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Dual Embedding Transformer Network for
Hyperspectral Unmixing

Huadong Yang and Chengbi Zhang

Abstract—Hyperspectral unmixing is an essential task for
achieving accurate perception of hyperspectral remote sensing
information, aiming to overcome the limitation of spatial resolution
and interpret the distribution of land features. To achieve the spatial
and spectral feature representation of hyperspectral images, we
propose a dual embedding transformer network (DET-Net) based
on an encoder-decoder architecture, which utilizes two transformer
modules, including three-view spatial attention (TVA) module with
2-D embedding and multiscale spectral band group feature fusion
(BGF) module with 3-D embedding to accomplish the task of
hyperspectral unmixing. In TVA module, based on 2-D embedding,
we introduce a three-view attention mechanism to extract more
comprehensive spatial features. In BGF module, the transformer
embedding is extended to band group spatial-spectral 3-D cubed
embedding and establishes a series of spectral band groups. A
cross-feature fusion mechanism is adopted to achieve multiscale
spatial-spectral feature decoupling. With the collaboration of these
two embeddings, DET-Net effectively captures complex spatial and
spectral dependencies to decouple the tridimensional unmixing
feature representation. Experimental results on synthetic and real
datasets demonstrates the generalization performance of the pro-
posed method, and the ablation experiments confirm the effective-
ness of the TVA and BGF modules.

Index Terms—Abundance map, autoencoder (AE), deep
learning, endmember extraction, hyperspectral image (HSI),
hyperspectral unmixing (HU), transformer network.

I. INTRODUCTION

HYPERSPECTRAL remote sensing is a multidimen-
sional information acquisition technology that can

simultaneously capture 2-D spatial information and 3-D
spectral information, resulting a 3-D image cube at hundreds
of contiguous bands across the electromagnetic spectrum,
providing substantial information of the scene. Accordingly,
hyperspectral images (HSIs) have been increasingly applied in
many areas including land cover classification [1], [2], [3], [4],
precision agriculture [5], food industry [6], biotechnology [5],
and medical science [7].

Due to the low spatial resolution of hyperspectral sensors,
mixed pixels inevitably exist in the scene, which has become
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a major obstacle that hinders the quantitative interpretation of
hyperspectral remote sensing images. Hyperspectral unmixing
(HU) is an effective technique for the mixed pixel decomposi-
tion, which aims to decompose the mixed pixel spectrum into
a set of “pure” spectra, named endmembers, weighted by the
corresponding proportions, named abundances.

Over the last few decades, many HU algorithms have been
proposed for HSI interpretation, and most of them are designed
based on the linear spectral mixture model since its inherent
simplicity from conceptual and implementational points of view.
These algorithms can be roughly classified into geometric meth-
ods [8], [9], [10], [11], [12], statistical methods [13], [14], [15],
sparse regression methods [16], [17], and heuristic intelligent
algorithms [18], [19], blind unmixing methods [20], [21], and
so on. Compared with other methods, blind unmixing method
can extract the endmembers and estimate the corresponding
abundances simultaneously.

Recently, deep learning methods have demonstrated aston-
ishing results in many fields [22], [23], [24], such as computer
vision, natural language processing, and speech recognition.
Naturally, deep neural networks have also been applied to HU
task [25], [26], [27]. Hyperspectral deep unmixing networks can
be divided into two types: 1) supervised deep unmixing network;
and 2) unsupervised deep unmixing network. The supervised
unmixing network requires real labels or manually calibrated
endmember information. However, acquiring such prior infor-
mation is often expensive or inaccurate. Therefore, unsupervised
blind unmixing network has been attracted by many focuses in
recent year. The autoencoder (AE) network is one of the most
commonly used unsupervised HU networks, and have achieved
a fast development in unmixing applications [21], [28].

Ozkan et al. [29] proposed a two-staged AE network, in which
the sparsity of the estimates was improved by incorporating
the Kullback–Leibler divergence term with SAD similarity and
additional penalty terms. Qu et al. [30] utilized denoising and
the l21-norm constraint to propose an untied denoising autoen-
coder with sparsity. Multiple AE network structures, activation
functions, and objective functions were tested for their impact
on HU in [31]. Su et al. [32] developed stacked nonnegative
sparse autoencoders for hyperspectral data with outliers and low
signal-to-noise ratio. A variational autoencoder was employed
for blind source separation in [33]. The Wu-net [34] proposed a
two-stream network autoencoder architecture, achieving HU by
sharing pseudopixel network weights. In addition, superpixels
were applied to HU, focusing on local spatial crucial features
to achieve better generalization for the network initialization
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task. In TANet [35], superpixel segmentation is adopted as the
two-stream network preprocessing to extract the endmember
bundles with spatial information. Jin et al. [36] integrated a GAN
network with an AE network to further enhance the two-stream
network’s fitting capability.

