems, which is the result of the accumulation of
forest ecosystems over many years. Forest aboveground biomass
(AGB) is an important indicator reflecting the structure and func-
tion of forest ecosystems, which is the result of the long-term
production and metabolism of forest ecosystems [1]. The study
of forest ACS is based on the research of forest AGB [2]. The
research and analysis of ACS are of great significance to the
study of global climate change and the terrestrial carbon cycle
[3]. With the implementation of the International Geosphere—
Biosphere Program (IGBP) in the mid-late 20th century, the
productivity and AGB of forest ecosystems have been studied
worldwide [4], [5]. The IGBP made scholars in Europe and the
United States [6],[7], [8] gradually began to focus on the study of
forest carbon stock. It provided valuable reference data for forest
ACS estimation. At the beginning of the 21 st century, researchers
[9], [10], [11], [12], [13] also entered the culmination stage of
research on forest carbon stock estimation at the national scale.
The main methods of AGB/ACS estimation include the field
survey method and remote sensing-based estimation method
[14]. Despite the field survey method having high accuracy, it
is difficult to accomplish for large-scale determination of forest
AGB/ACS. With the development of remote sensing technology,
especially the unique advantages of Landsat satellite data and
its correlation with forest carbon stock [15], it is possible to
apply this emerging technology to estimate forest ACS at a large
scale. Compared with single-period remote sensing images,
the advantages of Landsat time-series (LTS) include long-term
continuity and less impact of seasonal variations. However, due
to the long temporal span of LTS is acquired by multiple sensors,
there are inconsistencies and various noises [16]. These issues
limit the in-depth application of LTS in estimating forest ACS. If
the original LTS is not properly filtered and reconstructed, using
LTS data for forest ACS modeling reduces accuracy and results
in deviations. It will potentially significantly lower the reliability
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of the model in estimating forest ACS. Thus, it is necessary to
filter the original LTS to obtain high-quality image datasets. The
main filtering applied in remote sensing are: Savitzky—Golay
(S-Q) filtering [17], Harmonic Analysis of Time-Series filtering
[18], Whittaker filtering [19], LandTrendr algorithm [20], and
Autoregressive Integrated Moving Average model [21]. Tradi-
tional filtering methods tended to focus on developing generic
algorithms rather than optimizing them for the specific needs
of particular fields [22]. In regions with complex landforms,
such as China, applying a uniform set of parameters for filtering
often did not align with practical realities [22]. Therefore, it is
necessary to choose or develop the best filtering method suitable
for the field based on different applications [1].

Our study developed a spatial-temporal filtering method—
terrain-perceive spatiotemporal filtering (TP-STF). This filtering
method used a linear approach that combined the Vondrak
smoothing method (temporal filtering), bilateral filtering (spatial
filtering), and TD bilateral filtering (spatiotemporal filtering).
The first uniqueness of the TP-STF was that the “Terrain-
Perceive” was to identify complex landforms by computer pixel-
by-pixel. Traditional classification algorithms required spatial
continuity, such as the Equal Interval method, Quantile method,
and K-means. For a high-altitude research area with com-
plex and spatially discontinuous terrain, the study introduced
the geographical detector (GeoDetector) [23] to achieve more
precise terrain recognition. The second uniqueness was that
“Spatiotemporal Filtering” selected the suitable filtering method
based on the characteristics of different terrains in the images.
This adaptive approach ensured that the filtering method was
highly compatible with the terrain features so that the pixels
could achieve optimal denoising and information retention. In
addition, it also significantly improved filtering efficiency, par-
ticularly in areas with complex terrain or high heterogeneity.

Therefore, the specific objectives of this study include: 1)
completing the development of the spatiotemporal filtering
method (TP-STF); 2) evaluating the performance of TP-STF in
RFR-based ACS estimation; 3) combining RFR and optimized
filtering method to reconstruct LTS for mapping ACS of Pinus
densata in Shangri-La.

