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Single-Frame Infrared Small Target Detection
Network Based on Multibranch Feature Aggregation

Ziqiang Hao, Zheng Jiang , Xiaoyu Xu , Zhuohao Wang, and Zhicheng Sun

Abstract—Single-frame infrared small target detection is critical
in fields, such as remote sensing, aerospace, and ecological moni-
toring. Enhancing both the accuracy and speed of this detection
process can substantially improve the overall performance of in-
frared target detection and tracking. While deep learning-based
methods have shown promising results in general detection tasks,
increasing network depth vertically to improve feature extraction
often results in the loss of small targets. To address this challenge,
we propose a network framework based on multibranch feature
aggregation, which expands the network depth horizontally. The
parallel auxiliary branches are carefully designed to provide the
main branch with semantic information at varying depths and
scales. Furthermore, we introduce a differential correction module
that corrects erroneous target features through differential meth-
ods, significantly boosting detection accuracy. Lastly, we develop a
joint attention module that combines channel and spatial attention
mechanisms, enabling the network to accurately localize and recon-
struct small targets. Extensive experiments on the NUDT-SIRST,
SIRST, and NUST-SIRST datasets demonstrate the clear superior-
ity of our approach over other state-of-the-art infrared small target
detection methods.

Index Terms—Channel spatial attention, deep learning, feature
interaction, infrared small target detection (ISTD), information
aggregation.

I. INTRODUCTION

INFRARED small target detection (ISTD), by offering high-
precision detection of small targets on the Earth’s surface

and in the atmosphere, has greatly advanced research in the
fields of geoscience and remote sensing. Unlike traditional vis-
ible light detection methods, infrared detection offers distinct
advantages in complex backgrounds, low-light conditions, and
completely dark environments [1], [2]. Infrared small target
detection leverages infrared imaging to identify and locate faint
targets that exhibit temperature differences from their surround-
ings, making it possible to detect targets that are often missed
by visible light imaging [3], [4]. This technique has widespread
applications in military, aviation, aerospace, and security fields,
including missile warning, airborne target tracking, and night
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vision surveillance [5]. However, infrared small target detection
presents unique challenges compared to general target detection
tasks. 1) Small targets typically have a low signal-to-noise ratio,
making them prone to noise interference. 2) The shape, size, and
location of small targets are often unclear, appearing as faint
signals within the image. 3) The backgrounds are frequently
complex and dynamic, complicating the task of distinguishing
the target from its background.

Single-frame infrared small target detection remains a persis-
tent challenge in the field of infrared image detection. The faint
characteristics of small targets against complex backgrounds
significantly increase the difficulty of detection. In addition,
unlike multiframe sequences, single-frame images lack motion
information and temporal context, forcing the detection process
to rely solely on features like grayscale, gradients, and con-
trast [6]. As a result, there is still a need for more robust methods
to address the limitations of single-frame infrared small target
detection.

Traditional single-frame infrared small target detection meth-
ods, which rely on manual feature engineering and fixed hyper-
parameter settings, struggle to handle the complexities of these
tasks [7]. In recent years, the rapid development of artificial intel-
ligence has led to the proposal of large models capable of quickly
segmenting remote sensing images, such as Alibaba’s AIE-SEG
and Meta AI’s “Segment Anything Model” [8]. Although these
large models can achieve “zero-shot generalization,” neural
network-based methods still hold advantages in scenarios where
computational resources are limited or specific tasks need to be
addressed. Therefore, methods based on convolutional neural
networks (CNNs), with their learnable parameters and trainable
models, have remained a key focus and challenge in the field of
infrared target detection for remote sensing image processing.

We found that many CNN-based ISTD networks, in an effort
to enhance feature extraction capabilities, tend to design deeper
networks. This often leads to the loss of small target pixels in
the deeper layers of the network. On the other hand, shallower
networks lack the necessary feature extraction capacity. To
address this issue, we explored and designed a new network
structure that introduces parallel auxiliary branches to balance
this tradeoff.