The above pixel-based methods cannot explore the global spa-
tial information of HSIs. convolutional neural network (CNN)
models are utilized to regard hyperspectral image block or whole
hyperspectral image as the inputting of HU network. In [37], hy-
perspectral image was divided into hyperspectral image blocks
as the input of the hyperspectral unmixing network, thus preserv-
ing the spatial structure of the HSI. Rasti et al. [38] proposed a
minimal simplex convolutional network for deep hyperspectral
unmixing. Palsson et al. [39] applied multitask learning to HU.
Huang et al. [40] combined spectral information for effective
spatial-spectral two-stream unmixing. By addressing unmixing
tasks separately for each hyperspectral image block, sharing
hidden layers across all tasks can significantly reduce the risk
of overfitting. Gao et al. [41] introduced a cycle-consistency
unmixing network by training two cascaded AEs in an end-
to-end manner, aiming to enhance the unmixing performance
more effectively. Zhang et al. [42] applied advanced 3-D CNN
for HU.

However, these methods are limited by the finite receptive
field of CNN. With the remarkable long-range feature model-
ing performance of transformer [43] demonstrated in natural
language processing, computer vision, and other fields, the
transformer networks are utilized to enhance unmixing capa-
bilities. In [44], the significant spatial information in the scene
was prioritized using multihead self-attention blocks based on
shifted windows. In addition, studies have shown that the appli-
cation of shifted windows [45] assists transformers in extracting
hierarchical features similar to CNN. The authors in[46] and [47]
prioritized significant spatial information in the scene using mul-
tihead self-attention blocks based on shifted windows. In [48],
Duan et al. developed the double-aware transformer for HU by
exploiting the region homogeneity and spectral correlation of
HSI. TCCU-Net [49] end-to-end learns feature in four dimen-
sions: Spectral, spatial, global, and local, to achieve effective
unmixing. Regarding spectral variation, Gao et al. [50] designed
Rev-net and demonstrated a theoretical proof for the reversibility
of the endmember generation process. Bhakthan et al. [51] used
necessary preprocessing, including PCA and 3-D–2-D CNN,
to achieve effective unmixing. The DSET-Net [52] adopts an
unmixing framework and achieves local and overall feature
parameter sharing in the encoder through a “Transformer in
Transformer” strategy.

In previous works, spatial embedding has been widely rec-
ognized as a crucial factor affecting transformer unmixing
performance [44], [46], [47], [48]. However, 2-D ViT-based
patch embedding has been adopted in the existing transformer
unmixing network, which is suitable for RGB image, but not
enough for HSI. Because it is not enough to explore the spatial
unmixing information of hyperspectral image cube. Compared
with RGB image, HSI is not only with the main view (front
view), but also with the left view(side view) and top view,
as shown in Fig. 1. The left and top views of HSIs contain

Fig. 1. Embeddings for HSI. (a) HSI. (b) 2-D ViT-based patch embedding.
(c) Three views. (d) 2-D ViT-based patch embedding for HSI’s main view.
(e) Band by band spatial-spectral 3-D cubed embedding for HSI. (f) Band group
spatial-spectral 3-D cubed embedding for HSI.

abundant spatial unmixing information. However, the 2-D ViT-
based patch embedding which only encodes the features of the
main view, ignores the spatial feature information of the left view
and top view for HSIs. In addition, the 2-D ViT-based patch
embedding which encodes only in the spatial dimension, also
ignores important feature information in the band dimension.
Therefore, it is necessary to establish a 3-D spatial-spectral
cubed embedding across spatial and spectral dimensions of
HSIs. The band by band embedding requires a large amount
of graphics memory, which is not conducive to the convergence
of the unmixing network. The band group spatial-spectral cubed
embedding can freely generate a suitable number of tokens by
setting the embedding scale. Motivated by the above, we pro-
pose a dual embedding transformer network (DET-Net) for HU,
which mainly includes the three-view spatial attention (TVA)
module with 2-D embedding and the multiscale spectral band
group feature fusion (BGF) module with 3-D embedding.

In TVA transformer module, in order to explore spatial feature
information in HSIs, we propose a three-view spatial attention
mechanism that facilitates the fusion of features from the main
view, the top view and the left view. The main view features take
the lead in fusing the top and left view features to extract more
comprehensive spatial information from the HSI.

In BGF transformer module, we utilize 3-D band group
spatial-spectral cubed embedding to extract spectral band feature
information of the multiscale spectral band groups. Moreover,
a bidirectional cross-fusion mechanism is designed between the
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multiscale spectral band groups transformer blocks to extract
scale-invariant spectral-spatial unmixing features.

The AE DET-Net with aforementioned two modules can
effectively capture HSI’s spatial and spectral features with un-
supervised learning, and accomplish the decoupling of spatial
and spectral features. Specifically, the main contributions of this
proposed network can be summarized as follows.

1) Based on the transformer hyperspectral unmixing model,
We propose a DET-Net with the two feature refinement
modules, namely, TVA module with 2-D embedding and
BGF module with 3-D embedding. By combining the 2-
D embedding and 3-D embedding, the proposed network
achieve an improvement in unmixing accuracy.

2) In the TVA module, we introduce a novel spatial attention
module based on the three views of the hyperspectral
image cube. With the assistance of the three-view spatial
attention mechanism, the spatial features of the three
views are reweighted to retain more comprehensive spatial
information of the HSI.

3) In order to strengthen the spatial-spectral linkage of un-
mixing feature, we design a 3-D band group spatial-
spectral cubed embedding rather than 2-D spatial embed-
ding in the BGF module. Based on 3-D embedding, we es-
tablish multiscale spectral band groups through different-
scale spatial-spectral band group embedding. In addition,
the bidirectional cross-fusion mechanism is established to
effectively decouple spatial-spectral unmixing features of
multiscale spectral band groups.

