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Abstract—Infrared small target detection (ISTD) technology has
extensive applications in the military field. Due to the quality
of imaging equipment and environmental interference, infrared
small target images lack texture and structural information. Deep
learning-based algorithms have achieved superior accuracy in this
field compared to traditional algorithms; however, these meth-
ods are often not designed with domain knowledge integration.
In this article, we propose a multidirectional information-guided
contextual network (MDIGCNet) for ISTD. The primary struc-
ture of this network adopts the U-Net architecture. To address
the issue of lacking texture and structural information in the
target images, we employ an integrated differential convolution
(IDConv) module to extract richer image features during both the
encoding and decoding stages. Skip connections in the network
utilize a multidirectional gradient information extraction block
(MGIEB) to obtain gradient features of infrared small targets.
Our domain-inspired multidirectional Gaussian differential convo-
lution (MGDC) module is employed to extract features of Gaussian-
distributed small targets, enhancing the distinction between targets
and backgrounds. Additionally, we designed a local-global feature
fusion (LGFF) module incorporating an attention mechanism to
merge shallow and deep features, thereby improving the efficiency
of feature utilization within the model. Furthermore, since both
IDConv and MGDC are parallel multiconvolutional kernel struc-
tures, reparameterization techniques are used to avoid excessive
parameters and computational load. Experimental results on pub-
lic datasets NUDT-SIRST, IRSTD-1k, and SIRST-Aug demonstrate
that our algorithm outperforms other state-of-the-art methods in
detection performance.

Index Terms—Difference convolution, infrared small target
detection (ISTD), multidirectional gradient information extraction,
reparameterization.

I. INTRODUCTION

INFARED small target detection (ISTD) research is crucial
in civilian and military applications. The stealth and con-

venience of this technology enable ISTD to operate both day
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and night, and it is widely used in areas such as reconnaissance,
maritime surveillance, and precision guidance [1].

Unlike conventional target detection, ISTD has the following
characteristics. 1) Dim: Infrared small targets typically have
low image resolution and a high level of clutter, resulting in
low contrast and a low signal-to-noise ratio. 2) Small: Due to
the long imaging distance, the size of infrared small targets is
generally between 2 × 2 and 9 × 9 pixels [2]. 3) Varying shape:
The shape and size of the targets vary due to different target
types and imaging scenes. These characteristics pose significant
challenges for ISTD in complex scenarios. Particularly, under
interference from clouds and buildings, it is often difficult to
distinguish targets from background clutter. Therefore, detecting
small targets in infrared images remains a topic worthy of
research.

Current ISTD algorithms can be broadly categorized into
model-driven methods and deep learning-based methods.
Model-driven methods include those based on background
consistency assumptions, optimization techniques, and human
visual salience (HVS) assumptions. However, these methods
have limitations. Methods based on background consistency
assumptions [3], [4] can only detect targets in uniform back-
grounds and are not suitable for complex detection scenarios.
Optimization-based methods [5], [6], [7] can detect targets in
low-contrast situations and perform well among model-driven
methods, but they are prone to false detections in cluttered
scenes and often lack real-time performance, limiting practical
applications. HVS-based methods are mostly designed based
on local contrast [8], [9], [10], but the shallow structure of
manually designed feature extractors cannot adapt to complex
detection scenes, resulting in a high false alarm rate. These
traditional methods rely on domain knowledge for modeling,
making them sensitive to parameter changes and limiting their
generalization across different scenarios. In recent years, deep
learning has achieved significant success in image processing,
and some researchers [11], [12], [13] have started to introduce
deep learning into ISTD. For instance, some algorithms use gen-
erative adversarial networks (GANs) to balance detection and
false alarm rates [12], and others design networks by integrating
multiple feature fusion strategies [13].

However, two major issues remain in the methods based
on deep learning. 1) There is a lack of effective utilization
of existing information in images. Due to the small size of
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infrared small targets, deep network designs often lose target
response information. Most existing studies employ shallow
network designs [14], [15], yet extracting multilevel, multiscale
information from infrared small targets is challenging due to
the lack of texture and structural information. Some researchers
have designed networks based on dense nesting strategies [16],
[17], [18], achieving higher detection accuracy. Additionally,
transformer-based methods [19], [20] search for useful infor-
mation by exploring long-distance dependencies in images.
However, these methods are significantly more computationally
expensive than others, hindering their practical and widespread
application [21]. Therefore, it is necessary to maximize the use
of information within the network while minimizing computa-
tional overhead. 2) The effectiveness of ordinary convolutions is
relatively low. HVS-based methods [8], [22], [23] have demon-
strated that well-designed priors aid in the detection of infrared
small targets. Most current deep learning-based methods [20],
[24], [25], [26] use standard convolutions for feature extrac-
tion without leveraging prior information. Without constraints,
standard convolutions have a vast solution space, potentially
limiting their expressive power. Some approaches combine
HVS methods with deep learning designs [27], [28], [29], [30],
but these methods typically involve simple concatenations and
leave room for optimization. Thus, an ideal solution would
involve designing convolutional kernels using prior information
to enhance the network’s ability to learn from infrared small
targets.

