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A New Spatiotemporal Filtering Method to
Reconstruct Landsat Time-Series for

Improving Estimation Accuracy of Forest
Aboveground Carbon Stock

Kai Huang , Chenkai Teng , Jialong Zhang , Rui Bao , Yi Liao , Yunrun He , Bo Qiu , and Mingrui Xu

Abstract—Landsat time-series (LTS) archived the multitempo-
ral hyperspectral images, providing freely accessible and long-term
optical data for estimating forest aboveground carbon stock (ACS).
Due to LTS carrying noise, there were such issues as bias, outliers,
and missing values in ACS estimation. Hence, a new filtering
method named terrain-perceive spatiotemporal filtering (TP-STF)
was developed to improve the estimation accuracy. In TP-STF,
landforms were classified based on the terrain data. A computer-
recognizable identifier was generated by perceiving each terrain
unit. Combining the discriminative criteria with the spatiotemporal
information, the TP-STF adaptively selected performant filtering
to reconstruct LTS. Then, the random forests regression (RFR) was
employed to estimate ACS of Pinus densata in Shangri-La, Yunnan,
China. Compared with the other filtering, the TP-STF method’s
reconstructed LTS had the best modeling accuracy and the highest
prediction accuracy, with R2 = 0.903, RMSE = 17.049 t/hm2,
P = 81.080%, and rRMSE = 19.691%. The ACS results using
TP-STF and RFR were: 6.56 million tons in 1987, 6.44 million tons
in 1992, 6.33 million tons in 1997, 6.35 million tons in 2002, 6.72
million tons in 2007, 6.70 million tons in 2012, and 7.04 million
tons in 2017. The TP-STF could effectively denoise the LTS images
in high-altitude regions, providing a new approach to improve the
accuracy of remote sensing-based forest ACS estimation.
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I. INTRODUCTION

FOREST aboveground carbon stock (ACS) is a significant
indicator that reflects the reserve of carbon elements in

forest ecosystems, which is the result of the accumulation of
forest ecosystems over many years. Forest aboveground biomass
(AGB) is an important indicator reflecting the structure and func-
tion of forest ecosystems, which is the result of the long-term
production and metabolism of forest ecosystems [1]. The study
of forest ACS is based on the research of forest AGB [2]. The
research and analysis of ACS are of great significance to the
study of global climate change and the terrestrial carbon cycle
[3]. With the implementation of the International Geosphere–
Biosphere Program (IGBP) in the mid-late 20th century, the
productivity and AGB of forest ecosystems have been studied
worldwide [4], [5]. The IGBP made scholars in Europe and the
United States [6], [7], [8] gradually began to focus on the study of
forest carbon stock. It provided valuable reference data for forest
ACS estimation. At the beginning of the 21st century, researchers
[9], [10], [11], [12], [13] also entered the culmination stage of
research on forest carbon stock estimation at the national scale.

The main methods of AGB/ACS estimation include the field
survey method and remote sensing-based estimation method
[14]. Despite the field survey method having high accuracy, it
is difficult to accomplish for large-scale determination of forest
AGB/ACS. With the development of remote sensing technology,
especially the unique advantages of Landsat satellite data and
its correlation with forest carbon stock [15], it is possible to
apply this emerging technology to estimate forest ACS at a large
scale. Compared with single-period remote sensing images,
the advantages of Landsat time-series (LTS) include long-term
continuity and less impact of seasonal variations. However, due
to the long temporal span of LTS is acquired by multiple sensors,
there are inconsistencies and various noises [16]. These issues
limit the in-depth application of LTS in estimating forest ACS. If
the original LTS is not properly filtered and reconstructed, using
LTS data for forest ACS modeling reduces accuracy and results
in deviations. It will potentially significantly lower the reliability
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of the model in estimating forest ACS. Thus, it is necessary to
filter the original LTS to obtain high-quality image datasets. The
main filtering applied in remote sensing are: Savitzky–Golay
(S–G) filtering [17], Harmonic Analysis of Time-Series filtering
[18], Whittaker filtering [19], LandTrendr algorithm [20], and
Autoregressive Integrated Moving Average model [21]. Tradi-
tional filtering methods tended to focus on developing generic
algorithms rather than optimizing them for the specific needs
of particular fields [22]. In regions with complex landforms,
such as China, applying a uniform set of parameters for filtering
often did not align with practical realities [22]. Therefore, it is
necessary to choose or develop the best filtering method suitable
for the field based on different applications [1].

Our study developed a spatial-temporal filtering method—
terrain-perceive spatiotemporal filtering (TP-STF). This filtering
method used a linear approach that combined the Vondrak
smoothing method (temporal filtering), bilateral filtering (spatial
filtering), and TD bilateral filtering (spatiotemporal filtering).
The first uniqueness of the TP-STF was that the “Terrain-
Perceive” was to identify complex landforms by computer pixel-
by-pixel. Traditional classification algorithms required spatial
continuity, such as the Equal Interval method, Quantile method,
and K-means. For a high-altitude research area with com-
plex and spatially discontinuous terrain, the study introduced
the geographical detector (GeoDetector) [23] to achieve more
precise terrain recognition. The second uniqueness was that
“Spatiotemporal Filtering” selected the suitable filtering method
based on the characteristics of different terrains in the images.
This adaptive approach ensured that the filtering method was
highly compatible with the terrain features so that the pixels
could achieve optimal denoising and information retention. In
addition, it also significantly improved filtering efficiency, par-
ticularly in areas with complex terrain or high heterogeneity.

Therefore, the specific objectives of this study include: 1)
completing the development of the spatiotemporal filtering
method (TP-STF); 2) evaluating the performance of TP-STF in
RFR-based ACS estimation; 3) combining RFR and optimized
filtering method to reconstruct LTS for mapping ACS of Pinus
densata in Shangri-La.