II. PROPOSED METHOD

This section presents a comprehensive exposition of the
method in our study. First, we provide a brief overview of the
mechanism for linear mixture model (LMM). Next, the macro-
scopic interpretation of our autoencoder network framework is
presented. Finally, we provide a detailed exposition of the two
core transformer modules, namely the TVA module with 2-D
embedding and the BGF module with 3-D embedding, in the
encoder.

A. Linear Mixture Model (LMM)

Let HSI of spatial dimensions H ×W with C spectral bands
be denoted by I ∈ RC×H×W . The mathematical expression of
the LMM is as follows:

Y = EA+N (1)

where Y = [y1,y2, . . . ,yC ] ∈ RC×Q, Q = H ·W represent
the hyperspectral image matrix, which is reshaped from HSI,
with C bands and Q pixels. The endmember matrix E ∈ RC×P

contains P endmembers, and A ∈ RP×Q denotes correspond-
ing abundance map. N ∈ RC×Q represent image noise. Two
constraints, included abundance nonnegativity constraint (ANC)
and the abundance sum-to-one constraint (ASC), must be satis-
fied to ensure physically meaningful interpretations

A ≥ 0

1T
PA = 1T

Q. (2)

B. Overall Architecture

The architecture of the proposed network is shown in Fig. 2.
The the main components of DET-Net comprises TVA trans-
former module and BGF transformer module to achieve end-to-
end HU.

In the DET-Net encoder, we first employ CNN to perform
coarse feature extraction on the HSI. In the CNN encoder, we
employ 2-D convolution with the 1 × 1 kernel to downsample
only on the spectral dimension without altering the spatial di-
mensions. We incorporate batch normalization (BN), dropout,
and leaky ReLU operations. These operations have been demon-
strated to be effective for hyperspectral unmixing tasks [21]. HSI
is transformed by CNN into the feature map F ∈ RT×H×W ,
where T represents the reduced number of output bands. Sub-
sequently, to extract the spatial features of the cube-shaped HSI
from three different views, we designed a TVA transformer
module on the the three views of feature maps. A three-stream
network employs TVA mechanism to fuse the features of the
top view and left view into the main view features. In BGF
transformer module, the 3-D band group spatial-spectral cubed
embedding is utilized to split the feature maps of the HSI into
multiscale spectral band groups. To extract multiscale spectral
band grouping features, we design a bidirectional cross-fusion
module to decouple the multiscale spectral unmixing features.

In the DET-Net decoder, the output by two core modules
is upsampled and reshaped to the original dimensions of the
hyperspectral abundance. Subsequently, softmax is applied to
ensure the abundance A to satisfy ANC and ASC constraints.
The reconstructed HSI Î ∈ RC×H×W , which can be reshaped
to hyperspectral image matrix Ŷ ∈ RC×Q,is output through a
single convolutional layer without bias. The weights of convo-
lutional layer are the endmember E [44]. Before training the
unmixing network, we initialize the weights of the convolution
layer with the endmembers obtained by VCA [10]. For the loss
function, DET-Net minimizes the reconstruction loss function,
which consists of the reconstruction error (RE) loss and the spec-
tral angle distance (SAD) loss with regularization parameters α
and β as follows:

LR E(Y, Ŷ) =
1

Q

Q∑
i=1

(
Ŷi −Yi

)2

(3)

LSAD(Y, Ŷ) =

Q∑
i=1

arccos

⎛
⎝

〈
Yi, Ŷi

〉

‖Yi‖2 ˆ‖Yi‖2

⎞
⎠ (4)

L = αLRE + βLSAD. (5)

C. Module 1: Three-View Spatial Attention Module With 2-D
Embedding

Some transformer-based unmixing methods [44], [46], [47]
only consider the spatiality of the main view of HSI unmixing
feature. However, as a HSI cube with three views, HSIs contain
not only the main view, but also the top and left views with
abundant spatial information. The traditional 2-D ViT patch em-
bedding only on the main view has limitations in unmixing tasks.
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Fig. 2. Proposed DET-Net architecture(as shown in the figure, with the hyperspectral Jasper dataset of 100 × 100 pixels and 198 bands used for demonstration).
The input of DET-Net is the original HSI, and the output is the reconstructed HSI with endmembers and abundance maps. TVA Module utilize 2-D ViT-based
embedding to extract three-view spatial feature, and 3-D band group spatial-spectral cubed embedding is adopted to decoupling spectral feature in BGF module.
For the light yellow blocks, Three-view Spatial Attention (TVA) mechanism and Bidirectional Cross-Fusion (BCF) mechanism are, respectively, introduced in
Sections II-C and II-D4.

Therefore, we propose a three-view spatial attention module to
emphasize the spatial features of the three views for HU.