To address the aforementioned issues, a multidirectional gra-
dient information extraction block (MGIEB) has been designed,
comprising integrated differential convolution (IDConv) and
multidirectional Gaussian differential convolution (MGDC).
The IDConv consists of four 3 × 3 differential convolutions
and one 3 × 3 standard convolution, deployed in parallel for
feature extraction. Specifically, central difference convolution
(CDC) [31], angle-based difference convolution (ADC) [32],
horizontal difference convolution (HDC), and vertical difference
convolution (VDC) are employed to enhance the extraction of
information from infrared small targets. By utilizing differential
convolutions, a computational strategy between specific pixel
pairs is devised, integrating traditional local descriptors into the
convolutional neural network (CNN). The MGDC includes four
5 × 5 differential convolutions deployed in parallel to extract
gradient features in four directions. Designed with prior knowl-
edge, the MGDC enhances the model’s ability to distinguish
small targets from clutter. The MGIEB is incorporated into the
skip connections of the network to extract multilevel, multiscale
information from infrared small targets.

Furthermore, the IDConv is implemented in the encoder and
decoder of U-Net [33] as the backbone network. Specifically,
the standard 3 × 3 convolutions in U-Net are replaced with ID-
Conv to further enhance the network’s ability to extract detailed
information.

To avoid excessive computational overhead, the IDConv and
MGDC are reparameterized to reduce the number of param-
eters. Since both are parallel convolution structures, multiple
parallel convolutions can be simplified into a single standard
convolution. Thus, the IDConv and MGDC can improve model

performance while maintaining the same number of parameters
and computational load as standard convolutions.

Finally, the local-global feature fusion (LGFF) module
merges shallow detail features and deep semantic features,
which is beneficial for highlighting and preserving the features
of small targets.

The proposed algorithm is named MDIGCNet: multidirec-
tional information-guided contextual network (MDIGCNet) for
ISTD. Subsequent experiments have demonstrated that this al-
gorithm achieves superior detection results on multiple datasets
compared to other state-of-the-art (SOTA) algorithms.

In summary, the main contributions of our work are as follows.
1) To address the lack of texture and detail information

in infrared small target images, IDConv is designed to
extract rich details. This module is integrated into both the
encoder and decoder of the network, effectively enhancing
performance in pixel-level tasks.

2) Incorporating domain knowledge, we designed the
MGDC module, which integrates Gaussian gradient op-
erators into the CNN to extract multidirectional gradient
information of small targets. By utilizing the MGIEB, a
module that combines IDConv and MGDC, the network’s
ability to extract multilevel and multiscale information
from infrared small targets is enhanced. Additionally,
to avoid excessive computational overhead, multibranch
parallel convolution kernels are reparameterized after
training.

3) To improve the efficiency of feature utilization in the
model, we designed the LGFF module. Leveraging an
attention mechanism, this module fully utilizes both global
and local information, integrating deep and shallow fea-
tures. This approach enhances pixel-level accuracy while
ensuring effective target detection.

The rest of this article is organized as follows. Section II
reviews related work in recent years; Section III outlines the
structure design of MDIGCNet; Section IV analyzes the perfor-
mance of the proposed network structure through ablation and
comparative experiments; and finally, Section V concludes this
article.

II. RELATED WORK

A. Infrared Small Target Detection

1) Model-Driven Methods: Model-driven approaches en-
compass methods based on background consistency assump-
tions, optimization, and human visual saliency hypotheses.
Methods based on background consistency assume that the
background of a small target image is usually similar, while the
small target disrupts this correlation. These methods [3], [4],
[34] typically estimated background information, subtracted the
background from the original image, and then applied adap-
tive filtering to obtain the target image. However, in practical
applications, the backgrounds of small target images are often
complex, making these detection methods susceptible to noise
and clutter, resulting in a higher false alarm rate. Optimization-
based methods model an infrared image as a linear combina-
tion of background, small target, and random noise images.
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Due to the consistency of the background, the data structure
of the background image is low-rank. In contrast, the small
target image is sparse, occupying only a few pixels of the
entire image. Low-rank sparse decomposition can separate the
background and target images from the original image. These
methods include matrix-based approaches [5], [35], [36] and
tensor-based approaches [6], [7], [37], [38], [39]. While these
optimization-based methods achieve high detection accuracy,
their real-time performance is often poor, limiting their prac-
tical applications. Methods based on human visual saliency
assumption hypothesize that regions containing small targets in
infrared images are visually salient. Algorithms can be designed
to compute saliency maps of the image, followed by adaptive
threshold segmentation to detect small targets. The local contrast
method (LCM) [8] was first proposed to describe the difference
between a location and its neighborhood. Many researchers
have proposed improved algorithms to define and calculate the
contrast between the target and its surrounding background. For
instance, Han et al. [40] introduced the relative local contrast
method (RLCM) to handle variations in small target size, Qin
et al. [41] developed a novel local contrast method (NLCM)
using Gaussian bandpass filters, and Wei et al. [9] proposed a
multiscale patch-based contrast measure (MPCM) to address
scale variations of small targets. Further improvements include
a weighted enhanced local contrast measure [42], a multiscale
local contrast measure with three-layer windows [43], and a dou-
ble neighborhood gradient measure [10], all aimed at enhancing
computational performance. However, the operators designed
by these methods extract shallow features, leaving room for
significant improvement in detection performance.