II. STUDY AREA AND DATASETS

A. Study Area

Shangri-La is located between 26°52′–28°52′N and 99°20′–
100°19′E, Northwestern of Yunnan, Southwestern of China.
Southwest is the second major forest region in China. Shangri-La
is in the southeastern margin of the Tibetan Plateau [24], and
hinterland of the Hengduan Mountains [25], making it one of
the global hotspots for carbon stock research. The general trend
of landform is high in the north-west and low in the south-east.
Shangri-La has an average altitude of 3459 m and a maximum
height difference of 3892 m, with obvious vertical stereo climatic
features and rich forest resources. The Pinus densata is one of the
dominant species in the local area. Its dense forest canopy helps
to regulate runoff and purify water through transpiration. As a
long-lived species, it can fix and store a large amount of carbon
for a long period of time; therefore, it can maintain the dynamic

TABLE I
LTS DATA USED IN THIS STUDY

balance of atmospheric carbon dioxide and oxygen. In addition,
it plays a great role in the conservation of soil, the maintenance
of biodiversity, and the study of global climate change [26].

B. Datasets

1) Landsat Time-Series: The satellite images were from
1987 to 2019, which were provided by the National Aeronautics
and Space Administration (NASA) and the United States Geo-
logical Survey (USGS). Due to the problem of Landsat 7 scan
line corrector (SLC)-off imagery in 2003, data were obtained
from Landsat 5 ETM until 2012 and Landsat 8 OLI after 2013,
with gaps filled by Landsat 7 ETM+. Referring to the document
written by Roy et al. [27], the different sensors of Landsat were
harmonized based on the Google Earth Engine to obtain better
consistent LTS data in terms of spectral features.

Precipitation in the study area was concentrated in the summer
and autumn. It was difficult to synthesize effectively usable
LTS for continuous time intervals. For the generation of annual
composite images, the long time span would include too many
complex phenological factors, especially for vegetation [28].
Thus, we selected images with cloud cover less than 10% from
January 1 to March 31 and generated the annual composite
images using median compositing. The median compositing
method sorted all image values for each pixel within the time
frame and selected the middle value as the composite value for
that pixel, thereby reducing the impact of outliers.

Due to the screening period being in winter and spring, there
were areas within the study area covered by snowfall or perma-
nent snow. The ice, cloud, and cloud shadow were screened
based on FMASK algorithm that is provided in the Landsat
quality assessment band (QA band) [29]. The basic information
on LTS is given in Table I.

2) Permanent Sampling Plots: Permanent sampling plots of
Pinus densata were obtained from the National Forest Inventory
(NFI) program with a time distribution of seven periods from
1987 to 2017 at five-year intervals. The permanent sampling
plots were surveyed during the seven periods with a total of
136 records (see Fig. 1). The size of each permanent plot is
28.28 m× 28.28 m. Permanent sampling plots of NFI were stan-
dardized according to the “Technical regulations for continuous
forest inventory” [30]: 1) For the determination of the number of
trees, the count for trees with a diameter at breast height (DBH)
≥ 8 cm must be accurate. For trees with a DBH < 8 cm, a
5% margin of error is acceptable. 2) For DBH measurement, the
acceptable error for trees with a DBH ≥ 20 cm is less than 1.5%.
For trees with a DBH < 20 cm, the acceptable error is less than
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Fig. 1. Sampling plot data records in different survey years.

0.3 cm. 3) For tree height measurement, the acceptable error is
less than 3% for trees with a height < 10 m. For trees with a
height ≥ 10 m, it is less than 5%.

The biomass factor model (1) [31] for Pinus densata was used
to calculate individual tree AGB

AGB = 0.073× DBH1.739 ×H0.880 (1)

where AGB is the aboveground biomass of individual tree, DBH
is the diameter at breast height of the individual tree, and H is
the tree height of the individual tree.

The carbon content coefficients of different tree species types
are different [32]. In this study, the carbon content coefficient of
Pinus densata was 0.501 [33]. It was calculated as follows:

ACS = AGB × Cc (2)

where Cc is the carbon content coefficient of Pinus densata.
3) Digital Elevation Model (DEM): The DEM was obtained

from the Shuttle Radar Topography Mission (SRTM) Version 3
product, which was provided by SRTM program at NASA’s Jet
Propulsion Laboratory. Resolution of 1 arc s (∼30 m).

III. METHODS

A. Geographical Detector

GeoDetector is an algorithm for detecting and exploiting
spatial stratified heterogeneity [23]. In this study, GeoDetector
was used to partition various types of landforms. The formula is
as follows:

q = 1−
∑L

h=1

∑Nh

i=1 (yhi − ȳh)
2∑N

i=1 (yi − ȳ)2
(3)

where q is the result of GeoDetector, h = 1, . . . , L denotes the
number of each type of landforms, yhi is the radiometric value of
the image for landform type h, ȳh is the mean radiometric value
of the image for landform type h, yi is the overall radiation value
of the image, and ȳ is the average of the overall radiation values
of the image.

B. Vondrak Smoothing Method

The Vondrak smoothing method’s basic idea is to select a
smoothing factor ε to choose a compromise curve between abso-
lute fitting and absolute smoothing of the time-series, removing
noise in the image. The calculation formula is as follows [34]:

Q = F + λ2S =
1

n

n∑
i=1

pi(yi − y′i)
2
+

λ2

n− 3

n−3∑
i=1

[
Δ3y′i

]2
(4)

where Q is the smoothing criterion, F is the degree of fit, S is
the roughness, pi is the sequence of weights, yi is the time-series
data, and y

′
i is the sequence of smoothing values. The error curve

method was used to select ε [34].
1) The image is filtered using different smoothing factors.

The mean-squared error (MSE) (5) of the smoothed values
is calculated under each smoothing factor as

σε =

√∑N
i=1 (y

′
i − yi)

N − 3
(5)

where σε is the MSE of the filtered smoothed value, y′i is the
filtered value, yi is the observed value, N is the length of LTS,
and N − 3 is to correct the degree of freedom.

2) Plot the curve with the smoothing factor as the abscissa
and MSE as the ordinate. Select the smoothing factor that
minimizes MSE as the optimal smoothing factor ε.