We perform 2-D ViT-based patch embedding separately on
the feature map of each view. For a more intuitive illustration,
we use the hyperspectral Jasper dataset in Section III-E1 as an
example to explain TVA module. The feature maps of Jasper
dataset is Fj ∈ RT×100×100. The main view for the feature maps
is Fjm ∈ RT×(100×100′). while the dimensions of the top and
left views are Fjt ∈ R100′×(100×T ) and Fjl ∈ R100×(T×100′).
The spatial feature embedding patch size in the main view is
5 × 5, and it is 5 × 3 for the top and left views. Meanwhile,
the patch band(channel) of main view transformer encoder is
T. The patch band of top or left view transformer encoder is
100. After the 2-D ViT-based embedding in Section II-D1, three

Transformer Blocks with the multihead self-patch attention are,
respectively, fed with the resulting sequence of vectors. Fur-
ther details of multihead self-patch attention are introduced in
Section II-D2 [44]. The Clstoken Main, Clstoken Top, and
Clstoken Left generated by the three view transformer encoders
are input to TVA mechanism block. One of the tasks of HU is
abundance estimation, which is reflected by the spatial informa-
tion of the main view. In other words, the unmixing feature of
the main view should be the dominant feature of TVA module.
The unmixing features of the top and left views should be fused
into the unmixing features of the main view.

The structure of TVA mechanism is illustrated in Fig. 3. First,
inspired by the different presence of common edges between
the main view and the other two views, we restore the Clstoken
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Fig. 3. Proposed TVA mechansim with the hyperspectral Jasper dataset. Module1 Clstoken fused from three-view Clstokens to facilitate feature extraction.

of all views to the original unflattened shape. The edge marked
with 5 represents the main view edge corresponding to the top
view, and the edge marked with 5’ represents the main view edge
corresponding to the left view. Next, the Clstoken of the cube
shapes for the top view and the left view are reshaped into 2-
D feature matrices, namely, Matrix Top ∈ R300×5′ and Matrix
Left ∈ R5×300. Afterward, we perform a matrix multiplication
between MatrixTop and MatrixLeft and apply a softmax layer
to calculate the attention map. The main view and the top view
share the common edge 5, while the main view and the left view
share the common edge 5’. Thus, the Clstoken of the main view
is reshaped into two branches. In one branch, Matrix Main ∈
R(K∗5′)×5, which is reshaped from Clstoken Main, is chosen
to be multiplied by the attention map matrix. In other branch,
Matrix Main′ ∈ R(K∗5)×5′ , which is reshaped from Clstoken
Main, is chosen to be multiplied by the transpose of the attention
map matrix. Finally, the result of the two branches respectively
reshape into a 1-D vector of Clstoken separately. The two 1-
D vectors of Clstoken are added element-wise to complete the
attention feature of the three views.

As presented above, the Module1 Clstoken is a weighted sum
of the features across three views. As a result, it has a global
contextual view and selectively aggregates feature information
based on spatial attention maps. Moreover, similar semantic
features are mutually enhance themselves, improving intra-class
compactness and semantic consistency.

D. Module 2: Multiscale Spectral Band Group Feature Fusion
Module With 3-D Embedding

To further explore the hyperspectral features in the spectral
dimension, we propose a multiscale spectral band group model.
As illustrated in the Fig. 4, the lower part demonstrates the
3-D band group spatial-spectral cubed embedding on hyper-
spectral feature maps. While the upper part depicts the bidi-
rectional cross-fusion mechanism for multispectral band group
features. The structure can capture global salient features from

long-wave bands and detailed granularity from short-wave
bands.

1) 3-D Spatial-Spectral Feature Embedding: For 2-D ViT-
based patch embedding of RGB images, ViT extracts tokens by
spliting the image into nonoverlapping patches. If ViT is directly
applied to the transposed feature maps FT ∈ RH×W×T , HSI is
splited into the patches x1, x2, . . . xN ∈ R�H

h �×�W
w �×T , where

N = h · w. The above process refers to Fig. 1(d).
Compared with RGB image, HSIs have more bands (chan-

nels). Thus, we perform 3-D band group spatial-spectral cubed
embedding the hyperspectral transposed CNN feature map by in-
tegrating the spatial dimension and the extra spectral dimension.
Specifically, tokens are extracted from the hyperspectral feature
maps by dividing the image into nonoverlapping cube-shaped
patches, x1, x2, . . . xN ∈ R�H

h �×�W
w �×�T

t �, where N = h · w · t.
The above process refers to Fig. 1(f).

Each cube-shaped patch,xi, is then projected into a token. The
rearrange operator G projects each cube into a flattened token
Zi = Gxi. These tokens are concatenated to form a sequence of
Patches, which is then prefixed with a learnable Clstoken Zcls.
The positional embedding Pos is applied to the sequence. The
process can be denoted as

Patches0 = [Gx1,Gx2, . . . ,GxN ] (6)

Z0 = [Zcls ,Patches0] +Pos =
[
Zcls ′ ,Patches′0

]
. (7)

2) Preliminary, Transformer Encoder With Multihead Self-
Patch Attention: Transformer encoder with multihead self-patch
attention mainly consists of multihead self-patch attention
(MPA) module and multilayer perceptron (MLP) module. For
the convenience of explaining the proposed method, MPA∗ mod-
ule, compared with MPA module in [44], is without Layernorm
(LN) layer, as shown in the orange box of Fig. 5. Two LN
layers are respectively applied before the block. The remaining
Layernorm layer is placed on the side of the MPA∗ module. The
residual connections are after every module. The MLP contains
two layers with a GELU nonlinearity. The sequence of tokens
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Fig. 4. Crossing structure of the multiscale spectral band group transformer blocks.