2) Deep Learning Methods: These methods involve design-
ing various networks to generate saliency maps, extract features
from infrared small target images, and then perform adap-
tive segmentation to achieve accurate detection results. Some
studies [12], [44], [45] have employed generative adversarial
strategies for ISTD. Other approaches [14], [24], [25], [46]
used asymmetric context modulation modules to fuse shallow
and deep features. To address the challenge of varying target
sizes, several networks [24], [46] employ multiscale feature
fusion, utilizing dilated convolutions and adaptive pooling to
construct multiscale feature maps. To compensate for the lack
of information in infrared images, some methods [47], [48],
[49] have attempted to enhance the feature extraction and fusion
capabilities of the network. For example, some approaches use
dual-modality feature fusion [47] and dual-domain feature ex-
traction [48] to improve detection performance. To fully leverage
the contextual information of small targets, methods based on
dense nested strategies [17], [18], [50] and those incorporating
self-attention mechanisms [19], [20], [51] have been proposed.
However, most of these approaches utilize common network
design strategies without incorporating domain knowledge into
the network design.

To address these issues, some methods [27], [28], [52], [53]
have attempted to integrate model-driven designs into deep
learning networks. For example, one study [27] modularized
the traditional MPCM algorithm into skip connections within
the network, replaced the concept of blocks with dilation rates,

Fig. 1. Structure of CDC and ADC.

and used a cyclic shift strategy to accelerate computation. Hou
et al. [29] used handcrafted fixed-weight convolution kernels
for feature extraction at the network front end, where each ker-
nel’s output represents the difference between the mean values
inside and outside the kernel. Some researchers have integrated
target shape reconstruction for ISTD, collecting and enhancing
comprehensive edge information at different levels to improve
target-background contrast [54]. Sun et al. [55] introduced a re-
ceptive field and direction-induced attention network (RDIAN),
which uses convolutional layers with various receptive fields to
capture target features in different local regions and a multidi-
rectional guided attention mechanism to enhance target features
in low-level feature maps. However, these methods only use
some traditional techniques to assist CNNs in detection and do
not effectively network HVS-based operators within the CNN.
Thus, there is still room for optimization in these approaches.

B. Difference Convolution

Modern CNNs employ multilayer image features with rich
hierarchical information, guided by deep supervision for end-
to-end detection, yielding excellent results. However, the op-
timization of CNN convolution kernels starts from random ini-
tialization and lacks explicit encoding, making it difficult for the
network to focus on specific representations. Traditional image
processing convolution kernels incorporate expert knowledge,
enabling rapid image processing, but their structure is shallow,
and their performance is subpar.

To address these issues, Yu et al. [31] proposed the central
difference convolution (CDC) operator, which encodes 3 × 3
convolution kernels by computing the difference between the
central pixel and its neighboring pixels, thus extracting more de-
tailed image information. The structure is shown in Fig. 1. Build-
ing on this, Yu et al. [56] decoupled CDC into two symmetric
suboperators—horizontal–vertical and diagonal-introducing the
cross-central difference convolution (Cross-CDC). Su et al. [32]
proposed pixel difference convolution (PDC), which employs
three-pixel difference methods: central difference with neigh-
boring features, pairwise differences in a clockwise direction,
and differences between the outer and inner rings of a 5× 5
neighborhood. Furthermore, Yu et al. [57] introduced spatiotem-
poral difference convolution (3D-CDC) to efficiently extract
spatiotemporal difference features, directly replacing Vanilla
3-D convolution in any 3-D CNN without additional parameter
overhead.
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Fig. 2. Overview of the proposed MDIGCNet, which has a U-Net structure with MGIEB and LGFF module.

In the field of ISTD, Wu et al. [21] proposed a simple yet
efficient ISTD network (RepISD-Net), merging the multibranch
topology incorporating CDC into a single branch composed
solely of cascaded 3 × 3 convolutions for rapid inference. Ying
et al. [58] introduced a deep network driven by local motion
and contrast priors for infrared small target super-resolution,
integrating a central difference residual group that embeds CDC
into the feature extraction backbone, achieving gradient-aware
feature extraction centered on the target and further enhancing
target contrast. However, these methods were not designed with
the characteristics of infrared small targets in mind. In particu-
lar, simply using CDC may result in performance degradation.
Designing appropriate differential convolutions based on the
principles of HVS is a feasible approach.

C. Reparameter

In CNNs, various methods have been employed to address the
issue of target scale variation by using multibranch structures to
alter the network’s receptive field and enhance performance [59],
[60]. However, the multibranch convolutional structures signifi-
cantly increase the computational and parameter overhead. Con-
sequently, some studies [61], [62] have proposed reparameter-
ization techniques to reduce computational costs. Specifically,
networks with multibranch structures are trained first, and then
merged into a single branch with a standard 3 × 3 convolution
before inference. For instance, Ding et al. [62] transformed 3 ×
3 convolutions, 1 × 1 convolutions, and residual structures into
a single 3 × 3 convolution kernel, achieving improved results.