As shown in Fig. 1, we compared the visualization results
of the same infrared image input into two different network
structures [see Fig. 1(a) and (b)]. It can be observed that the
feature map ((F1 and F2) output at the same network depth
shows more prominent target pixels in structure Fig. 1(b) as
seen in F2. In contrast, for structure Fig. 1(a), the deeper output
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Fig. 1. Comparison of small target retention effects under two network design
structures. (a) Increasing vertical depth. (b) Adding parallel auxiliary branch.
(c) Input image and visualized feature maps.

feature map (F3) shows that small target pixels are almost lost.
Therefore, we designed a CNN-based ISTD network that uses a
main-branch and subbranch multipath structure with integrated
attention mechanisms.

The main contributions of this article are as follows.
1) We propose a main-secondary multibranch structure,

which expands the network depth by adding auxiliary
branches, preventing small targets from being lost in
deeper network layers.

2) We propose a joint attention module (JAM) that extracts
weights from both the spatial and channel dimensions,
enhancing the network’s ability to localize infrared small
targets.

3) We designed a differential correction module (DCM) that
utilizes the primary feature maps containing target infor-
mation to correct the deeper feature maps that have lost
target information through differential methods, enhanc-
ing the sensitivity to concealed targets.

II. RELATED WORK

In this section, we will review the relevant literature on ISTD
networks, specifically focusing on approaches related to the
method we propose.

A. Single-frame ISTD

Currently, in the field of single-frame ISTD, there are many
traditional methods that can be classified into three categories:
ISTD methods based on background features, methods based on
target features and methods based on the imaging characteristics
of infrared images [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20]. Although the aforementioned traditional meth-
ods have achieved significant success, they still face challenges,
such as low universality and long detection times.

Differing from traditional methods, deep learning approaches
address this problem through a data-driven manner, overcoming
the drawbacks of model-driven approaches in traditional meth-
ods. Methods based on CNNs, such as MDvsFA [21] and the
Faster R-CNN [22], have been adopted. Given the characteristics
of infrared small targets, including few pixels and class imbal-
ance, some researchers have proposed targeted strategies. The
most common approach is to design feature fusion strategies,
such as [23], [24], [25], and [26]. Alternatively, some researchers
have leveraged the concept of patch classification, dividing the
input image into blocks and feeding them into the network to
enhance attention to small targets, as in LPNet [27]. Meanwhile,
other scholars have regarded small targets in infrared images
as “noise” and proposed an ISTD model based on a denoising
autoencoder network [28]. Some researchers have also been ded-
icated to enhancing the lightweight nature of detection networks
by 1) reducing the depth of the backbone, the number of chan-
nels, the number of convolutional layers, and the complexity of
integration methods. 2) replacing the convolutional layer with
group or depthwise-separable convolution. 3) removing the fully
connected layer [29], among other approaches. These efforts aim
to improve the network’s real-time performance and feasibility
for embedded deployment, such as [30].

While the aforementioned detection methods achieve good
results, they still struggle to preserve small target features in
the deep layers of the network while enhancing the network’s
feature extraction capabilities. The proposed method not only
enhances the network’s feature extraction capabilities but also
horizontally extends the network depth, aiming to retain small
target features as much as possible. Therefore, it represents a
robust detection approach.

B. ISTD Based on Attention Mechanism

Attention mechanisms play a crucial role in the design of
ISTD networks. They assist the network in focusing on target
regions in the image while suppressing background interference,
thereby enhancing target discernibility and contrast. In the field
of single-frame ISTD, the most commonly designed attention
mechanisms include the following.

1) Channel Attention: The core idea is to learn the impor-
tance of each feature channel, thereby assigning weights to the
channels. Several channel attention modules have been proposed
based on this concept, such as the SE module [31], ECA mod-
ule [32], and FcaNet [33].

2) Spatial Attention: This involves learning the impor-
tance of spatial positions within the image. Examples include
PSANet [34]. In recent years, several spatial attention mecha-
nisms based on self-attention have also been proposed, such as
nonlocal [35], SASA [36], and ViT [37].

3) Channel-Spatial Mixed Attention: This approach simul-
taneously applies both channel attention and spatial attention
mechanisms, combining the two in a complementary manner.
Examples include CBAM [38] and scSE [39].

Based on the core ideas of these attention mechanisms,
many single-frame ISTD algorithms have designed various
attention modules and integrated them into their networks.
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Fig. 2. Overall network architecture.

Examples include ACM [40], AGPCNet [41], MDFENet [42],
SCTransNet [43], APAFNet [44], MCAF [45], and interactive-
cross attention Module [46]. These all reflect the principles of
different attention mechanisms.