C. Bilateral Filtering

Bilateral filtering is a nonlinear spatial domain filtering. It
combines the influence of the spatial distance and brightness
of the pixel within the filter window by multiplying the two
Gaussian kernels. Thus, it effectively smooths images while
preserving edge information. The formula is as follows [35]:

F (i, j) =

∑
k,l I (k, l)w (i, j, k, l)∑

k,l w (i, j, k, l)
(6)



6506 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 18, 2025

where (i, j) is the coordinate of the filtering pixel. (k, l) is the
coordinate of the neighboring pixel within the filter window. F
is a filtered image. I is an unfiltered image. w(x, y, k, l) is the
weight coefficient of the filter window, which is the product of
the spatial domain kernel and the value domain kernel of the
Gaussian function

w (x, y, k, l) = exp

[
− (i− k)2 + (j − l)2

2σ2
d

−||v (i, j)− v (k, l) ||2
2σ2

r

]
(7)

where σd is the variance of the spatial domain kernel and σr is
the variance of the value domain kernel.

D. Temporal-Difference (TD) Bilateral Filtering

In mountainous areas with large elevation changes, there were
often sudden changes in terrain features. The texture of the
sudden changes was complex. The bilateral filtering tended to
“blur” it or cause distortion of edges. Since landform changes re-
mained relatively stable over short time periods, we incorporated
pixel information from adjacent years into the filter window to
enhance the reconstruction of filtered pixels.

The improvement provided better reconstruction for pixels
with sudden changes. Even if the sudden changes were signif-
icantly smoothed, it could appropriately reconstruct the image
details using pixel information from neighboring years. Specif-
ically, by introducing the TD term (t−m)2, the algorithm was
extended into a TD bilateral filtering capable of accounting for
spatiotemporal variations. It assumed that the filtered pixel and
the pixel in the filtering window not only had spatial coordinate
(i, j) and (k, l) but also a time coordinate t and m representing,
respectively, the year of the filtering pixel and the pixel in the
filter window. Then, the weights needed to combine the spatial
distance and the temporal variation of the value range. Therefore,
the weight coefficient was improved as follows:

F (it, jt) =

∑
km,lm

I (k, l,m)w (it, jt, km, lm, t,m)∑
km,lm

w (it, jt, km, lm, t,m)
(8)

where (it, jt) is the coordinate of the filtering pixel in t year,
(km, lm) is the coordinate of the neighboring pixel within the
filtering window in m year, m ∈ [t+ 2, t− 2]

w (it, jt, km, lm, t,m)

= exp

[
− (it − km)2 + (jt − lm)2 + c2(t−m)2

2σ2
d

− ||I (i, j, t)− I (k, l,m) ||2
2σ2

r

]
(9)

where c2 is used to balance the weights of spatial and temporal
distances. In this study, we chosen c = 1.

E. Terrain-Perceive Spatiotemporal Filtering

Smoothing is a key method for image denoising [36]. How-
ever, it inevitably affects the spatial continuity and variability

of the reconstructed imagery. For images obtained from high-
altitude mountainous areas, the basic assumption of the TP-STF
method is that noise and noise-sensitive areas are typically
concentrated in specific landforms. Hills or mountainous terrains
with a rugged surface often become concentrated areas of noise
in the image, whereas relatively flat plains tend to have less
noise. Hence, the TP-STF method applies different filtering
intensities and parameters for different landforms, seeking a
balance between smoothing denoising and preserving spatial
features. There are algorithmic processes (see Fig. 2).

1) The relief degree of land surface (RDLS) is obtained from
the DEM using a 3 × 3 neighborhood window. Based on
Table II, the RDLS and DEM data are used to classify the
fine-scale landforms of the study area.

2) The GeoDetector is used to partition the fine-scale land-
forms. The q-statistic is matched with the image pixel-by-
pixel by spatial location as an identifier for the TP-STF.
After matching the classification results with the parti-
tioning results, we obtain the q-statistic intervals for each
landform.

3) Based on the q-statistic, the TP-STF reconstructs LTS as
follows.
a) q-statistic is less than 0.7: The topographic features

are relatively continuous, with no distinct boundaries.
The TP-STF method employs the Vondrak smoothing
method. Since flat areas inherently have less noise, a
low-parameter temporal filtering approach with gen-
tle smoothing was sufficient to improve data quality
without affecting the spatial continuity.

b) q-statistic is between 0.7 and 0.8: The landforms
are mainly composed of low-to-medium altitude hills
with some undulations but good spatial continuity. For
such areas with moderate topographic complexity, us-
ing high-parameter temporal filtering will cause over-
smoothing and result in image distortion. The TP-STF
method employs the low-parameter bilateral filtering to
denoise by interpolation, thereby preserving the spatial
variability of the imagery.

c) q-statistic is between 0.8 and 1.0: The landforms are
composed of high altitude hills or mountains. Due to
the significant pixel value fluctuations caused by noise,
a small number of flat areas are also classified into
this range. Both situations are considered regions with
significant noise effects. The TP-STF method employs
TD bilateral filtering. It flexibly assigns weights based
on the differences in temporal and spatial information
of pixels while smoothing denoising and reconstruct-
ing surface texture details. The reconstructed images
can retain spatial continuity and variability even after
filtering.

4) Output reconstructed LTS images.

F. Principle of Filtering Methods for Comparison

The study selected traditional temporal filtering and spatial
filtering (S–G filtering and MF), improved temporal filtering
and spatial filtering [BSTS and adaptive topography convolution
(ATC)], as well as single temporal filtering and spatial filtering
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Fig. 2. Flow of the TP-STF.

TABLE II
[37] CLASSIFICATION OF LANDFORMS

(Vondrak smoothing and Bilateral filtering) for comparison and
analysis with the TP-STF.

1) Savitzky–Golay Filtering: The S–G filtering is a polyno-
mial fitting method based on the least squares approach [17].
By controlling the window size, the original LTS is fitted using
polynomial weighting to remove noise [38]. The smaller the
window size, the closer to the true value.