II. STUDY AREA AND DATASETS
A. Study Area

Shangri-La is located between 26°52'-28°52'N and 99°20'-
100°19’E, Northwestern of Yunnan, Southwestern of China.
Southwestis the second major forest region in China. Shangri-La
is in the southeastern margin of the Tibetan Plateau [24], and
hinterland of the Hengduan Mountains [25], making it one of
the global hotspots for carbon stock research. The general trend
of landform is high in the north-west and low in the south-east.
Shangri-La has an average altitude of 3459 m and a maximum
height difference of 3892 m, with obvious vertical stereo climatic
features and rich forest resources. The Pinus densata is one of the
dominant species in the local area. Its dense forest canopy helps
to regulate runoff and purify water through transpiration. As a
long-lived species, it can fix and store a large amount of carbon
for a long period of time; therefore, it can maintain the dynamic
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TABLE I
LTS DATA USED IN THIS STUDY

Path/Row (Images)
Sensor type Time range 40/ 41/ 41/
132 132 131

Landsat 5 TM
Landsat 7 ETM+
Landsat 8 OLI

1987 to 2011 48 28 57
2012 to 2013 5 6 1
2014 to 2019 10 14 5

balance of atmospheric carbon dioxide and oxygen. In addition,
it plays a great role in the conservation of soil, the maintenance
of biodiversity, and the study of global climate change [26].

B. Datasets

1) Landsat Time-Series: The satellite images were from
1987 to 2019, which were provided by the National Aeronautics
and Space Administration (NASA) and the United States Geo-
logical Survey (USGS). Due to the problem of Landsat 7 scan
line corrector (SLC)-off imagery in 2003, data were obtained
from Landsat 5 ETM until 2012 and Landsat 8 OLI after 2013,
with gaps filled by Landsat 7 ETM+. Referring to the document
written by Roy et al. [27], the different sensors of Landsat were
harmonized based on the Google Earth Engine to obtain better
consistent LTS data in terms of spectral features.

Precipitation in the study area was concentrated in the summer
and autumn. It was difficult to synthesize effectively usable
LTS for continuous time intervals. For the generation of annual
composite images, the long time span would include too many
complex phenological factors, especially for vegetation [28].
Thus, we selected images with cloud cover less than 10% from
January 1 to March 31 and generated the annual composite
images using median compositing. The median compositing
method sorted all image values for each pixel within the time
frame and selected the middle value as the composite value for
that pixel, thereby reducing the impact of outliers.

Due to the screening period being in winter and spring, there
were areas within the study area covered by snowfall or perma-
nent snow. The ice, cloud, and cloud shadow were screened
based on FMASK algorithm that is provided in the Landsat
quality assessment band (QA band) [29]. The basic information
on LTS is given in Table I.

2) Permanent Sampling Plots: Permanent sampling plots of
Pinus densata were obtained from the National Forest Inventory
(NFI) program with a time distribution of seven periods from
1987 to 2017 at five-year intervals. The permanent sampling
plots were surveyed during the seven periods with a total of
136 records (see Fig. 1). The size of each permanent plot is
28.28 m x 28.28 m. Permanent sampling plots of NFI were stan-
dardized according to the “Technical regulations for continuous
forest inventory” [30]: 1) For the determination of the number of
trees, the count for trees with a diameter at breast height (DBH)
> 8 cm must be accurate. For trees with a DBH < 8 cm, a
5% margin of error is acceptable. 2) For DBH measurement, the
acceptable error for trees with a DBH > 20 cm is less than 1.5%.
For trees with a DBH < 20 cm, the acceptable error is less than
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Fig. 1. Sampling plot data records in different survey years.

0.3 cm. 3) For tree height measurement, the acceptable error is
less than 3% for trees with a height < 10 m. For trees with a
height > 10 m, it is less than 5%.

The biomass factor model (1) [31] for Pinus densata was used
to calculate individual tree AGB

AGB = 0.073 x DBH!™? x {9880 (1)

where AGB is the aboveground biomass of individual tree, DBH
is the diameter at breast height of the individual tree, and H is
the tree height of the individual tree.

The carbon content coefficients of different tree species types
are different [32]. In this study, the carbon content coefficient of
Pinus densata was 0.501 [33]. It was calculated as follows:

ACS = AGB x C, (2)

where C.. is the carbon content coefficient of Pinus densata.

3) Digital Elevation Model (DEM): The DEM was obtained
from the Shuttle Radar Topography Mission (SRTM) Version 3
product, which was provided by SRTM program at NASA’s Jet
Propulsion Laboratory. Resolution of 1 arc s (~30 m).