In summary, enhancing the representation of small target
features efficiently can be achieved by designing and incor-
porating attention modules into the network, proving to be an
effective means of improving detection performance. The pro-
posed method introduces an effective channel-spatial attention
module. This module, tailored to the characteristics of small
targets, employs dilated convolutions with various dilation rates
to capture small targets, simultaneously enlarging the receptive
field to suppress background information.

III. PROPOSED METHOD

In this section, we introduce the proposed multibranch fea-
ture aggregation network (MBFANet) for ISTD. The network’s
overall architecture is shown in Fig. 2. It processes a single-
frame infrared image through three stages: the feature extrac-
tion module, feature fusion module, and feature refinement
module, ultimately producing the detection results. The fea-
ture extraction module consists of a main branch and auxiliary
branches. The main branch extracts multilevel features, while
the auxiliary branches capture semantic information at different
depths. This information is progressively integrated back into
the main branch, enhancing its feature extraction capabilities.
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The module utilizes the RSEMB (Res-SE-Module-Block), an
improved version of the block used in ResNet18 [47] designed
to enhance both feature extraction and interbranch interaction.
In addition, the DCM refines feature extraction during train-
ing, improving the detection of weak small targets. A detailed
explanation of the feature extraction module, RSEMB, and
DCM is provided in Section III-A. The feature fusion module
merges spatial information from the main branch with multiscale
semantic information from the auxiliary branches, producing a
more comprehensive global feature map. The core principles of
this module are discussed in Section III-B. Finally, the feature
refinement module, incorporating a JAM, refines the prediction
map to improve detection accuracy. A detailed description of its
components is provided in Section III-C.

A. Feature Extraction Module

1) Network Architecture: The existing feature extraction back-
bones of ISTD networks often have a single depth, making it easy
for small targets to disappear in the deep layers of the network,
resulting in poor detection performance. Therefore, instead of
extending the feature extraction network vertically to a great
depth, we expand the network horizontally. Our feature extrac-
tion module consists of one main branch (L0) and four auxiliary
branches (L1, L2, L3, and L4). In this module, all branches are
composed of different numbers of RSEMB connected in series.
The inputs to the auxiliary branches are obtained by pooling the
output of the first RSEMB of the preceding branch. The main
branch L0 is composed of five connected RSEMB to extract
features. The outputs of the first four RSEMB are connected
to the last one, aggregating all useful feature information at
once. This connection method, as compared to dense connec-
tions, avoids receiving redundant information, making it more
efficient. The auxiliary branch L1 consists of four connected
RSEMB and its sinput is pooled from the output of the first
RSEMB block in the main branch L0. After passing through
each RSEMB, the extracted feature information is transmitted
to the main branch L0 as supplementary semantic information
at different depths. Similarly, auxiliary branches L2, L3 and
L4, successively act as the auxiliary branches of the preceding
branch, continually expanding the network depth, extracting
richer semantic information and eventually converging into the
main branch L0. Meanwhile, each auxiliary branch also outputs
its respective feature maps (L1_out, L2_out, L3_out, L4_out), which
will be fused with the output (L0_out) of the main branch in the
next module, further utilizing semantic information at different
scales.

2) RSEMB—The key feature extraction block: Our main com-
ponent block for the feature extraction module, RSEMB, is an
improved version of the ResNet18 block. In each block, an SE
Attention Module is added before the residual connection. After
the multilevel features from different branches are fused, the
RSEMB is used for adaptive feature enhancement, significantly
improving the feature extraction capability of the backbone. As
shown in Fig. 3, L∗

i (n) denotes the output of the nth RSEMB
in the ith branch, L∗

i (n− 1) denotes the output of the (n-1)th
RSEMB in the ith branch, L∗

i+1(n− 1) denotes the output of

Fig. 3. Illustration of the RSEMB module.

Fig. 4. Specific composition of DCM.

the (n-1)th RSEMB in the (i+1)th branch. After feature concate-
nation, the process continues through the convolutional layers
in the ResNet18 block (denoted by F in this process), resulting
in Li(n). Then, it goes through the SE attention module, the
process of which involves. First, performing global average
pooling on the feature map, where each channel is represented
by a single value, essentially possessing the global receptive
field for that channel. Subsequently, through two fully connected
layers, the network generates the required weight information,
obtaining feature relevance and assigning different weights to
channels. The entire process can be represented by the following
equation:

L∗
i (n) = FSE

[
F
[
Concat(L∗

i (n− 1), L∗
i+1(n− 1))

]]
(1)

where Concat denotes splicing in the channel dimension, FSE

denotes the SE attention module, F denotes the convolutional
layers in the ResNet18 block.