2) Mean Filtering (MF): The MF is a nonlinear filtering
method based on order statistics theory [39]. It arranges the
pixels within a window and selects the median of these pixels as
the filtering result. In this study, the window size was set to 3× 3.

3) Best Slope Temporal Segmentation (BSTS): The core idea
of the BSTS is to segment a continuous time-series according
to the best slope, where the slope of each segment is less than
the overall slope before segmentation [40]. LTS reconstruction
is achieved by connecting time-series segments. Compared to
the best index slope estimation [41], this BSTS is more effective
in preserving certain abrupt changes in land cover.

4) Adaptive Topography Convolution Filtering: The ATC
combines spatial convolution theory with inverse distance
weighting through a linear approach, reconstructing pixels from

a spatial domain perspective [42]. It utilizes information from
neighboring pixels to eliminate noise-affected regions, thereby
enhancing image quality and clarity.

G. Quality Assessment for the Filtered Landsat Time-Series

Root-mean-square error (RMSE) is used to evaluate the dif-
ference between the images before and after filtering. Peak
signal-to-noise ratio (PSNR) and structural similarity (SSIM)
[43] are used as indicators to evaluate the quality of images
before and after filtering. PSNR is used to compare the similarity
between the filtered image and the original image; SSIM is used
to evaluate the quality of the image by the image’s luminance,
contrast, and structure. The formula is as follows:

RMSE =

√∑n
i=1 (yi − yj)

2

n
(10)

where yi denotes the filtered pixel value, yj denotes the pixel
value of the original image

PSNR = 10 lg

(
MAX2

f

MSE

)
(11)
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TABLE III
DETAILS OF REMOTE SENSING VARIABLES

where RMSE of the image element with position (x, y)
before and after filtering needs to be calculated, MSE =

1
W×H

∑W−1
x=0

∑H−1
y=0

[
f(x, y)− o(x, y)2

]
, W and H represent

the dimensions of the image; second, the peak value of the image
(MAXf ) needs to be counted, MAXf =

[
f(0,0) : f(W−1,H−1)

]
SSIM (x, y) = l (x, y) · c (x, y) · s (x, y) (12)

where l, c, and s represent luminance, contrast, and structure,
respectively. The image value should be stretched to 0–255
before use.

H. Aboveground Carbon Stock Modeling

1) Variables Selection: Different features of Pinus densata
have different emitted or reflected radiation characteristics in
various bands of Landsat images. The study refers to the remote
sensing factors commonly used in AGB estimation [44], mainly
including: 6 original bands, 16 vegetation indices, and 7 ratio
factors (see Table III). Currently, the Pearson correlation coef-
ficient method is widely used in screening variables [45]. To
explore the relationship between remote sensing characteristic

variables and the ACS of Pinus densata, the method was used
to analyze each factor separately and filter out the factors with
significant correlations to participate in the modeling.

2) Modeling Method and Accuracy Evaluation: Forest
AGB/ACS modeling methods include multiple linear regression
and machine learning [46]. Machine learning generally makes
fewer assumptions about the data and the process, thus it has
higher accuracy than linear regression [47]. The RFR is one
of the popular machine learning algorithms. It can standardize
the input training data, transforming the data into dimensionless
indicators after normalization. At the same time, it effectively
addresses the issue of multicollinearity among variables by
constructing multiple decision trees [48], [49]. The advantage of
RFR lies in its ability to reduce the risk of overfitting due to its
insensitivity to changes in parameter values [50]. Some studies
have demonstrated that RFR has good predictive capabilities
in forest AGB/ACS estimation [51], [52]. With reference by
Fassnacht et al. [53] on the sample size required for remote
sensing-based estimation of forest biomass, 80% of the records
were randomly selected for modeling, while the remaining 20%
of the datasets were used for validation.
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TABLE IV
SPATIAL PARTITION BY GEODETECTOR

Coefficient of determination (R2) and RMSE (10) were se-
lected as indicators that reflect the model fitting effect. Prediction
accuracy (P) and relative root-mean-square error (rRMSE) were
used as indicators that reflect the model estimation ability. The
following are the formulas:

R2 =

∑n
i=1 (ŷ − ȳ)2∑n
i=1 (yi − ȳ)2

(13)

P =
1

n

n∑
i=1

(
1−

∣∣∣∣yi − ŷ

ŷ

∣∣∣∣
)
× 100% (14)

rRMSE =
RMSE

ȳ
× 100% (15)

where yi denotes the measured value, ȳ denotes the mean value
of the measured value, and ŷ denotes the model prediction.

I. Standard Deviation Ellipse (SDE)

The SDE is introduced to explore the spatiotemporal distribu-
tion of ACS of Pinus densata. Different from general spatial sta-
tistical methods, the SDE focuses on revealing the global char-
acteristics of the spatial distribution of geographical elements
[54]. The SDE is mainly expressed through the center of gravity,
spreadability, density, orientation, and shape features [55]. The
ACS estimation of Pinus densata was used as the corresponding
weights, and the first standard deviation number (including 68%
of the elements) as the expression range to calculate the SDE
of the spatial distribution of ACS. It was implemented based on
the spatial statistics module of ArcGIS 10.7.

IV. RESULTS

A. Reconstruction of Landsat Time-Series by TP-STF

The GeoDetector was used to spatially partition the types of
landforms in the study area. The range of q-statistics for different
landforms was statistically presented in Table IV. It could be
found that most landforms had relatively independent intervals
of q-statistics. This indicated a better spatial partition with clear
classification. Although low-altitude plain and very high altitude
plain were generally regions with smooth terrain and low spatial
heterogeneity, their q-statistic exceeded 0.8. This suggested that
the image areas corresponding to these landform types contained

a significant amount of noise, leading to pixel information
being contaminated. Subsequently, the q-statistic was used as
a computer-recognizable identifier to reconstruct images.