Fig. 5. Horizontal and vertical feature cross-fusion between downsampling and upsampling Group2 transformer blocks.
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Z is processed by a transformer encoder of L layers consisting
of the following operations:

Z′
� = MPA(LN (Z�−1)) ‖LN

(
Patches′�−1

)
, (8)

Z� = MLP (LN (Z′
�)) + Z′

�, � = 1 . . . L (9)

where ‖ represents the concatenation operation.
3) Multiscale Spectral Band Groups: In order to obtain

scale-invariant unmixing features at the spectral band level, we
establish multiscale spectral band groups for the hyperspectral
unmixing network. The differences among each spectral band
group stem from the size of the 3-D embedding scale. In order
to focus in extracting the spectral band features, the embedding
scales of h and w are consistent for every spectral band group,
but the setting of t for each spectral band group is different.
With different t setting, tokenization generate different numbers
of tokens. A larger embedding scale corresponds to a set of
larger patches, generating a smaller number of tokens during
the encoding process. Similarly, a smaller embedding scale
corresponds to a set of smaller patches, generating a larger
number of tokens during the encoding process. We take three
spectral band groups as an example and demonstrate the feature
embedding process in the lower part of the Fig. 4, whereGroup1
embedding scale setting:(h,w, t1), Group2 embedding scale
setting:(h,w, t2), Group3 embedding scale setting:(h,w, t3)
and 1 = t1 < t2 < t3. Intuitively, fine-grained spectral infor-
mation can be captured by smaller spectral band groups, while
larger spectral band groups capture the slow-changing semantics
of the bands. As each spectral band group captures unmix-
ing information at different levels, we utilize a bidirectional
cross-fusion mechanism to enhance the correlation of multiscale
spectral band group features at different levels, as described in
the following section.

4) Bidirectional Cross-Fusion Mechanism of Multiscale
Spectral Band Group Features: In the upper part of Fig. 4,
multiscale spectral band group transformer blocks are cas-
caded through upsampling (Group3 → Group2 → Group1)
and downsampling (Group1 → Group2 → Group3) opera-
tions to achieve feature decoupling. In the horizontal direction,
the Clstoken realizes feature communication of different levels
of spectral band groups. In the vertical direction, we perform
vertical cascading of Patches at the same level of spectral band
group.

In the horizontal direction, the Clstoken of traditional ViT
embedding, which is in the form of empty value or random
initialization is concatenated with Patches. In this module, the
current Clstoken is from Clstoken of last group. In this way,
the umixing features are flowed horizontally among multiscale
spectral band group transformer blocks [53]. To ensure multi-
scale spectral band group transformer blocks can be cascaded
adjacent to each other, a set of linear layers are used to unify the
dimension of adjacent spectral band groups. Thus, the process
achieves a horizontal flow of features from different spectral
band groups. It is worth noting that we concatenate the Clsto-
ken of Module1 with the Patches of the first downsampled
spectral band group transformer block (G1 DTB), ensuring
that the feature information extracted by Module1 is passed to
Module2 [54]. The embedding scale of Module1 is consistent

Algorithm 1: The Bidirectional Cross-Fusion of Group2
UTB.

INPUT:
the output Clstoken of G3 UTB: Zcls3u(out)
the input Patches of G2 UTB: Ps2u(in)
the output Patches of G2 DTB: Ps2d(out)

OUTPUT:
the output Clstoken of G2 UTB: Zcls2u(out)
the output Patches of G2 UTB: Ps2u(out)

BEGIN
X1 = Ps2u(in) ‖ linear(Zcls3u(out))
X2 = LN[X1]
X3 = MPA[X2]
X4 = X3 ‖ [LN(Ps2u(in))+Ps2d(out)]
X5 = X4 + MLP (LN(X4))
Zcls2u(out) = X5(1, :)
Ps2u(out) = X5(2, :)

END

with G1 DTB, where t1 = 1. In the vertical direction, the output
Patches of the downsampling transformer block are input into the
symmetrical upsampling transformer block at the same level via
skip connections. Finally, to prevent attenuation of long-distance
feature information, a skip connection is adopted between the
output of the first downsampling transformer block and the
output of the last upsampling view transformer block.

The micrograph of the bidirectional cross-fusion is shown
in the Fig. 5. We use upsampling Group2 transformer block
(G2 UTB) as the example to describe the fusion process in
detail. In the horizontal direction, the output Clstoken of up-
sampling Group3 transformer block (G3 UTB), Zcls3u(out) ∈
R1·� T

t3
�·�H

h �·�W
w � is dimensionally increased to Zcls2u(in) ∈

R1·� T
t2

�·�H
h �·�W

w � of G2 UTB by a linear layer. The above op-
eration ensures that Zcls2u(in) can be concatenated with the
Patches of G2 UTB, Ps2u(in),which is embedded by Group2
embedding scale setting. The concatenated sequence is input into
G2 UTB. Similarly, the output Clstoken Zcls2u(out)of G2 UTB
transformer block is dimensionally increased and inputted into
the transformer block of G1 UTB. In the vertical direction, the
output PatchesPs2d(out) ofG2DTB are vertically input intoG2
UTB. In the G2 UTB, Ps2d(out) utilize the skip connection to
execute element-wise addition in the branch of LN layer, which
is beside MPA∗ module.