3) DCM: We creatively introduce a DCM aimed at reducing
the model’s sensitivity to noise and interference in images. The
specific structure of the DCM is shown in Fig. 4. We use the
output feature map of the first RSEMB block in the main branch
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as the reference image, denoted as image A, for differencing.
This choice is motivated by the rich background and target
information typically contained in the feature maps at this stage.
Specifically, we scale the pixel values of image A by a factor of
r, referred to as r× A. The output feature maps B1, B2, and B3
from the second, third, and fourth RSEMB blocks in the main
branch serve as the difference images. We subtract the difference
images B1, B2, and B3 from the scaled reference image r× A
to generate the differentially processed images.

The fundamental cause of false alarms (Fa) and missed
detections in ISTD lies in the fact that in some images, the
pixel values of target objects are nearly indistinguishable from
certain noise or clutter pixels in the background. This similarity
makes it challenging for neural networks to differentiate between
background and targets. As a result, when these images are
fed into the designed neural network, the convolution opera-
tions often erroneously increase the pixel values of background
clutter (or noise) while decreasing the pixel values of target
objects. However, by subtracting the feature maps where the
erroneously enhanced background clutter (or noise) pixel values
and weakened target pixel values are present from the feature
maps containing both intact target pixel values and background
clutter (or noise) pixel values, we can reduce the heightened
background clutter (or noise) pixel values and enhance the pixel
values of targets. The differentially processed feature maps
are then fed into the next convolutional block in the main
branch to extract features anew. This constitutes the correction
process.

It is important to note that when the neural network correctly
focuses on the targets and suppresses background clutter, this
differential correction operation does not improve performance;
instead, it may degrade it. Therefore, we first multiply the pixel
values of the difference images by a factor of r. In this way,
even if the feature maps successfully extract target features, the
differential process will not overly affect the pixel values of
the correct targets. Simultaneously, with the assistance of other
auxiliary branches, this correction operation does not affect the
detection accuracy of images where targets and backgrounds
are easily distinguishable by the network. In summary, this
differential correction operation yields significant improvements
in detecting images where targets and backgrounds are prone
to confusion. Fig. 5 illustrates the role of the DCM module in
different scenarios. It can be observed that the DCM corrects
deep-layer feature maps prone to Fa and missed detections
by utilizing the information contained in shallow-layer feature
maps regarding targets and backgrounds.

We define the pixel value at the target position in the differ-
entially corrected image A as x, and the pixel value at the noise
position as y. The differential image B is the output feature map
of the subsequent convolutional block in the main branch, with
the pixel value at the target position denoted as x′, and the pixel
value at the noise position denoted as y′. Thus, the corresponding
pixel values of the target and noise in the differentially corrected
image F are 2x− x′ and 2y − y′, respectively. For the correction
module to be effective, the pixel value at the target position in the
differentially corrected image F must be greater than x, and the
pixel value at the noise position must be less than y, enhancing

Fig. 5. Operational principle of DCM in handling Fa and missed detections.
In this figure, green circles represent correctly identified targets, red circles rep-
resent noise falsely recognized as targets, and blue circles represent interfering
noise. Light green and dark green circles, respectively, denote weakened and
enhanced target pixels.

the target and weakening the noise. This can be represented as{
2x− x′ ≥ x
2y − y′ ≤ y

⇒
{
x ≥ x′

y ≤ y′. (2)

This indicates that if, after convolutional feature extraction,
the target is erroneously weakened while noise is erroneously
emphasized, the DCM will effectively rectify this error. It will
then pass the corrected feature map to the next convolutional
block for re-extraction of features.