The TP-STF was used to reconstruct LTS from 1987 to 2019
(see Fig. 3). From the visual effect, in Fig. 3(a), (b), and (e),
large areas of the missing image were situated in the southwest-
ern region. These areas were mostly high-altitude mountain-
ous areas where year-round snow cover prevented the sensor
from acquiring complete image information. The TP-STF could
appropriately restore images when high-quality spatiotemporal
information was available for the pixels. It aimed to recover
the complete imagery of Shangri-La to reduce uncertainty in
ACS estimation. One of the sampling plots surveyed in 2012
(No. 342) was in the missing stripes area, roughly within the
red box in Fig. 3(f). Fig. 3(h) showed that the missing data at
No. 342 was better repaired after filtering; it could avoid the
loss of image information that would affect the accuracy of the
ACS estimation. Overall, the image quality of LTS after TP-STF
reconstruction was upgraded. It was also found that TP-STF had
the capability of strip repair.

In the study area from north to south, seven permanent sam-
pling plots [No. 192, No. 212, No. 236, No. 255, No. 293, No.
345, No. 371, marked in yellow in Fig. 4(c)] were selected to
show the change of the images before and after the filtering (see
Fig. 5) and the time sequence curves (see Fig. 6). For the images
after TP-STF method’s reconstruction: 1) Plots No. 192 and
No.212 had issues with cloud shadows and overly dark imagery.
The brightness and clarity of the images were improved after
filtering. 2) Plots No. 255 and No. 293 exhibited large missing
areas in 1992 and 2007. However, due to the availability of
high-quality adjacent spatiotemporal information, the missing
images were restored. 3) Plots No. 236, No. 345, and No. 371
were affected by mountain shadows. After filtering, the surface
features became sharper.

For the change of time sequence curves, we could find that:
1) the TP-STF method’s reconstructed the LTS by fitting a new
time-series (“dashed line” in Fig. 6) using the trend of the origi-
nal time-series (“solid line” in Fig. 6). 2) Plots No. 192, No. 212,
and No. 236 had mild fluctuations in the original time-series. The
“abrupt changes” in the time-series mainly occurred between
1990 and 1995 and 2005 and 2010, likely caused by winter
snowfall in Shangri-La. During the small-scale “sudden changes
and recoveries” of values, TP-STF could accurately identify and
filter the fluctuations. 3) Plots No. 293, No. 345, and No. 371
had large fluctuations in the original time-series.

We thought that there was a lot of “noise” in the LTS. De-
noising was achieved through curve smoothing. Taking Plot No.
293 as an example, it showed significant fluctuations between
1987 and 2012. The “sudden changes” in the spectral curves
were generally caused by real surface changes or noise. The
ACS records of NFI during 1987 and 2017 (with a 5-year inter-
val) were 12.05 t/hm2, 13.98 t/hm2, 14.09 t/hm2, 19.56 t/hm2,
20.02 t/hm2, 15.42 t/hm2, and 15.70 t/hm2. The changes in ACS
reflected a significant increase in surface vegetation during this
period, which stabilized after 2012. The corresponding original
spectral curves also exhibited this trend but the large amount of
noise caused significant fluctuations in the curves. After fitting
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Fig. 3. Filtering results: (a)–(g) left are the unfiltered annual composite images, right are the reconstructed images by TP-STF, and (h) shows the repair for the
problem of Landsat 7 SLC-off in 2012.

Fig. 4. Study area. (a) Location of Shangri-La in China. (b) Elevation of study
area. (c) Distribution of permanent sampling plots of Pinus densata.

with the TP-STF, the spectral curves reflected this trend much
more accurately. Regarding the sudden increase in ACS between
1997 and 2002 and the stabilization of ACS after 2012, TP-STF
effectively preserved these changes in the trend after smoothing
to denoise the spectral curves.

B. Image Quality Assessment After TP-STF

The RMSE statistics of the images before and after filtering
are performed pixel by pixel (see Table V). The images before
and after filtering had a large difference. The NIR band had the

TABLE V
RMSE STATISTICS

largest change, the mean value of RMSE was 301.148, and the
standard deviation was 323.945. The Blue band had the smallest
change, the mean value of RMSE was 89.945, and the standard
deviation was 168.144.

Combining PSNR and SSIM to evaluate the quality of the
filtered images, as shown in Fig. 7, the PSNR of the filtered
images was mostly above 30 dB. It indicated that the distortion
of the image quality was less, meaning that the quality of the
filtered LTS was more stable and improved. The Green, Red,
NIR, and SIWR2 bands fluctuated up and down around 30 dB
in 2012. This was because the TP-STF filtering to repair the
missing areas of the strips had differences from the original
data, thus affecting the PSNR accuracy. The overall fluctuation
of the SSIM ranged from 0.6 to 1.0, concentrating in the range
of 0.75–0.85, which indicated that the fidelity of the filtered LTS
was high.

C. Estimation of Aboveground Carbon Stock

1) Variable Selection and Accuracy Assessment: In compar-
ing the RFR modeling performance of different filtering, the
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Fig. 5. Comparison of unfiltered and filtered images of seven selected permanent sampling plots (Left: unfiltered; right: filtered; scale of 1:1 000 000).
(a) Sampling plot 191. (b) Sampling plot 212. (c) Sampling plot 236. (d) Sampling plot 255. (e) Sampling plot 293. (f) Sampling plot 345. (g) Sampling
plot 371.

Fig. 6. Algorithmic visual comparison of TP-STF for seven permanent sampling plots. (a) Sampling plot 192. (b) Sampling plot 212. (c) Sampling plot 236.
(d) Sampling plot 255. (e) Sampling plot 293. (f) Sampling plot 345. (g) Sampling plot 371.

remote sensing variables were extracted from the LTS before and
after filtering (see Table III). The Pearson correlation coefficient
method was used to remove variables that showed low correla-
tion with ACS (sig < 0.05 level). Furthermore, some redundant
predictors with significant mutual influence (multicollinearity)
were eliminated after Pearson correlation analysis consider-
ing the significant correlations between variables [56], [57].
Finally, the selected variables for modeling were determined
(see Table VI).