Similarly, Chen et al. [63] converted four 3 × 3 differential
convolutions and one standard convolution into a single standard
convolution, enhancing performance and generalization ability.

In the field of ISTD, Wu et al. [21] introduced a simple yet ef-
ficient ISTD network (RepISD-Net), which merges multibranch
topologies containing CDC into a single branch composed solely
of cascaded 3 × 3 convolutions. Peng et al. [64] proposed a
dynamic reparameterization network (DRPN), which employs
multiple branches with different convolution kernel sizes and
a dynamic convolution strategy. After training, the multibranch
structures are further transformed into a single branch using
reparameterization techniques.

III. METHODOLOGY

A. Overall Architecture

The MDIGCNet consists of three primary components: the
backbone network, the MGIEB, and the LGFF module. The
network’s structure is depicted in Fig. 2.

Our backbone utilizes a U-Net [33] architecture. It employs
skip connections between the downsampling and upsampling
paths to merge deep and shallow features, facilitating the extrac-
tion of weak and small targets. The 3 × 3 convolution layers in
the encoder and decoder are replaced with the designed IDConv
module. This replacement enables the extraction of richer image
features. Through reparameterization techniques, it transforms
multiple convolution kernels into a single standard convolution,
enhancing model performance without increasing parameters or
computational complexity.
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Fig. 3. Derivation process of the VDC and HDC modules.

Our MGIEB is integrated into skip connections, combining
IDConv and MGDC. The MGDC, based on the assumption that
the grayscale distribution of infrared small targets follows a
Gaussian distribution, calculates Gaussian gradient information
in four directions. It then reparameterizes this information into
standard convolutions, enhancing the extraction of prior infor-
mation with minimal additional parameters and computational
overhead.

Finally, the LGFF module merges shallow and deep features.
This module fully leverages global and local image information
by utilizing attention mechanisms, allowing the network to focus
on target regions while preserving detailed information. This
approach enhances the model’s feature utilization, improving
both accuracy and efficiency in target detection.

B. IDConv Module

General convolutional layers explore a vast solution space
during training, often resulting in disappointing outcomes for
specific tasks due to insufficient constraints [56], [57]. In ISTD,
gradient information is crucial in distinguishing small target
regions. For instance, some ISTD networks utilize image edge
information to assist in target detection [29], [54]. However,
these networks employ fixed-weight convolutional kernels to
aid the main network in learning detection without internalizing
gradient convolution operators into the CNN.

Inspired by existing works [27], [58], [61], we introduce the
IDConv module, which integrates a general convolution and
four difference convolutions deployed in parallel to extract finer
target features. Apart from the common CDC and angle-based
difference convolution (ADC), which is shown in Fig. 1, we
employ two difference convolutions in different directions to
mimic the Sobel operator. The derivation process is illustrated
in Fig. 3, where xi represents the pixels in the current patch, pi,
zi, ni denote the weights of a 3 × 3 convolutional kernel, where
p2 =

∑3
i=1 pi, zi = 0, ni = −pi.

During the training phase, five convolutional layers are used
for model training, encoding features such as horizontal and
vertical gradients into the convolutional layers to enhance the
extraction of image details. After completing the training, the
learned convolutional kernel weights are rearranged and repa-
rameterized into a single convolutional kernel, as formulated as
follows:

Fout =

5∑
j=1

Fin ∗ U j = Fin ∗
5∑

j=1

U j = Fin ∗ Usum (1)

Fig. 4. Architecture diagram of the IDConv module.

Fig. 5. Architecture diagram of the ablation experiment of the backbone
network.

Usum represents the convolution kernel of IDConv, whose
weight is

wi =

5∑
j=1

uj
i . (2)

The weights of each convolutional kernel before reparameter-
ization are denoted as uj

i , i = 1 ∼ 9. This design offers the
advantage of enhancing the model’s fitting capacity without in-
troducing additional computational overhead. During inference,
the weights of the transformed convolutional kernels remain
fixed and no longer undergo updates. The parameter count and
computational load are equivalent to a standard 3 × 3 convolu-
tional kernel yet capable of extracting richer image information,
as illustrated in Fig. 4.

The 3× 3 convolution kernel in the U-Net network is replaced
with the designed IDConv, as shown in Fig. 5. The residual struc-
ture and IDConv module will be analyzed in the experimental
part using ablation experiments.
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C. Multidirectional Gradient Information Extraction Block

In this section, we delineate the design rationale and specifics
of the MGIEB, aimed at better extracting fine details of small
targets. Due to the distant imaging range of infrared and the
attenuation during atmospheric transmission, infrared small tar-
get imaging resembles a Gaussian blob [65]. Its mathematical
model can be approximated as a 2-D Gaussian function

f(x, y) = A ∗ exp
(
−1

2

((
x

σx

)2

+

(
y

σy

)2
))

(3)

whereAdenotes the peak intensity of the target, (x, y) represents
the pixel of a small target, σx and σy represent the horizontal and
vertical spread functions, respectively. Several algorithms [8],
[9], [66] model infrared small targets based on human visual
saliency. However, these methods are sensitive to salient edges
and high-brightness regions, making it difficult to distinguish
targets from texture clutter. Therefore, some researchers [22],
[23] employ the facet kernel model [67] to approximate the 2-D
Gaussian function for polynomial approximation. By calculating
the gradient information in four directions, the fixed convolution
kernel weights of the convolution template are determined,
thereby computing multidirectional gradient information that
conforms to the Gaussian distribution. However, these manually
designed detection operators have shallow structures, which may
lead to performance degradation when dealing with target scale
variations and complex backgrounds.