B. Feature Fusion Module

To effectively utilize the information extracted from each
branch, after the feature extraction module, we designed a
feature fusion module to merge the outputs of the main branch
L0 with the four auxiliary branches L1, L2, L3, and L4, thus
integrating features from different levels. The outputs [L1_Output,
L2_Output, L3_Output, L4_Output] of the auxiliary branches L1, L2,
L3, and L4 are first upsampled to match the size of the output
of the main branch L0, denoted as L0_Output, in both length and
width. Due to the relatively shallow depth of the main branch,
which extracts spatial contour information and the deeper depth
of each auxiliary branch, which captures semantic information,
we concatenate the outputs of all branches to obtain a more
robust feature map FC that integrates rich features from each
source

FC = Concat[L0_Output, L1_Output,

L2_Output, L3_Output, L4_Output]. (3)

C. Feature Refinement Module

To improve the precision of small target localization and en-
hance the network’s ability to detect and reconstruct their shapes,
we designed a JAM to refine the feature map FC . As shown in
Fig. 6, the JAM integrates two types of attention mechanisms:
channel attention and spatial attention. The channel attention
mechanism starts with average pooling of the input feature map
along the spatial dimensions, followed by processing through a
fully connected layer to obtain channel-wise correlation weights.
After applying the Sigmoid activation function for normaliza-
tion, these weights are multiplied by the input feature map to
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Fig. 6. Structure of the JAM.

produce FC_SA

FC_SA = FC ⊗ Sigmoid [FFC [FAP [FC ]]] (4)

where ⊗ denotes pixel-wise multiplication, FAP denotes the
global average pooling operation, and FFC denotes the fully
connected operation.

The spatial attention mechanism applies both average pooling
and max pooling along the channel dimension of the input
feature map. The pooled results are concatenated, then passed
through dilated convolutions with 3 × 3 kernels and dilation
rates of 1, 2, and 3 to capture spatial correlation information.
After concatenating the convolution outputs, a 1× 1 convolution
reduces the channel dimension. The result is processed through
fully connected layers and a Sigmoid activation function to gen-
erate the spatial weight information. Finally, this is multiplied
with the input feature map to obtain FC_CA

F ′ = Concat [FAP [FC ] , FMP [F ]] (5)

F ′′ = F1×1 [Concat [F1 [F
′] , F2 [F

′] , F3 [F
′]]] (6)

FC_CA = FC ⊗ Sigmoid [FFC [F ′′]] (7)

where FMP denotes global max pooling operation.
The outputs ofFC_SA andFC_CA are combined by taking their

average, resulting in the final output of the feature refinement
module, denoted as FFinal

FFinal = Mean [FC_CA ⊕ FC_SA] (8)

where ⊕ denotes pixel-wise addition, and mean denotes the
operation of averaging.

IV. EXPERIMENT

In this section, we will first introduce our evaluation metrics
and implementation details. Then, we will compare our proposed
network with several state-of-the-art SIRST detection methods.
Finally, we present ablation experiments to study the effective-
ness of our network.

A. Evaluation Metrics

The evaluation metrics commonly used in the field of ISTD
with deep learning focus on pixel-level metrics from the segmen-
tation domain, such as intersection over union (IoU), accuracy
and recall. These metrics emphasize the evaluation of target
shapes. However, infrared small targets often lack clear shapes
and textures and the crucial aspect of ISTD is the ability to ac-
curately locate the targets. Therefore, we choose IoU to evaluate
shape description ability and use probability of detection (Pd)
and Fa rate to assess the localization capability.

1) IoU: IoU is a pixel-level evaluation metric that assesses
the contour description ability of an algorithm. It is calculated
as the ratio of the area of the intersection between the predicted
and ground truth regions to the area of their union

IoU =
AIntersection

AUnion
. (9)

2) Pd: Pd is an object-level evaluation metric. It characterizes
the ratio of correctly predicted objects to the total number of
objects

Pd =
TCorrect

TAll
. (10)

If the centroid deviation of a target is less than the predefined
deviation threshold Dthresh, we consider these targets to be cor-
rectly predicted. In this article, we set the predefined deviation
threshold to 3.

3) Fa: Fa is also a target-level evaluation metric. It is used to
measure the ratio of incorrectly predicted pixels to all pixels in
the image

Fa =
PFalse

PAll
. (11)

If the centroid deviation of a target is greater than the prede-
fined deviation threshold, we consider those pixels to be incor-
rectly predicted. In this article, we set the predefined deviation
threshold to 3.
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TABLE I
QUANTITATIVE COMPARISON RESULTS (ON NUDT-SIRST AND SIRST), WHERE THE BEST VALUES ARE MARKED IN RED AND THE SECOND-BEST VALUES IN BLUE

(ALL TABLES FOLLOW THIS RULE)

4) Receiver operation characteristics (ROC): ROC is used to
describe the change trend of Pd at different Fa.