The accuracy of the RFR modeling results (see Table VII)
indicated that the filtering process could significantly improve
the accuracy of ACS modeling compared with the unfiltered

LTS. Compared to other filtering methods, the LTS filtered
by TP-STF exhibited optimal performance in RFR modeling,
with R2 = 0.903, RMSE = 17.049 t/hm2, P = 81.08%, and
rRMSE = 19.691%. Next, the TP-STF-fitted LTS was used to
estimate ACS.

2) ACS Estimation: Yue et al. [58] found that from November
to February of the following year, the net primary productivity
of vegetation in Shangri-La reached its lowest point. However,
the LTS was acquired during this period. Due to the studied
tree, Pinus densata (an evergreen conifer) has a smaller nee-
dle surface area, usually with a thicker cuticle and wax coat-
ing. The environmental factors such as water loss, temperature
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Fig. 7. Image QA. (a) PSNR. (b) SSIM.

TABLE VI
SIGNIFICANT VARIABLES SELECTED OF MODEL BUILDING

TABLE VII
MODEL EVALUATION
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TABLE VIII
ANNUAL ESTIMATION OF PINUS DENSATA

Fig. 8. ACS distribution and SDE of Pinus densata in different years. (a) 1987. (b) 1992. (c) 1997. (d) 2002. (e) 2007. (f) 2012. (g) 2017.

decrease, and reduced sunlight have relatively little impact on
this species. In addition, coniferous forests, especially evergreen
conifer forests, are relatively insensitive to seasonal factors such
as temperature and light, and their carbon absorption capacity
remained relatively stable [59]. Hence, the ACS was estimated
based on RFR, combining TP-STF’s reconstructed LTS and
sampling plots from the NFI program.

From the ACS estimation of Pinus densata in the study (see
Table VIII), the total ACS basically maintained an increasing
trend from 1987 to 2017, with an increase of about 0.48 million
tons. However, there was a decrease in the total ACS of Pinus
densata from 1987 to 2002. It might be attributed to the presence
of regular tending cutting within the Shangri-La woodland. This
measure would result in the replacement of mature or overmature
forests by young forests, thus affecting the overall stability of
the ACS. As China increased the protection of natural forest
resources in the Yangtze River Basin starting in 2001 [24],
the distribution area of Pinus densata in Shangri-La began to
increase continuously, which made an increase in total ACS
from a decrease to an increase of about 0.69 million tons.
Analyzing the average ACS, there was little change in the
average ACS over the 30-year period. The reason is that the
rising popularity of Shangri-La’s tourism led to an accelerating
urbanization process. Although the regions of newly planted
Pinus densata-dominated forests were on the rise during this pe-
riod, the construction of local infrastructures and the additional
Pinus densata-dominated forests were still too young. They had
a relatively weak carbon storage capacity. This explained why

the total ACS of Pinus densata increased while the magnitude
of change in its average ACS was still relatively stable.

3) Spatiotemporal Variation: The ACS estimation of Pinus
densata was mapped and overlaid with the SDE over the years
(see Fig. 8). The study found that: 1) the ACS distribution
showed a spatial pattern of “south (slightly eastward)–north
(slightly westward)”; 2) the SDE shape exhibited a “narrow at
both ends and wide in the middle,” reflecting the concentration
of high values of ACS; 3) the spatiotemporal trajectory of the
gravity center of SDE showed a southward trend (see Fig. 9),
with a total displacement of 16.43 km. Overall, ACS expanded
in the south–north direction and contracted in the east–west
direction, with the expansion in the south–north direction be-
ing stronger than the contraction in the east–west direction.
This suggested that the spatiotemporal distribution pattern of
ACS of Pinus densata in Shangri-La showed obvious evolu-
tionary features, specifically moving southward and expanding
spatially.

V. DISCUSSION

A. Performance of the TP-STF in LTS Reconstruction

The study selected Plot No. 255, which is characterized
by a high-density distribution of Pinus densata and a survey
frequency of seven times, to present and analyze the time-series
variation of six different spectral curves before and after fil-
tering reconstruction (see Fig. 10). The original spectral curve
exhibited significant fluctuations, with noticeable spikes and



6514 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 18, 2025

Fig. 9. Changes of ACS centers of gravity displacement, 1987–2017. (a) Displacement direction and distance. (b) Spatial displacement changes.

Fig. 10. Spectral curves before and after filtering at sampling Plot No.225: (a) Blue, (b) green, (c) red, (d) NIR, (e) SWIR1, (f) SWIR2.

outliers, indicating that the time-series was heavily influenced
by noise. The time-series reconstructed by S–G filtering exhib-
ited a better suitability for smoothing time-series with small
fluctuations. However, the S–G filtering was susceptible to the
influence of large outliers [the spikes in Fig. 10(a)–(c)], which
resulted in a poorer coherence of the overall characteristics of
the time-series. The Vondrak smoothing showed a good fit to
the long-term trends of the time-series in several bands but there
were local fluctuations with large deviations [see Fig. 10(e) and
(f)]. The BSTS smoothed fluctuations in the spectral curves
using line segments with fewer inflection points. It tracked the
trends of the time-series well but it was not effective in fitting
“abrupt changes.” In addition, it was affected by large abnormal
variations [the “abrupt changes” in 2015 in Fig. 10(d)–(f)],
leading to an overall high reconstructed surface reflectance.
The MF denoised the time-series by using medians. It had a
capability in preserving details but the reconstructed time-series

still exhibited strong local fluctuations. The bilateral filtering,
similar to MF, could preserve more detailed features but it was
affected by interference from outliers. Compared to traditional
spatial filtering, the ATC filtering was able to reduce the fluctu-
ation amplitude of spike outliers to some extent. However, the
time-series fitted by ATC exhibited a certain lag, failing to fully
capture the true trend of time-series changes.

Unlike these filtering methods, the TP-STF had following
advantages in time-series reconstruction.

1) In Blue band, Green band, and Red band, the TP-STF
significantly reduced the spikes and fluctuations in the
time-series. It achieved a balance between smoothing the
noise and preserving local details by retaining certain
curve fluctuations, bringing the time-series within a rea-
sonable range of variation.