III. METHODS
A. Geographical Detector

GeoDetector is an algorithm for detecting and exploiting
spatial stratified heterogeneity [23]. In this study, GeoDetector
was used to partition various types of landforms. The formula is
as follows:

L Ny, 2

1— > h=12_im1 (Yni — Yn)
N 2
>ic1 (Wi — )

where q is the result of GeoDetector, h = 1, ..., L denotes the
number of each type of landforms, 3 is the radiometric value of
the image for landform type h, ¥, is the mean radiometric value
of the image for landform type h, y; is the overall radiation value
of the image, and ¥ is the average of the overall radiation values
of the image.

q= 3)
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B. Vondrak Smoothing Method

The Vondrak smoothing method’s basic idea is to select a
smoothing factor ¢ to choose a compromise curve between abso-
lute fitting and absolute smoothing of the time-series, removing
noise in the image. The calculation formula is as follows [34]:

B 2_1“_‘_,2 2 =2 3 112
Q_F+k5—n;Pz(yz Y;) +n_3;[ﬁ%]

“)
where @ is the smoothing criterion, F is the degree of fit, .S is
the roughness, p; is the sequence of weights, y; is the time-series
data, and y; is the sequence of smoothing values. The error curve
method was used to select ¢ [34].

1) The image is filtered using different smoothing factors.
The mean-squared error (MSE) (5) of the smoothed values
is calculated under each smoothing factor as

N oy

Zi:l ( i Yi)

N-3 ©)

0. =
where o is the MSE of the filtered smoothed value, ¥/ is the
filtered value, y; is the observed value, NV is the length of LTS,
and N — 3 is to correct the degree of freedom.
2) Plot the curve with the smoothing factor as the abscissa
and MSE as the ordinate. Select the smoothing factor that
minimizes MSE as the optimal smoothing factor ¢.

C. Bilateral Filtering

Bilateral filtering is a nonlinear spatial domain filtering. It
combines the influence of the spatial distance and brightness
of the pixel within the filter window by multiplying the two
Gaussian kernels. Thus, it effectively smooths images while
preserving edge information. The formula is as follows [35]:

S I (kD) w (i, k,1)
Zk,l w (i7j7 ka l)

F(i,j) = (6)
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where (i, 7) is the coordinate of the filtering pixel. (k,!) is the
coordinate of the neighboring pixel within the filter window. F’
is a filtered image. I is an unfiltered image. w(x,y, k,!) is the
weight coefficient of the filter window, which is the product of
the spatial domain kernel and the value domain kernel of the
Gaussian function

(i—k)°+(G—1)?
203

w (x7y7k’l) = eXp [_

M g) —v (kD IP
202

(N

where o, is the variance of the spatial domain kernel and o, is
the variance of the value domain kernel.

D. Temporal-Difference (TD) Bilateral Filtering

In mountainous areas with large elevation changes, there were
often sudden changes in terrain features. The texture of the
sudden changes was complex. The bilateral filtering tended to
“blur” it or cause distortion of edges. Since landform changes re-
mained relatively stable over short time periods, we incorporated
pixel information from adjacent years into the filter window to
enhance the reconstruction of filtered pixels.

The improvement provided better reconstruction for pixels
with sudden changes. Even if the sudden changes were signif-
icantly smoothed, it could appropriately reconstruct the image
details using pixel information from neighboring years. Specif-
ically, by introducing the TD term (¢ — m)?, the algorithm was
extended into a TD bilateral filtering capable of accounting for
spatiotemporal variations. It assumed that the filtered pixel and
the pixel in the filtering window not only had spatial coordinate
(i,7) and (k, ) but also a time coordinate ¢ and m representing,
respectively, the year of the filtering pixel and the pixel in the
filter window. Then, the weights needed to combine the spatial
distance and the temporal variation of the value range. Therefore,
the weight coefficient was improved as follows:

Do o Lk Lm)w (g, Gey Ky Ly t,m)

F (g, ji) = Fhmem 8
(Zhjt) kaJmw(itvjtvkmylnl,atam) ( )

where (i, j;) is the coordinate of the filtering pixel in ¢ year,
(K, L) is the coordinate of the neighboring pixel within the
filtering window in m year, m € [t + 2, ¢ — 2]

w (it7jt7 k'ﬂh lm7t7m)

(it — km)2 + (Jt — lm)2 + 02(t — m)2

R 203

_ HI(Zv.jat) _I(k7lam) ||2

2
202

(€))

where ¢? is used to balance the weights of spatial and temporal
distances. In this study, we chosen ¢ = 1.