Based on bidirectional cross-fusion of Clstoken and Patches,
we perform cascading perceptual fusion between spectral band
groups. Intuitively, the fusion allows the final spectral band
group to aggregate multiscale information from all preced-
ing spectral band groups. For G2 UTB, the pseudocode of
the bidirectional cascading perceptual fusion is shown in
Algorithm 1.

III. EXPERIMENTS

To evaluate the proposed method, we carry out comprehen-
sive experiments on one synthetic dataset and three representa-
tive real datasets, namely Jasper dataset, Washington DC Mall
dataset, and Samson dataset. The performance of the proposed
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Fig. 6. Synthetic Dataset. (a) True-color band. (b) Endmembers.

Fig. 7. Jasper Dataset. (a) True-color image. (b) Endmembers.

model is compared to six different unmixing methods from dif-
ferent categories: classical unmixing method VCA&FCLS [10],
[55], CNN-based unmixing method CNNAUE [37], cycle-
consistency unmixing method CyCU-Net [41], deep autoen-
coder unmixing method DAUE [31], baseline ViT-based un-
mixing method DeepTrans-Net [44], and Swin Transformer
unmixing method UST-Net [46].

In the next subsections, we first introduce the datasets, exper-
imental setup and quantitative performance metrics. Second, the
synthetic dataset is experimented to prove the noise robustness
of DET-NET. Then, we report our results on the real datasets.
Finally, we perform the ablation experiment to verify the per-
formance of two core modules.

A. Datasets

1) Synthetic Dataset: As the Fig. 6 depicted, the synthetic
dataset of 80 × 80 pixels is simulated by linear mixtures of
three endmembers from the ENVI ASTER spectral library:
Limestone, Basalt, and Conifer. These endmembers are shown
in Fig. 6 and contain 200 reflection values in the wavelength
range [302–13600] nm. The synthetic dataset, whose abundance
structure is the same as [44], contains 16 squares, each measuring
20 × 20 pixels, with distinct ternary mixtures.

2) Jasper Ridge Dataset (Jasper Dataset): The Jasper Ridge
Dataset was collected over Jasper Ridge by the AVIRIS sensor
in central California, USA. The dataset consists of raw data with
512 × 614 pixels, each recorded in 224 channels ranging from
380 to 2500 nm. The spectral resolution is up to 9.46 nm. Since
this HSI is too complex to get the ground truth, we consider a
subimage of 100 × 100 pixels. Due to dense water vapor and
atmospheric effects, 198 channels are retained. The endmembers
in this dataset are Soil, Water, Tree, and Road, as shown in Fig. 7.

Fig. 8. Washington DC Mall Dataset. (a) True-color image. (b) Endmembers.

Fig. 9. Samson Dataset. (a) True-color image. (b) Endmembers.

The GT endmembers and abundance maps are obtained from
rslab.1

3) Washington DC Mall Dataset (DC Dataset): The hyper-
spectral digital image acquisition experiment (HYDICE) sensor
was used to collect the HSI over the Washington DC mall. The
original dataset have 1280 × 307 pixels. The cropped image
is an area of 290 × 290 pixels. The dataset is with 191 bands,
covering wavelengths from 400 to 2400 nm. Six endmembers
are obtained from this image, namely, Grass, Tree, Roof, Road,
Water, and Trail, as shown in Fig. 8. The GT endmembers and
abundance maps are obtained from [44].

4) Samson Dataset: The Samson dataset, acquired through
the SAMSON sensor and illustrated in Fig. 9, consists of a
region of interest (ROI) with three endmembers: Soil, Water,
and Tree. The original dataset comprises 952 × 952 pixels and
156 channels, with a high spectral resolution of 3.13 nm. Due
to computational constraints, the analysis focuses on a reduced
ROI of 95 × 95 pixels. The GT endmembers and abundance
maps are obtained from [44].

B. Experiment Setup

The experimental results of the deep unmixing network de-
pend on the settings of hyperparameters. The hyperparameter
settings of the deep unmixing network proposed in this article are
as follows: The number of self-attention heads is set to 4. DET-
Net is a multiscale network that contains multiple Transformer
blocks. In TVA transformer module, the transformer blocks of
the main view are set to 2 layers, and the transformer blocks of
the top view and left view are set to 1 layer. In BGF transformer
module, the number of band groups is set to 5. The computational
complexity of proposed method is shown in the Table I. For

1https://rslab.ut.ac.ir/data

https://rslab.ut.ac.ir/data
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TABLE I
COMPUTATIONAL COMPLEXITY ON JASPER DATASET

floating point operation (FLOPs) and Param, Module 1 is with
a relatively high computational complexity, while Module 2 is
with a relatively low computational complexity. Compared to
six unmixing methods in this article, DET-Net is with the higher
complexity, and still has potential improvement on Flops and
Params. For the embedding scale of Group, five different t
values are set as:[t1, t2, t3, t4, t5] = [1, 2, 3, 4, 6]. To implement
dynamic learning rates, the StepLr scheduler is adopted for the
deep unmixing network. In the loss function, two parameters
need to be set. The specific hyperparameter settings are provided
in Table II.