2) For the “abrupt changes” in the time-series, the TP-STF
exhibited precise tracking of the global trend. The fitted
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curve was closer to the overall changes in the original
time-series. The TP-STF reduced the effect on the spatial
continuity and variability of the reconstructed imagery as
much as possible during the filtering process.

3) The time-series fitted by TP-STF did not experience any
shift in the overall surface reflectance due to interference
from outliers, indicating its robustness.

B. Improvement in ACS Modeling Accuracy Through
TP-STF-Fitted LTS

To investigate the improvement in ACS estimation accuracy
by TP-STF-fitted LTS, we extracted unfiltered and filtered LTS
separately and used them for ACS modeling. From the results
(see Table VII), the accuracy of the filtered LTS modeled using
RFR outperformed the unfiltered LTS. For the R2 of the unfil-
tered LTS was low, while both RMSE and rRMSE were high.
It was likely due to the noise in the data, which reduced the
model’s performance. We further compared the improvement in
ACS modeling accuracy using the filtered LTS. The filtered data
could the modeling R2 using the RFR: TP-STF-fitted LTS (R2 =
0.903) > BSTS fitted LTS (R2 = 0.897) > Vondrak smoothing
fitted LTS (R2 = 0.876) > ATC fitted LTS (R2 = 0.867) >
Bilateral filtering fitted LTS (R2 = 0.863) > S–G filtering fitted
LTS (R2 = 0.852) > MF fitted LTS (R2 = 0.848). For the
modeling RMSE using the RFR: TP-STF-fitted LTS (RMSE
= 17.049 t/hm2) < ATC fitted LTS (RMSE = 25.405 t/hm2)
< Bilateral filtering fitted LTS (RMSE = 26.696 t/hm2) <
BSTS fitted LTS (RMSE = 35.155 t/hm2) < S–G filtering
fitted LTS (RMSE = 36.175 t/hm2) < Vondrak smoothing fitted
LTS (RMSE = 36.399 t/hm2) < Unfiltered LTS (RMSE =
45.721 t/hm2) < MF fitted LTS (RMSE = 46.906 t/hm2). The
filtered LTS showed improvements in fitting performance for
RFR, with the best effect achieved using TP-STF-fitted LTS.
In addition, the RMSE in RFR using TP-STF-fitted LTS was
significantly reduced. However, the modeling performance of
MF, Vondrak smoothing, and S–G filtering was less satisfactory,
which corresponds to their poorer spectral curve reconstruction
results (see Fig. 6). For prediction accuracy, significant improve-
ments were observed in the following modeling results: TP-STF-
fitted LTS (P = 81.08%) < BSTS fitted LTS (P = 74.53%) <
ATC fitted LTS (P = 73.89%) < Bilateral filtering fitted LTS
(P = 73.17%) < Vondrak smoothing fitted LTS (P = 68.78%).
Only TP-STF-fitted LTS, with rRMSE=19.691%, ATC filtering
fitted LTS, with rRMSE = 20.537%, and Bilateral fitted LTS,
with rRMSE = 23.478%, showed obviously decrease.

The spectral time-series could track the process of vegetation
growth and better estimate the AGB and its changes [38]. By
establishing a statistical relationship between forest ACS and
the spectra of remote sensing images, we could effectively
perform remote sensing-based forest ACS estimation. However,
the peaks and abrupt fluctuations in the time-series (which might
be the “noise”) caused the spectral curve fluctuations to fail
to accurately reflect changes in ACS. The TP-STF-fitted LTS
improved the accuracy of ACS estimation models. This was
because TP-STF more comprehensively fitted the nonstationary
features in the LTS, providing higher quality input data for

ACS estimation and effectively enhancing the accuracy of ACS
estimation.

C. Performance of Capturing ACS Change Estimation by
TP-STF’s Reconstructed LTS

We selected sampling plots where records existed during all
seven survey periods of the NFI program to exhibit the per-
formance of TP-STF method’s reconstructed LTS in capturing
ACS change estimation (see Fig. 11). For Plot No. 255, the
NIR, SWIR1, and SWIR2 (the bands are sensitive to vegetation
changes in spectral curves) exhibited a downward trend followed
by an upward trend [see Fig. 6(d)]. For Plot No. 293, the
bands showed a significant increase in spectral curves during
1997–2007 followed by stabilization after 2012 [see Fig. 6(e)].
Combined with the temporal variation of ACS of NFI records,
it verified such trends of real surface vegetation change. The
TP-STF fitting the trends well by eliminating noise that had
significant impacts on interfering with real ground changes.
Hence, the reconstructed LTS achieved good reproduction in
ACS change estimation, which were close to the survey records.
For Plot No. 172, the ACS estimation was generally consistent
with the trend of NFI records. It accurately reflects the overall
annual increase in ACS. For Plot No. 214, the ACS estimation
also closely matched the NFI records. Only at some time points
(1987 and 2012), the ACS change estimation had small devi-
ations. Overall, the reconstructed LTS accurately captured the
temporal trends of ACS variation in plots, such as continuous
ACS increase and significant changes at specific time points.

For sampling plots with significant ACS variation in the
NFI records (No. 162, No. 200, No. 298, and No. 342), the
reconstructed LTS was also able to capture the temporal variation
in ACS change estimation. In the initial year and the period of
significant fluctuations (after 2002) of ACS change estimation,
the agreement between the estimated values and the NIF survey
records was not ideal. Due to the long time span of the NFI
survey records, the changes in survey techniques may have
introduced uncertainties in the records, which affected ACS
change estimation [60]. Moreover, the static ACS estimation
model in the study might also affect the accuracy of ACS change
estimation. In the future, we will construct a dynamic change
model of variation based on TP-STF’s reconstructed LTS to
further improve the accuracy of ACS change estimation.

D. Comparison With Existing ACS Estimation

To test the validity of ACS estimation in this study, we selected
the relevant data of Pinus densata from the forest management
inventory data in Shangri-La, Yunnan province, China, in 2006
and 2016 for comparison. Meanwhile, we also compared the re-
sults of various scholars on the direct estimation of ACS of Pinus
densata in Shangri-La, as well as the indirect ACS results ob-
tained by using the carbon stock conversion factor (see Fig. 12).