To address the limitations of these algorithms, the concept
of differential convolution is introduced to incorporate mul-
tidirectional Gaussian filtering templates into a deep learning
network, leading to the design of the MGDC module to enhance
detection performance. Unlike traditional methods with fixed
convolution kernel weights, this convolution module is designed
as a paradigm capable of backpropagation within CNNs, al-
lowing it to be integrated into the designed network for joint
training. Specifically, the weights of the 5× 5 convolution kernel
are constrained within the differential convolution paradigm to
simulate the computation of Gaussian gradient information in
different directions. Inspired by CDC [31] and PDC [32], four
convolutional kernels are designed, each primarily distinguished
by the encoded directions. To achieve the effect of differencing
the pixel values in the red region from those in the blue region,
we derived the expression based on the convolutional kernel in
Fig. 6 as follows.

For general convolution, its expression can be written as

y = f(x) =
k×k∑
i=1

ui · xi. (4)

For the convolutional kernel in Fig. 6, the expression is

y = u1(x1 − x25) + · · ·+ λ · u7(x7 − x19) + · · ·
+ θ · u19(x19 − x7) + · · ·+ u25(x25 − x1)

= (u1 − u25)x1 + · · ·+ (λ · u7 − θ · u19)x7 + · · ·
+ (θ · u19 − λ · u7)x19 + · · ·+ (u25 − u1)x25

Fig. 6. Derivation process of the MGDC module.

=
∑

ûixi = û ∗ x (5)

wherexi represents the pixels in the current patch andui denotes
the weights in the convolutional kernel. λ and θ are the gain
weights on both sides of the convolution kernel, used to enhance
the contrast of small targets. Assuming parameter λ = θ, λ ·
u7 − θ · u19 can be simplified to λ(u7 − u19). The parameter λ

is referred to as the gain factor, with its determination inspired by
the Sobel and LoG operators, which weight information from the
neighborhood. It is simultaneously observed that ûi = −û25−i

holds within this expression. To better describe and simplify the
equation, ûi is replaced with pi, ni, and zi, as depicted in Fig. 6.

Thus, the weights of this convolutional kernel can be de-
scribed by the following:

pc =

8∑
i=1

pi

zi = 0

ni = −pi (6)

where pc represents the central position on one side of the GDC
kernel segmentation line, aligning with significantly higher cen-
tral significance in the Gaussian distribution than the neighbor-
hood, effectively aggregating local information. The values of pi
andni are opposite to each other, and through careful design, rich
gradient information can be effectively extracted by encoding
four convolutional kernels in four directions.

To avoid the significant computational overhead introduced
by four convolution kernels, the weights of the four kernels are
rearranged and reparameterized into a single convolution kernel
after training, as derived in the following:

Fout =
4∑

j=1

Fin ∗ U j = Fin ∗
4∑

j=1

U j = Fin ∗ Usum (7)

where Usum represents the reparameterized convolution kernel,
whose weight is shown in (8). The weights of each convolutional
kernel before reparameterization are denoted as uj

i , i = 1 ∼ 4

wi =

4∑
j=1

uj
i . (8)
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Fig. 7. Architecture diagram of the MGIEB.

Fig. 8. Architecture diagram of the LGFF module.

Due to the reparameterization technique employed during the
inference process, the parameters and computational cost of this
module are comparable to that of a single convolution kernel, as
illustrated in Fig. 7. The MGDC, IDConv, and residual results
are concatenated to form the MGIEB, as shown in (9). Since
MGDC is only used in the skip connections of the network,
employing a 5 × 5 convolution kernel does not introduce signif-
icant computational overhead. Conversely, the aforementioned
IDConv is used throughout the entire encoding and decoding
stages of the network, making the 3 × 3 kernel a more optimal
choice

MGIEB(X) = X + IDConv(X) +MGDC(X). (9)

D. LGFF Module

The design of the LGFF module is described in this section.
In CNNs, shallow features often contain rich detail information
but lack higher-level semantic information, in contrast to deep
features. Detailed information is usually lost during downsam-
pling in small infrared target detection networks due to the small
size of the targets. To address this, an LGFF module is proposed
to fuse deep and shallow features for fine-grained detection of
small targets, as illustrated in Fig. 8.