E. Terrain-Perceive Spatiotemporal Filtering

Smoothing is a key method for image denoising [36]. How-
ever, it inevitably affects the spatial continuity and variability
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of the reconstructed imagery. For images obtained from high-
altitude mountainous areas, the basic assumption of the TP-STF
method is that noise and noise-sensitive areas are typically
concentrated in specific landforms. Hills or mountainous terrains
with a rugged surface often become concentrated areas of noise
in the image, whereas relatively flat plains tend to have less
noise. Hence, the TP-STF method applies different filtering
intensities and parameters for different landforms, seeking a
balance between smoothing denoising and preserving spatial
features. There are algorithmic processes (see Fig. 2).

1) The relief degree of land surface (RDLS) is obtained from
the DEM using a 3 x 3 neighborhood window. Based on
Table II, the RDLS and DEM data are used to classify the
fine-scale landforms of the study area.

2) The GeoDetector is used to partition the fine-scale land-
forms. The g-statistic is matched with the image pixel-by-
pixel by spatial location as an identifier for the TP-STF.
After matching the classification results with the parti-
tioning results, we obtain the g-statistic intervals for each
landform.

3) Based on the g-statistic, the TP-STF reconstructs LTS as
follows.

a) g-statistic is less than 0.7: The topographic features
are relatively continuous, with no distinct boundaries.
The TP-STF method employs the Vondrak smoothing
method. Since flat areas inherently have less noise, a
low-parameter temporal filtering approach with gen-
tle smoothing was sufficient to improve data quality
without affecting the spatial continuity.

b) g-statistic is between 0.7 and 0.8: The landforms
are mainly composed of low-to-medium altitude hills
with some undulations but good spatial continuity. For
such areas with moderate topographic complexity, us-
ing high-parameter temporal filtering will cause over-
smoothing and result in image distortion. The TP-STF
method employs the low-parameter bilateral filtering to
denoise by interpolation, thereby preserving the spatial
variability of the imagery.

¢) g-statistic is between 0.8 and 1.0: The landforms are
composed of high altitude hills or mountains. Due to
the significant pixel value fluctuations caused by noise,
a small number of flat areas are also classified into
this range. Both situations are considered regions with
significant noise effects. The TP-STF method employs
TD bilateral filtering. It flexibly assigns weights based
on the differences in temporal and spatial information
of pixels while smoothing denoising and reconstruct-
ing surface texture details. The reconstructed images
can retain spatial continuity and variability even after
filtering.

4) Output reconstructed LTS images.

FE. Principle of Filtering Methods for Comparison

The study selected traditional temporal filtering and spatial
filtering (S—G filtering and MF), improved temporal filtering
and spatial filtering [BSTS and adaptive topography convolution
(ATC)], as well as single temporal filtering and spatial filtering
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Fig. 2.  Flow of the TP-STF.
TABLE II

[37] CLASSIFICATION OF LANDFORMS

Low-Altitude
(<1000 m)

Undulation
Elevatio

Medium-Altitude
(1000-3500 m)

High-Altitude
(3500-5000 m)

Very High Altitude
(>5000 m)

Plain (<30 m) low-Altitude Plain Medium-Altitude Plain High-Altitude plain ~ Very High Altitude plain
Hill (30-200 m) Low-Altitude hill Medium-Altitude hill High-Altitude hill ~ Very High Altitude Hill
Mountain (>200 m) Low Mountain Middle Mountain High Mountain Very High Mountain

(Vondrak smoothing and Bilateral filtering) for comparison and
analysis with the TP-STF.

1) Savitzky—Golay Filtering: The S—G filtering is a polyno-
mial fitting method based on the least squares approach [17].
By controlling the window size, the original LTS is fitted using
polynomial weighting to remove noise [38]. The smaller the
window size, the closer to the true value.

2) Mean Filtering (MF): The MF is a nonlinear filtering
method based on order statistics theory [39]. It arranges the
pixels within a window and selects the median of these pixels as
the filtering result. In this study, the window size was setto 3 x 3.

3) Best Slope Temporal Segmentation (BSTS): The core idea
of the BSTS is to segment a continuous time-series according
to the best slope, where the slope of each segment is less than
the overall slope before segmentation [40]. LTS reconstruction
is achieved by connecting time-series segments. Compared to
the best index slope estimation [41], this BSTS is more effective
in preserving certain abrupt changes in land cover.

4) Adaptive Topography Convolution Filtering: The ATC
combines spatial convolution theory with inverse distance
weighting through a linear approach, reconstructing pixels from

a spatial domain perspective [42]. It utilizes information from
neighboring pixels to eliminate noise-affected regions, thereby
enhancing image quality and clarity.