B. Implementation Details

We selected the NUDT-SIRST [26], SIRST [40], and NUST-
SIRST [21] dataset. The dataset was split into 50% for training
and 50% for testing, specifically using the NUDT-SIRST dataset
for training and validating on the other two datasets. t should be
noted that the SIRST dataset is a collection of real infrared small
target images, including 427 images of different wavelengths of
infrared, including infrared images at 950 nm wavelength. The
NUDT-SIRST dataset contains 1327 images synthesized using
real infrared targets, similar in style to the SIRST dataset. The
NUST-SIRST dataset is also a synthetic dataset, but the style
of small targets in it differs significantly from the other two
datasets. Therefore, using it directly for testing is not rigorous.
Hence, we trained and tested separately on the NUST-SIRST
dataset. It is worth mentioning that preprocessing of input im-
ages is required before network training, including normaliza-
tion, random flipping and cropping. The final resolution of input
images is 256 × 256.

In this study, we trained our network using the Soft-IoU
loss function and optimized it using the Adagrad method with
a CosineAnnealingLR scheduler. We initialized the model’s
weights and biases using the Xavier method. The learning rate,
batch size, and epoch size were set to 0.05, 16, and 1350, re-
spectively. Pytorch was the deep learning framework employed,
and the computational setup consisted of a 12th generation Intel
(R) Xeon (R) Platinum 8255C CPU @ 2.50GHz and an Nvidia
GeForce 3080 GPU.

C. Comparison to the State-of-the-Art Methods

To compare with other single-frame ISTD methods, we
selected six existing state-of-the-art methods for compari-
son. The compared methods include one traditional algorithm,
Top-Hat [48] and five deep learning-based methods, ALC-
Net [49], DNANet [26], AMFU-Net [50], UIU-Net [46], and
SCTransNet [43]. It is worth noting that, due to the presence
of significant noise in the test results of traditional methods,
we employed a threshold segmentation method to denoise and
obtain the position results of small targets as accurately as
possible. The deep learning-based methods were trained and
tested on the NUDT-SIRST dataset using the provided original

TABLE II
QUANTITATIVE COMPARISON RESULTS (ON NUST-SIRST)

code and default parameters and validation was conducted on
the SIRST dataset.

1) Quantitative Results: The quantitative comparison be-
tween the proposed method and other approaches is presented in
Table I. The results indicate that our method surpasses traditional
techniques across various metrics. In comparison to current
state-of-the-art deep learning methods, our approach achieves
superior performance in all metrics on the NUDT-SIRST dataset.
Furthermore, the strong validation results on the SIRST dataset
highlight the robustness and generalization capability of the
proposed model.

To further demonstrate the robustness and generalization of
our proposed method, we conducted training and testing on the
NUST-SIRST dataset (see Table II). The proposed method still
achieves the best values across all metrics.

2) Qualitative Results: The qualitative results are shown in
Figs. 7–10. It can be observed that traditional algorithms have
some effect on the localization of small targets but suffer from
high Fa rates and poor shape reconstruction.

We selected weak small target images from the NUST-SIRST
and NUDT-SIRST datasets for testing. From the test results,
it can be seen that the method proposed in this article not
only accurately locates small targets but also achieves good
shape reconstruction for them. This indicates that our model is
capable of adapting to various complex backgrounds and tasks
involving targets of different sizes and types. In contrast, other
deep learning algorithms exhibited many missed detections and
Fa under the influence of background clutter.

The validation results on the SIRST dataset also demonstrate
acceptable performance of the proposed method, further con-
firming its outstanding generalization ability.
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Fig. 7. Qualitative results of different detection methods trained and tested on the NUDT-SIRST dataset and validated on the SIRST dataset. For better visualization,
enlarged views of the target areas are displayed on the side. Correctly detected targets, Fa and missed detection regions are highlighted with green, red, and yellow
circles, respectively.

Fig. 8. Qualitative results obtained from training and testing different detection methods on the NUST-SIRST dataset. For enhanced visualization, enlarged
regions of interest are displayed alongside. Correctly detected targets, Fa and missed detection regions are highlighted with green, red, and yellow bounding boxes,
respectively.