Spatial attention mechanism (SAM) [68] is utilized to com-
pute global spatial information on shallow features, providing
pixel-level global attention guidance on the spatial level. Atten-
tion mechanisms are employed to calculate attention information
in the row and column directions, refining detail features in
space. For deep features, CAM is used to provide semantic
information and channel guidance for low-level features, which
are then fused with shallow features. This process is illustrated
in the formula below:

SA(X ) = σ(f7×7([AvgPool(X ) : MaxPool(X )]))

CA(Y ) = σ(MLP(AvgPool(Y )) +MLP(MaxPool(Y ))))

LSA(X ) = σ(f3×3([f1×3(X ) : f3×1(X )]))

LGFF(X ,Y ) = CA(Y )⊗ Y ⊗ (1 + SA(X ) + LSA(X ))
(10)

where σ(·) represents the sigmoid function operation, f3×3(·)
denotes the 3 × 3 convolution operation, ⊗ indicates element-
wise multiplication, and X , Y represent the shallow and deep
features. SA stands for spatial attention, CA stands for channel
attention, and LSA stands for local spatial attention.

When computing LSA(X), we utilize 1 × 3 and 3 × 1 convo-
lutions to aggregate the details of shallow features in the row and
column directions. We then used a 3×3 convolution to aggregate
the two features, fully utilizing the available information to
extract local shape information from the low-level features.
Simultaneously, for calculating SA(X), MaxPool and AvgPool
are employed to obtain global spatial information. Finally, these
are modulated with deep features, enabling the integration of
rich detail features into high-level semantic information, thus
enhancing the network’s pixel-level accuracy.

E. Loss Function

Due to the small size of ISTD, which occupies very few pixels
in the image, a severe imbalance exists in the samples. Therefore,
we adopt the softIoU loss [50], expressed as follows:

LosssoftIoU(p, y) =

∑
i,j(σ(pi,j) · yi,j) + σ∑

i,j (σ(pi,j) + yi,j − σ(pi,j) · yi,j) + σ
(11)

where pi,j and yi,j represent the predicted value and the ground
truth mask value at point (i, j), respectively. σ(·) denotes the
sigmoid activation function operator, and the smoothing factor
c is set to 1.

IV. RESULTS

A. Evaluation Metrics

We utilize probability of detection (Pd) and false alarm rate
(Fa) to assess the algorithm’s capacity in target detection and its
ability to preserve target shape, employing pixel-level metrics
such as intersection over union (IoU ) and F-measure (F1). These
metrics are computed using a fixed threshold of 0.5. The receiver
operating characteristic (ROC) curve evaluates the algorithm’s
detection performance across various thresholds.
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Pd reflects the ability to correctly detect targets, defined as the
ratio of correctly detected targets to the total number of targets
detected. Its formula is expressed as

Pd =
Tcorrect

Tact
(12)

Fa reflects the accuracy of target detection, calculated as the
ratio of the sum of incorrectly predicted pixels to the total number
of pixels in the entire image. Its definition formula is as follows:

Fa =
Pfalse

Pall
(13)

F1 is a classic semantic segmentation metric that balances
Precision and Recall, where Precision represents the ratio of
correctly classified pixels to all labeled target and predicted
target pixels. Recall represents the ratio of correctly classified
pixels to all labeled target pixels. Its expression is as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Fmeasure =
2 ∗ Precsion ∗Recall

Precision+Recall
(14)

IoU reflects the similarity of predicted targets to actual tar-
gets, calculated as the ratio of their intersection to their union,
expressed as

IoU =
#Area of Overlap

#Area of Union
. (15)

The ROC curve represents the classifier’s classification per-
formance at different thresholds, characterizing the dynamic
relationship between false positive rate (FPR) and true positive
rate (TPR). The expression is shown in (16). The closer the
curve approaches the coordinate (0,1), the better the algorithm’s
performance

FPR =

∑
FP∑

FP + TN
, TPR =

∑
TP∑

TP + FN
. (16)

B. Implementation Details

Ablation experiments are conducted on three publicly avail-
able mainstream datasets (NUDT-SIRST [17], IRSTD-1K [54],
and SIRST-Aug [24]) for the proposed network, and compar-
isons are made with other algorithms. The NUDT-SIRST dataset
comprises 1327 images, with 663 images for training and 664
for testing. This dataset covers urban, rural, highlight, ocean,
and cloud scenes, with images sized at 256 × 256 pixels. The
IRSTD-1K dataset consists of 1001 images, with 800 for training
and 201 for testing. It includes targets of various sizes and shapes
with rich, cluttered backgrounds, and the image size is 512 ×
512 pixels. The SIRST-Aug dataset contains 9070 images, with
8525 for training and 545 for testing. This dataset augments the
SIRST dataset, with images sized at 256 × 256 pixels.

During network training, the batch size is set to 8, the initial
learning rate is 0.0005, and the number of epochs is set to
400. The network is optimized using the Adam optimizer [69]

and the multistepLR scheduler. The software platform for this
model is based on Python 3.8 and PyTorch 1.12.1. All mod-
els in the experimental results are implemented on a machine
equipped with an Intel(R) Xeon(R) Gold 6133 central processing
unit (CPU) and an Nvidia GeForce 4090 graphics processing
unit (GPU).

C. Comparison to SOTA Methods

We selected various algorithms for comparison, including
MPCM [9], IPI [5], PSTNN [37], ALCNet [27], AGPCNet [24],
RDIAN [55], ISTDU [70], DNANet [17] and UIUNet [16],
MSHNet [71].