G. Quality Assessment for the Filtered Landsat Time-Series

Root-mean-square error (RMSE) is used to evaluate the dif-
ference between the images before and after filtering. Peak
signal-to-noise ratio (PSNR) and structural similarity (SSIM)
[43] are used as indicators to evaluate the quality of images
before and after filtering. PSNR is used to compare the similarity
between the filtered image and the original image; SSIM is used
to evaluate the quality of the image by the image’s luminance,
contrast, and structure. The formula is as follows:

Z?:l — Y

(yi y])Q
n

RMSE = (10)

where y; denotes the filtered pixel value, y; denotes the pixel
value of the original image
2
AX%
MSE

PSNR = 101g (11)
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TABLE III
DETAILS OF REMOTE SENSING VARIABLES

Categories Variables Meaning/Formula
Original Blue(B1) Monitoring of vegetation, soil health.

Bands Green(B2) Calculation of various vegetation indices.
Red(B3) Monitoring of changes in vegetation growth.
NIR(B4) ACS/AGB estimation.
SWIRI(BS5) Distinguishing bare soil.
SWIR2(B7) Forest fire detection.

Vegetation Normalized Difference Vegetation Index

Indices (NDVI) (NIR-Red)/(NIR+Red)
ND32 (Red-Green)/(Red+Green)
ND54 (SWIR1-NIR)/(SWIR1+NIR)
ND57 (SWIR1-SWIR2)/(SWIR1+SWIR2)
ND452 (NIR+SWIR1-Green)/(NIR+SWIR 1+Green)
Atmospheric Ratio Vegetation Index (ARVI) (NIR-(2xRed-Blue))/(NIR+(2xRed-Blue))
Chlorophyll Index (CT) (NIR/Green)-1
Difference Vegetation Index (DVI) (NIR-Red)
Enhanced Vegetation Index (EVI) 2.5%((NIR-RED)/(NIR+6xRED—-7.5xBLUE+1))
Leaf Area Index (LAI) (3.618xEVI-0.118)
Normalized Burn Ratio (NBR) (NIR-SWIR2)/(NIR+SWIR?2)
Relative Vegetation Index (RVI) NIR/Red
Soil-Adjusted Vegetation Index (SAVI) (NIR-Red)x(1+L)/(NIR+Red+L) , L is 0.25
X}eiizglon of Atmospheric Resistance Index (NIR-(2*RED-BLUE))/(NIR+(2*RED-BLUE))
Global Environmental Monitoring Index etax(1-0.25xeta)-((Red-0.125)/(1-Red))
(GEMI) eta=(2x(NIR?-Red?)+1.5%NIR+0.5%Red)/(NIR+Red+0.5)

- X - X - X X

Green Vegetation Index (GVI) Oooéi%i S%S};?ﬁ?;()ocirse\%g'zﬂ% Red+0.7243<NIR+

Ratio B4/B2 NIR/Green

Factor B5/B3 SWIR1/Red
B5/B4 SWIRI1/NIR
B5/B7 SWIR1/SWIR2
B7/B3 SWIR2/Red
B3/albedo Red/(Blue+Green+Red+NIR+SWIR1+SWIR2)
B4xB3/B7 (NIRxRed)/SWIR2

where RMSE of the image element with position (x, y)
before and after filtering needs to be calculated, MSE =

W1 H-
Wle Zm:ol Zyzol f(z,y) —o(x,y)
the dimensions of the image; second, the peak value of the image
(MAXy) needs to be counted, MAX ; = [f(o,o) : f(W—l,H—l)]

where [, ¢, and s represent luminance, contrast, and structure,
respectively. The image value should be stretched to 0-255
before use.

2} , W and H represent

H. Aboveground Carbon Stock Modeling

1) Variables Selection: Different features of Pinus densata
have different emitted or reflected radiation characteristics in
various bands of Landsat images. The study refers to the remote
sensing factors commonly used in AGB estimation [44], mainly
including: 6 original bands, 16 vegetation indices, and 7 ratio
factors (see Table III). Currently, the Pearson correlation coef-
ficient method is widely used in screening variables [45]. To
explore the relationship between remote sensing characteristic

variables and the ACS of Pinus densata, the method was used
to analyze each factor separately and filter out the factors with
significant correlations to participate in the modeling.