C. Quantitative Performance Metrics

Two quantitative performance metrics, namely, the root MSE
(RMSE) of the abundance and the SAD of the endmember, are
utilized to evaluate unmixing method. The formulas of these
indicators are as follows:

RMSE(A, Â) =

√√√√ 1

P ·Q
P∑
i=1

Q∑
j=1

(
Âij −Aij

)2

(10)

SAD(E, Ê) =
1

P

P∑
i=1

arccos

⎛
⎝

〈
E(i), Ê(i)

〉
∥∥E(i)

∥∥
2

ˆ∥∥E(i)

∥∥
2

⎞
⎠ (11)

where A and Â denote the GT abundance and the estimated
abundance, respectively, and Ê and E denote the extracted
endmember and GT endmember, respectively.

D. Noise Robustness Experiment

In this experiment, we analyzed the algorithm’s noise robust-
ness on synthetic dataset with different levels of noise pollution,
namely, 10 dB, 20 dB, and 30 dB signal-to-noise ratio (SNR)
noise. Quantitative experimental result are shown in Table III.
As the noise level decreases, the unmixing performance of the
algorithm is more precise. To demonstrate the effectiveness of
our proposed network, we compare the endmember extraction
results with other six unmixing methods under the SNR of
20 dB, as shown in Fig. 10. Our experiment results achieve
the best performance of endmember extraction and anundance
estimation, demonstrating the powerful unmixing capabilities of
the algorithm. It is worth noting that the structured abundance
maps may affect the RMSE evaluation criterion of the CNNAUE.
The visualization of abundance estimation is shown in Fig. 11.
As the noise decreases, the noise spots of the abundance map
become less and less. The visualization of endmember extraction
is shown in Fig. 12. As expected, the endmember signatures

Fig. 10. Under 20-db noise, endmember extraction and abundance estimation
results of seven method on the synthetic data.

Fig. 11. Abundance estimation of the synthetic dataset. The first column is
the GT of abundance maps.

obtained by the proposed algorithm are almost the same as the
ones provided by GT under various noise levels.

E. Experiment With Real Datasets

1) Jasper Dataset: The results of Jasper dataset are presented
in Tables IV and V. The proposed method achieved the best
performance on the overall criterion for endmember extraction
and abundance estimation. CNNAUE and DAUE excessively
focus on endmember extraction, leading to significant error
propagation in abundance estimation. While UST-Net achieves
a balance between endmember extraction and abundance esti-
mation, the experimental results do not reach the optimal perfor-
mance. Due to poor performance on the Water endmember, the
overall unmixing effect of the CyCU-Net is affected. The Road
endmember of the Jasper dataset is found to be a challenge for
the other methods, however, our proposed method obtains the
best results. Figs. 13 and 14 further illustrate the competitiveness
of our method.

2) Washington DC Mall Dataset: This dataset comprises
290 × 290 pixels with 191 bands and contains a great number of
endmembers. Consequently, the DC dataset poses higher chal-
lenges for deep unmixing methods. Tables VI and VII display
the quantification results. In the comprehensive assessment, the
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TABLE II
HYPERPARAMETERS FOR THE PROPOSED METHOD

TABLE III
QUANTITATIVE RESULTS OF NOISE ROBUSTNESS EXPERIMENTS

Fig. 12. Endmember extraction visual results of the synthetic dataset, where
the orange lines are the endmembers extraction result and GT is in blue,
wavelength in nm.

TABLE IV
RMSE (JASPER DATASET)

TABLE V
SAD (JASPER DATASET)

TABLE VI
RMSE (DC DATASET)

TABLE VII
SAD (DC DATASET)

proposed algorithm achieves the best overall performance both
in endmember extraction and abundance estimation. The visual
results of endmember extraction and abundance estimation are
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Fig. 13. Abundance estimation of the Jasper dataset is compared with six methods. The first column is the GT of abundance maps.

Fig. 14. Endmember extraction visual results of the Jasper dataset, where the orange lines are the endmembers extraction result and GT is in blue, wavelength
in nm. (a) Road. (b) Soil. (c) Tree. (d) Water.

TABLE VIII
RMSE (SAMSON DATASET)

depicted in Figs. 15 and 16. As for the Roof abundance estima-
tion result, all the algorithms fail to achieve the results at the level
of 0.01 except for the VCA&FCLS. Comparing the abundance
estimation visual results, we found that some of the Trail have
been recognized as the Roof. This may be due to the fact that
the main constituents of Trail and Roof are mainly made of civil
materials, such as concrete.

3) Samson Dataset: The quantitative experimental results
of Samson dataset are presented in Tables VIII and IX. Most
methods have achieved good results in endmember extraction.

TABLE IX
SAD (SAMSON DATASET)

Among them, the proposed method outperforms the other un-
mixing methods with a mean RMSE value of 0.0748 and a
mean SAD value of 0.0405. The visualization of endmember
extraction and abundance estimation is depicted in Figs. 17 and
18. These results attest to the effectiveness of the proposed deep
unmixing method.