1) Quantitative Comparison: The quantitative comparison
of these algorithms is presented in Table I. Overall, deep
learning-based algorithms exhibit superior detection perfor-
mance compared to traditional algorithms. The MPCM algo-
rithm is a classical algorithm for ISTD. It shows satisfactory
performance on the target-level metric Pd, even approaching the
detection rate Pd of deep learning algorithms on the SIRST-Aug
dataset. However, it performs the worst on the pixel-level metrics
IoU and F1, indicating insufficient detail preservation. The data
structure-based IPI and PSTNN algorithms outperform MPCM,
showing significant improvements in the pixel-level metrics IoU
and F1. Nevertheless, the performance of these algorithms is
related to the sparsity of the targets. Their detection performance
may decline when multiple targets are present in a single image,
as evidenced by the lower Pd values on the SIRST-Aug dataset.
ALCNet and RDIAN demonstrate significant improvements
over traditional methods, but their performance is generally
average among deep learning algorithms. AGPCNet performs
well on SIRST-Aug but is average on the first two datasets.
DNANet and UIUNet show overall good performance but have
the most significant model parameter count and computational
cost among all methods.

The proposed MDIGCNet achieves competitive performance
with relatively low computational overhead. Compared to the
parameter-efficient ALCNet and RDIAN, our MDIGCNet per-
forms better across all metrics on the three datasets. On NUDT-
SIRST, our method achieves an IoU that is 7.87% higher
than ALCNet. Compared to ISTDU-Net, which has slightly
higher parameters and computational costs, our method im-
proves IoU, Pd, and Fa by approximately 2%. Compared to
DNANet, AGPCNet, and UIUNet, which have higher param-
eters and computational costs, our MDIGCNet achieves com-
parable or even better detection performance. Our method has
three times fewer parameters and two times less computational
cost than DNANet, and an order of magnitude lower than
AGPCNet and UIUNet. This indicates that our method bal-
ances performance and computational overhead, offering greater
practicality.

We plotted the ROC curves of different methods on NUDT-
SIRST, IRSTD-1k, and SIRST-Aug. As shown in Fig. 9,
our MDIGCNet achieves competitive performance across all
datasets. It performs excellently on NUDT-SIRST and is com-
parable to UIUNet and DNANet on IRSTD-1k and SIRST-
Aug. Traditional methods (MPCM, IPI, PSTNN) exhibit
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TABLE I
COMPARISON OF DETECTION PERFORMANCE [IoU (%),F1(%), Pd (%), AND Fa (×10−5)] AND MODEL EFFICIENCY (THE NUMBER OF PARAMETERS (M) AND

THEORETICAL FLOPS (G)) OF DIFFERENT METHODS ON THE NUDT-SIRST, IRSTD-1K, AND SIRST-AUG DATASETS

Fig. 9. ROC curves of different algorithms. (a) ROC curves of different algorithms with the NUDT-SIRST dataset. (b) ROC curves of different algorithms with
the IRSTD-1K dataset. (c) ROC curves of different algorithms with the SIRST-Aug dataset.

unstable performance across different datasets, indicating poor
robustness.

2) Visual Comparison: The visualization results of differ-
ent methods are shown in Fig. 10. Two images from vari-
ous scenes are selected from NUDT-SIRST, IRSTD-1k, and
SIRST-Aug, respectively. In each figure, yellow circles indicate
false positives, and blue circles represent missed detections.
The detected target areas are highlighted in red and enlarged,
placed in the corners of the detection image. Among traditional
algorithms, MPCM demonstrates poor detection performance,
particularly in scenes with strong edges, resulting in high false
alarm rates, as shown in images NUDT-SIRST 00063 and
SIRST-Aug 008808. The IPI algorithm has a high detection
rate but exhibits high false alarm and missed detection rates
in multitarget scenes. The PSTNN algorithm achieves good
detection and false alarm rates but fails to accurately restore
target shape information. For example, in image SIRST-Aug
008876, the detected target shape significantly differs from
the ground truth, sometimes even mistaking a single target for
multiple targets. Overall, these traditional algorithms heavily
rely on prior information, lack robustness, and exhibit infe-
rior detection performance compared to deep learning-based
algorithms.

Compared to other deep learning algorithms, the proposed
MDIGCNet accurately detects targets with the lowest miss rate.
Our method exhibits a lower false alarm rate and is more effective

at detecting targets in multitarget and high-brightness scenes
compared to ALCNet. In comparison to DNANet, our method
maintains a higher detection rate. The introduction of IDConv
and MGIEB enables MDIGCNet to extract richer detail infor-
mation and edge information of targetlike objects, enhancing
the detection capability and improving the ability to restore the
shape of small targets. The use of LGFF for multiscale infor-
mation fusion enhances feature utilization efficiency, thereby
reducing the occurrence of missed targets.