2) Modeling Method and Accuracy Evaluation: Forest
AGB/ACS modeling methods include multiple linear regression
and machine learning [46]. Machine learning generally makes
fewer assumptions about the data and the process, thus it has
higher accuracy than linear regression [47]. The RFR is one
of the popular machine learning algorithms. It can standardize
the input training data, transforming the data into dimensionless
indicators after normalization. At the same time, it effectively
addresses the issue of multicollinearity among variables by
constructing multiple decision trees [48], [49]. The advantage of
RFR lies in its ability to reduce the risk of overfitting due to its
insensitivity to changes in parameter values [50]. Some studies
have demonstrated that RFR has good predictive capabilities
in forest AGB/ACS estimation [51], [52]. With reference by
Fassnacht et al. [53] on the sample size required for remote
sensing-based estimation of forest biomass, 80% of the records
were randomly selected for modeling, while the remaining 20%
of the datasets were used for validation.
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TABLE IV
SPATIAL PARTITION BY GEODETECTOR

Landforms q-statistic
Low-Altitude Plain 0.894 - 0.899
Medium-Altitude Plain 0.681 - 0.757
High-Altitude Plain 0.629 - 0.654
Very-High-Altitude Plain 0.849 - 0.898
Medium-Altitude Hill 0.763 - 0.796
High-Altitude Hill 0.495 - 0.704
Very-High-Altitude Hill 0.828 - 0.854
Mountainous area 0.879 - 0.920

Coefficient of determination (R*) and RMSE (10) were se-
lected as indicators that reflect the model fitting effect. Prediction
accuracy (P) and relative root-mean-square error (rRMSE) were
used as indicators that reflect the model estimation ability. The
following are the formulas:

R? — i (9 - 9)°
i (yi — 5)2

- yy_yD x 100% (14

(13)

RMSE
rRMSE = — x 100% (15)
where y; denotes the measured value, ¢ denotes the mean value

of the measured value, and ¢ denotes the model prediction.

1. Standard Deviation Ellipse (SDE)

The SDE is introduced to explore the spatiotemporal distribu-
tion of ACS of Pinus densata. Different from general spatial sta-
tistical methods, the SDE focuses on revealing the global char-
acteristics of the spatial distribution of geographical elements
[54]. The SDE is mainly expressed through the center of gravity,
spreadability, density, orientation, and shape features [55]. The
ACS estimation of Pinus densata was used as the corresponding
weights, and the first standard deviation number (including 68 %
of the elements) as the expression range to calculate the SDE
of the spatial distribution of ACS. It was implemented based on
the spatial statistics module of ArcGIS 10.7.

IV. RESULTS
A. Reconstruction of Landsat Time-Series by TP-STF

The GeoDetector was used to spatially partition the types of
landforms in the study area. The range of g-statistics for different
landforms was statistically presented in Table IV. It could be
found that most landforms had relatively independent intervals
of g-statistics. This indicated a better spatial partition with clear
classification. Although low-altitude plain and very high altitude
plain were generally regions with smooth terrain and low spatial
heterogeneity, their g-statistic exceeded 0.8. This suggested that
the image areas corresponding to these landform types contained
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a significant amount of noise, leading to pixel information
being contaminated. Subsequently, the g-statistic was used as
a computer-recognizable identifier to reconstruct images.

The TP-STF was used to reconstruct LTS from 1987 to 2019
(see Fig. 3). From the visual effect, in Fig. 3(a), (b), and (e),
large areas of the missing image were situated in the southwest-
ern region. These areas were mostly high-altitude mountain-
ous areas where year-round snow cover prevented the sensor
from acquiring complete image information. The TP-STF could
appropriately restore images when high-quality spatiotemporal
information was available for the pixels. It aimed to recover
the complete imagery of Shangri-La to reduce uncertainty in
ACS estimation. One of the sampling plots surveyed in 2012
(No. 342) was in the missing stripes area, roughly within the
red box in Fig. 3(f). Fig. 3(h) showed that the missing data at
No. 342 was better repaired after filtering; it could avoid the
loss of image information that would affect the accuracy of the
ACS estimation. Overall, the image quality of LTS after TP-STF
reconstruction was upgraded. It was also found that TP-STF had
the capability of strip repair.

In the study area from north to south, seven permanent sam-
pling plots [No. 192, No. 212, No. 236, No. 255, No. 293, No.
345, No. 371, marked in yellow in Fig. 4(c)] were selected to
show the change of the images before and after the filtering (see
Fig. 5) and the time sequence curves (see Fig. 6). For the images
after TP-STF method’s reconstruction: 1) Plots No. 192 and
No.212 had issues with cloud shadows and overly dark imagery.
The brightness and clarity of the images were improved after
filtering. 2) Plots No. 2