The ACS of Pinus densata calculated from forest resource
inventory were 6.703 million tons in 2006 and 7.952 million
tons in 2016. It was closer to our ACS estimation results in the
similar years (2007 and 2017) of the study, with a difference of
about 0.021 million tons and 0.912 million tons. The total ACS
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Fig. 11. ACS change estimation by TP-STF’s reconstructed LTS: “the solid line” is ACS survey records of the sampling plots from the NFI program, and “the
dotted line” is the ACS estimation of the sampling plots after TP-STF’s reconstructed LTS.

Fig. 12. Comparison estimation studies of ACS of Pinus densata by various
scholars.

from 2006 to 2016 showed an increasing trend, with an increase
of 1.249 million tons. The estimated results of this study also
better reflected the rising trend of ACS of Pinus densata.

Teng et al. [42] had a great difference in estimating the
ACS of Pinus densata in 2002 compared to our study (about
1.99 million tons). The differences in results of ACS for the
remaining years were relatively small. Han et al. [61] used a
nonlinear mixed-effects model for ACS estimation of Pinus
densata, which generally reported lower results compared to
this study (approximately 2.36–2.86 million tons). We used
the carbon stock conversion factor to convert AGB to obtain
ACS according to other scholars’ research results. Yue [62] and
Wang et al. [63] focused on forest biomass, which is difficult to
compare. Thus, it was necessary to refer to Chen et al.’s [64]
study that the AGB for about 70%–90% of forest biomass. We
calculated that the ACB of Pinus densata in Shangri-La in 2008
studied by Yue was about 7.65–9.84 million tons. The ACS in
2009 studied by Wang et al. was about 7–9 million tons. Zhang
et al. [24] and Luo et al. [65] estimated AGB of Pinus densata
based on LTS. The converted ACS was differed from our study
by 6.65 million tons and 2.67 million tons. Due to the wide range
of error sources in the estimation process, many subjective and
objective factors were difficult to overcome, leading to variations
in ACS estimation among different researchers.

E. Limitations and Scalability

In addition to obvious noise, land surface changes, such as
deforestation, afforestation, or water body shrinkage, would also
cause “abrupt changes” in the time-series. To prevent TP-STF
from misidentifying these “abrupt changes” as noise, we se-
lected smaller neighborhood windows to minimize excessive
smoothing of the images. However, this made it challenging to
balance the weight distribution between spatial and temporal
information. Taking the Napahai wetland as an example (see
Fig. 13), this region experienced rapid changes in the area
within the time window (2015–2019) considered for filtering.
Due to the small neighborhood window, the large changes in
the area of Napahai wetland in recent years were not accu-
rately captured at the pixel level. Finally, it affected the final
filtering results, which was manifested in a significant reduction
in the area after filtering. Subsequently, we would incorporate
adaptive domain windows into the TP-STF method and es-
tablish a spatiotemporal collaboration framework to enhance
the algorithm’s ability to identify land surface changes and
noise.

During the experiment, to verify the accuracy of the terrain
classification, test sampling points were not selected in the study
area. Instead, the validation was only performed using images or
DEM data. It might resulted in the terrain recognition accuracy
of TP-STF was low. In the future research, we will do fieldwork
to select typical topographical units in different landforms for
investigation to reduce the errors caused by visual interpretation.
In this way, it aims to improve the terrain recognition accuracy
of TP-STF and enhance its filtering performance on the images.

Studies have shown that spectral variation indicators and envi-
ronmental variables can significantly improve modeling perfor-
mance [24], [66]. In this research, we focused on the validation
and evaluation of the filtering. Hence, we selected a limited set
of remote sensing variables to investigate the improvement in
ACS estimation accuracy by TP-STF. In subsequent studies, we
will integrate more variables to improve model performance of
capturing ACS variation.
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Fig. 13. Changes in Napahai wetland (red dotted line circle) from 2015 to 2019 and the filtered image in 2017.

VI. CONCLUSION

We developed the TP-STF to improve the accuracy of for-
est ACS estimation by reconstructing LTS. This new method
integrated the Vondrak smoothing method (temporal filtering),
bilateral filtering (spatial filtering), and TD bilateral filter-
ing (spatiotemporal filtering). During the filtering process, the
GeoDetector algorithm was introduced to classify the fine-scale
types of landforms in the study area. The suitable filtering was
applied to reconstruct LTS according to the terrain types. Then,
we compared the performance of TP-STF-fitted LTS with the
unfiltered filtered and other filtered LTS in modeling ACS.
Finally, the TP-STF and RFR were used to estimate the ACS
of Pinus densata. The results showed the following.

1) In the image QA, TP-STF had a stronger capacity for
restoration and enhancement in the LTS image denoising
process. The quality of the reconstructed LTS images
was significantly improved (PSNR = 26.52–46.49 dB,
SSIM = 0.734–0.953).

2) In the LTS reconstruction, the TP-STF struck a balance
between smoothing noise and preserving image detail
features. The TP-STF-fitted time-series better reflected
the vegetation growth fluctuations, and these fluctuations
could provide a high-quality dataset for improving ACS
estimation accuracy and studying its changes.

3) In the modeling process, the TP-STF-fitted LTS had an
optimal performance in RFR. It indicated that the changes
of vegetation characteristics over time filtered by the TP-
STF-fitted LTS were more in line with the real accumula-
tion and loss of ACS.

4) The estimation results indicated that the ACS of Pinus den-
sata did not follow a single trend of continuous increase
or decrease but rather exhibited cyclical fluctuations. The
result was closer to the actual dynamics of the forest
ecosystem [67].

In conclusion, the TP-STF method provided a reference for
improving the accuracy of forest ACS estimation in high-altitude
areas by denoising in LTS. Due to the unique geographical
conditions of Shangri-La, we considered that there were certain
limitations in the TP-STF (such as the choice of thresholds and
windows). To enhance the transferability, we will incorporate a
larger area and other predominant tree species in future research
to optimize and improve the TP-STF.
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