F. Module Ablation Experiment

The proposed deep unmixing method relies on two core
modules, included Module1: TVA module with 2-D embedding
and Module2: BGF module with 3-D embedding. Ablation
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Fig. 15. Abundance estimation of the Washington DC Mall dataset is compared with six methods. The first column is the GT of abundance maps.

Fig. 16. Endmember extraction visual results of the DC dataset, where the orange lines are the endmembers extraction result and GT is in blue, wavelength in
nm. (a) Grass. (b) Road. (c) Roof. (d) Trail. (e) Tree. (f) Water.
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Fig. 17. Abundance estimation of the Samson dataset is compared with six methods. The first column is the GT of abundance maps.

Fig. 18. Endmember extraction visual results of the Samson dataset, where the orange lines are the endmembers extraction result and GT is in blue, wavelength
in nm. (a) Soil. (b) Tree. (c) Water.

TABLE X
QUANTITATIVE RESULTS OF MODULE ABLATION EXPERIMENT

experiments are designed to validate the contributions of the
two core modules for the DET-Net. The experimental results
of the comparative analysis are shown in Table X. Although
the single module performs well in one evaluation criterion,
it is built upon sacrificing the other evaluation criterion. The
collaboration of the two core modules achieved excellent and
balanced performance in the comprehensive experimental re-
sults. Table XI presents the quantitative endmembers subresults
of module ablation experiment on the Washington Mall dataset.
As shown in Table XI, except for the SAD of Tree endmember,
the proposed method quantization results of each endmember
are covered by the optimal and suboptimal performances. For
single module, the optimal performance is covered by stag-
gered distribution on Module1 and Module2. Among them, The

optimal experimental performance of Module2 is mostly on
RMSE performance metric. SAD performance metric is more
suitable for the optimal experimental results of Module1. But
Module2 is more outstanding compared to Module1. Either
optimal experimental performance or the optimal and subop-
timal experimental performances, Module2 occupies a higher
proportion. Meanwhile, Table XI presents the applicability for
individual endmembers. On the Road and Trail endmembers,
Module2’s RMSE and SAD are ahead of Module1. On the
Roof endmember, the RMSE and SAD of Module1 are ahead of
Module2.

In Fig. 19, we utilize the Washington DC mall dataset as
an example to visually analyze the ablation experiment. In the
endmember extraction results, the visualization results of Roof
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TABLE XI
QUANTITATIVE ENDMEMBER SUB-RESULTS OF MODULE ABLATION EXPERIMENT ON WASHINGTON DC MALL DATASET

Fig. 19. Module ablation visual results for the Washington DC Mall dataset, wavelength in nm.

endmember and Trail endmember are significantly different.
In visual abundance estimation, the two modules exhibit com-
plementary effects on the detailed information of abundance
maps. Specifically, in the abundance estimation of Grass and
Tree, Module2: BGF module gifts DET-Net with the advantage
of vegetation detection. In the abundance estimation of Roof,
Module1: TVA module gifts DET-Net with the ability to detect
small texture features in Roof abundance map, as shown in the
red boxes of Fig. 19.

1) Module1 Ablation Experiment: To evaluate the effective-
ness of the TVA module, we compare the TVA module with
three-view spatial attention and the ViT-based method with only
2-D embedding on the main view in Table XII. The depth of the
Transformer Block for the method being compared is set to 2.
Except for RMSE metric for the Washington DC mall dataset,
TVA module with three-view spatial attention dominates all

TABLE XII
QUANTITATIVE RESULTS OF THREE VIEW ATTENTION ABLATION EXPERIMENT

optimal performances. These results indicate the effectiveness
of TVA module.

2) Module2 Ablation Experiment: The number of spectral
band group in BGF module affects the experimental perfor-
mance of the deep unmixing network. In order to eliminate
the influence of TVA module, the network for the ablation
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TABLE XIII
QUANTITATIVE RESULTS OF SPECTRAL BAND GROUP ABLATION EXPERIMENT

experiment only included Module2: BGF module. The ablation
experiment results are presented in Table XIII. For the Jasper
dataset, as the number of band groups increases, the balanced
performance of RMSE and SAD gradually is emerged. For the
synthetic dataset and the Washington Mall dataset dataset, the
best unmixing quantitative experimental results are performed
in the large number of spectral band groups, which roughly
conform to the characteristics of the pyramid feature structure.

IV. CONCLUSION

In this article, we introduce a novel hyperspectral deep un-
mixing network, DET-Net, consisting of two core modules,
namely TVA transformer module with 2-D embedding and BGF
transformer module with 3-D embedding. In TVA transformer
module, the main view features are primary to establish an at-
tention mechanism that integrates top view and left view feature
information. In BGF transformer module, we utilize the 3-D
band group spatial-spectral cubed embedding and the bidirec-
tional cross-fusion to achieve multiscale spectral band group
feature fusion. Based on two core transformer modules, the
proposed unmixing network can extract spatial-spectral features
for the cube-shaped HSIs. Experimental results on the synthetic
dataset and real datasets indicate the effectiveness of DET-Net.
The ablation experiment proves that both core modules play
the complementary and effective roles in the proposed network.
In order to explore band by band hyperspectral unmixing, an
important future work will be on how to enable spatial-spectral
band by band embedding to select fewer and more critical tokens
via sparse representation.
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