In addition, we plotted ROC curves (see Fig. 11) to compare
with five other deep learning-based single-frame ISTD algo-
rithms. The larger the area under the ROC curve, the better the
model’s performance at different thresholds. It is evident from
the graph that the curve corresponding to the proposed method
has a larger area, proving the superior performance of our
model.

To comprehensively demonstrate the network’s performance,
we also tested its inference speed and the overall size of the
network model parameters, and compared the relevant metrics
of partial models, as shown in Table III.

Further, to gain a clearer and more intuitive understanding
of the specific training process of the network, we also present
the process of loss reduction and mIOU improvement during
network training. As shown in Fig. 12.

TABLE III
MODEL COMPARISON: PARAMETERS (M), FLOPS (G), AND INFERENCE TIME

(S) PER IMAGE

D. Ablation Study

To ensure the effectiveness and rationality of each module
in the proposed method, we specifically designed four ablation
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Fig. 9. 3-D visualization results for different methods on four test images [(1) and (2) are from the NUDT-SIRST dataset and (3) and (4) are from the SIRST
dataset].

Fig. 10. 3-D visualization results for different methods on 2 test images [(1) and (2) are from the NUST-SIRST dataset].

Fig. 11. ROC curves of various deep learning-based single-frame ISTD methods, where (a) results trained and tested on the NUDT-SIRST dataset, (b) results
directly validated on the SIRST dataset, and (c) results trained and tested on the NUDT-SIRST dataset.
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Fig. 12. Line charts depicting the changes in loss value and mIOU during the training process. (a) Results trained on the NUDT-SIRST dataset, while (b) results
trained on the NUST-SIRST dataset.

Fig. 13. Input front feature maps of each auxiliary branch L1, L2, L3, and L4 correspond to (a), (b), (c), and (d). The feature map after another pooling operation
corresponds to (e).

Fig. 14. Output feature maps of each branch L0, L1, L2, L3, and L4 correspond to (a), (b), (c), (d), and (e).

experiments for verification. These experiments aim to replace
different modules within the method to validate the proposed
approach’s rationality and effectiveness.

1) Research on the Feature Extraction Structure: Since the
inputs of the auxiliary branches are pooled from the output
of the first block of the previous branch and we know that
pooling (downsampling) is usually not conducive to small ob-
ject detection tasks, we visualized the feature maps before the
pooling operation for the four auxiliary branches (as shown in
Fig. 13). It can be observed that despite the pooling operation,
the feature maps before pooling still retain the position informa-
tion and partial shape information of small objects, as well as

suppressed background information. These feature maps, after
passing through each auxiliary branch, can provide the main
branch with semantic features at different scales. To illustrate
the rationality of the auxiliary branch design, we also observed
the feature maps after pooling again [see Fig. 13(e)]. It can be
seen that if pooled again, the feature map almost completely
loses its shape and position information, rendering it useless.

Furthermore, to illustrate the contributions of the main branch
and the four auxiliary branches, we observed their feature maps
(as shown in Fig. 14). It can be seen that the main branch
accurately indicates the position and shape information of small
objects, while the auxiliary branches help suppress a large
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Fig. 15. (a) Feature map before the attention module. (b) Feature map after the CBAM attention module. (c) Feature map after the JAM attention module.

TABLE IV
QUANTITATIVE RESULTS FOR THREE ATTENTION MODULES: NONE, CBAM,

AND JAM (OURS)

amount of background redundant information and provide a
small amount of position and shape information for small ob-
jects.

2) Research on the JAM: To demonstrate the effectiveness
of this module, we designed two sets of variants: one with-
out the JAM module and another with the JAM module re-
placed by the channel and spatial attention module (CBAM),
which is another classic attention module. Visualizations of
the feature maps before the attention module are presented
in Fig. 15(a), showing some background noise. After apply-
ing the CBAM attention module [see Fig. 15(b)], the back-
ground noise is partially suppressed, and the enhancement
of small targets is not significant. However, with the JAM
attention module [see Fig. 15(c)], the background noise is
noticeably weakened and the small targets are significantly
enhanced.

To further illustrate, we conducted a comparison of three net-
work variants (without attention module, with CBAM attention
module and with JAM attention module) and the quantitative
results are presented in Table IV. It is evident from the results
that our JAM attention module significantly enhances the per-
formance of object detection.

3) Research on the DCM: DCM promptly corrects feature
maps that incorrectly extract small targets, facilitating success-
ful extraction of small targets in subsequent feature extraction
processes. To demonstrate the effectiveness of this module, we
compared the detection results of MBFA-Net without DCM
and MBFA-Net with DCM. The comparative results are shown
in Fig 16. In comparison, the network with DCM can more

Fig. 16. Comparison of the effects with and without DCM.

TABLE V
NETWORK PERFORMANCE COMPARISON: MODELS WITH AND WITHOUT DCM

sensitively detect concealed small targets and suppress inter-
ference from certain bright noise, thereby effectively reducing
Fa rates and missed detection rates. In addition, we compared the
quantitative results under both conditions, as shown in Table V.
It can be observed that the network with DCM exhibits superior
performance in terms of metrics.
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Fig. 17. Comparison of the output feature maps of (a) third, (b) fourth, and (c) fifth RSEMB in the main branch (the first row represents the results without DCM,
and the second row represents the results with DCM).

To further illustrate the effectiveness of DCM, we visualized
the output feature maps of the third, fourth, and fifth RSEMB
in the main branch and compared them with the output feature
maps of these three RSEMB without DCM (as shown in Figs. 17
and 18). In Fig. 17, for instance, the target in the output feature
map of the third RSEMB is significantly enhanced, although
some background clutter is also amplified, the target is more
prominently highlighted. Consequently, after subsequent convo-
lutional blocks’ feature extraction (especially the last one), the
concealed small targets are completely extracted, whereas the re-
sults without DCM indicate that some background is erroneously
amplified, leading to the failure of small target reconstruction.
Similarly, upon observing the results in Fig. 18, although in
both cases, the two small targets in the test image are extracted,
there are bright interference points near the small targets, which
would cause Fa in the detection results of the network without
DCM. Conversely, the network with DCM can successfully dis-
tinguish between targets and background, accurately locating the
targets.

4) Research on the Feature Extraction Blocks (RSEMB): To
demonstrate the effectiveness of this design, We designed two
sets of variants: one where the SE module is removed (reverting
to the original Res18 block) and another where the SE module
is replaced with the SAM [38]. The SAM is a lightweight
spatial attention mechanism that differs from channel attention,

TABLE VI
QUANTITATIVE RESULTS FOR THREE NETWORK VARIANTS: WITHOUT

IMPROVED BLOCK, WITH SAM, AND WITH SE

aiming to compare the impact of processing in the channel
and spatial dimensions on small target detection. The quanti-
tative results comparison in Table VI shows that the network
metrics of the improved block with the added SE attention
module are higher than the other two variants. This indicates
that the improvement in small target detection is superior to
both the unimproved block and the improved block with the
added SAM attention module. This also suggests a perspective:
in the feature extraction process of ISTD tasks, emphasizing
processing in the channel dimension may lead to better detection
results.

V. DISCUSSION

To address the issue of small targets being easily lost during
the feature extraction process, this article creatively proposes a
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Fig. 18. Comparison of the output feature maps of (a) third, (b) fourth, and (c) fifth RSEMB in the main branch (the first row represents the results without DCM,
and the second row represents the results with DCM).

differential correction approach. This will inspire researchers in
this field, potentially leading to the emergence of new methods
based on this approach in the future. In subsequent studies,
we will attempt to apply the proposed differential correction
approach to other target detection networks to validate its ef-
fectiveness and generalization. In addition, we will focus on
improving the network inference speed, as it is of practical
significance. Techniques, such as model distillation or other
lightweight methods, can be explored for this purpose.

VI. CONCLUSION

In this article, we propose an MBFANet for ISTD. Unlike
the common approach in deep learning methods of increasing
network depth vertically to enhance feature extraction capability,
we design a main-secondary multibranch structure to horizon-
tally broaden network depth. This progressive supplementation
of small target information from feature maps of different scales
and depths into the main branch effectively improves detection
performance while preserving small targets. To enhance the
network’s sensitivity to concealed small targets, we introduce a
DCM to effectively reduce Fa rates and missed detection rates,
offering a new approach to improving ISTD performance. In
addition, we design a JAM to enhance the network’s ability to

localize small targets and reconstruct their shapes. Experimental
results on three public datasets demonstrate that our method
outperforms state-of-the-art methods.
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