D. Ablation Study

To validate the effectiveness of each module in the pro-
posed algorithm, ablation experiments are conducted on the
aforementioned datasets. Specifically, in the first part, network
performance is compared on the backbone network with and
without residual structures and IDConv. This experiment is also
conducted on the complete network to ensure optimal perfor-
mance. In addition, we compared the performance of MSHNet,
DNANet, and UIUNet with and without the use of IDConv.
In the second part, to validate the effectiveness of MGIEB,
comparisons are made with CDC and standard convolution.
To demonstrate that IDConv and MGDC in MGIEB effectively
extract detailed information, heatmap examples of four images
are generated. Finally, in the third part, network performance
is compared with and without the MGIEB and LGFF modules.
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Fig. 10. Visual examples of some representative methods. In each figure, yellow circles indicate false positives, and blue circles represent missed detections. The
detected target areas are highlighted in red and enlarged, placed in the corners of the detection image.

TABLE II
IOU (%),F1(%), Pd (%), AND Fa (×10−5) VALUES ACHIEVED IN THE NUDT-SIRST, IRSTD-1K, AND SIRST-AUG DATASETS ON ABLATION EXPERIMENTS ABOUT

IDCONV AND RESIDUAL STRUCTURES

Throughout the experiments, the structure of other parts of the
network remained unchanged.

1) Effect of IDConv: We compared the detection perfor-
mance of using residual networks and not using residual net-
works in the backbone network, as well as the performance
with and without IDConv. Table II presents the comparison of

their detection performance in IoU(%), F1 (%), Pd (%), and
Fa (10−6). It can be observed that when only residual structures
are used, the network may experience performance degradation.
Remarkably, there is a significant decline in performance, espe-
cially in pixel-level metrics like IoU, indicating that residual
structures may not be suitable for our network. On the other
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TABLE III
COMPARISON OF QUANTITATIVE METRICS [IoU (%),F1(%), Pd (%), AND Fa (×10−5)] FOR THE APPLICATION OF IDCONV ON OTHER NETWORKS(MSHNET,

DNANET, AND UIUNET)

TABLE IV
COMPARISON OF QUANTITATIVE METRICS [IOU (%),F1(%), Pd (%), AND Fa (×10−5)] FOR DIFFERENT CONVOLUTIONAL BLOCKS

Fig. 11. Skip connection structures with different convolutional blocks. (a)
General conv. (b) CDC. (c) MGIEB (Training-time). (d) MGIEB (Inference-
time).

hand, the network performs better when only IDConv is used,
especially with IoU and F1 scores reaching optimal values on
all three datasets, suggesting that our designed IDConv struc-
ture can effectively assist the backbone network in extracting
texture details of small targets. When both structures are used
simultaneously, the network performance is moderate.

We also conducted this experiment on the complete network
to ensure optimal performance. As shown in the second row of
Table II, it can be observed that the network performs better when
only IDConv is used. Although the network using both structures
performs better on the SIRST-Aug dataset, its robustness is
inferior to the former. Therefore, we will adopt the backbone
network in subsequent experiments using only IDConv.

To demonstrate the robustness and effectiveness of IDConv,
its performance is compared across MSHNet, DNANet, and
UIUNet. As shown in Table III, the use of IDConv resulted
in an improvement in most metrics on both NUDT-SIRST
and SIRST-Aug datasets. Specifically, MSHNet achieved an

approximate 5% increase in IoU andF1 scores on NUDT-SIRST,
despite underperforming on the IRSTD-1K dataset. DNANet
and UIUNet exhibited consistent improvement across most
metrics.

2) Effect of MGIEB: The reparameterized MGIEB is com-
pared with standard convolution and CDC, as shown in Fig. 11
and Table IV. Standard convolution, which does not model
prior knowledge, exhibited poor performance, particularly on
the SIRST-Aug dataset. Although CDC encodes differential
information, it is not designed based on the characteristics of
small targets and performed worse than standard convolution
on the NUDT-SIRST and IRSTD-1K datasets. Our MGIEB,
which integrates multidirectional Gaussian gradient informa-
tion, achieved the best results across all three datasets. Through
reparameterization, the module’s parameters and FLOPs are
reduced by 62% and 55%, respectively, reaching the same level
as standard convolution while maintaining performance.

Additionally, to demonstrate that IDConv and MGDC within
MGIEB effectively extract detailed information, images from
four scenarios are utilized. As illustrated in Fig. 12, the columns
from left to right represent the original image, ground truth,
feature map input to MGIEB, heatmap output from IDConv,
heatmap output from MGDC, and heatmap output from the
MGIEB module. Target areas are marked with red boxes, and
color intensity indicates energy levels from low to high. It is evi-
dent that the input features contain significant background noise,
hindering precise detection of small targets. IDConv processing
extracts detailed information from the images, facilitating the
recovery of small target shapes. Following MGDC processing,
clutter information outside the target area is reduced, aiding
the network in focusing on targetlike regions. The concentrated
energy on the output heatmaps confirms the effectiveness of the
module’s design.

3) Effect of LGFF: The impact of LGFF on performance
improvement is assessed, as shown in Table V. Compared to
the baseline network, the addition of the LGFF module resulted
in significant increases in all metrics on the NUDT-SIRST
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TABLE V
COMPARISON OF QUANTITATIVE METRICS [IOU (%),F1(%), Pd (%), AND Fa (×10−5)] FOR ABLATION EXPERIMENTS IN MGIEB AND LGFF

Fig. 12. Illustration of heatmap. The columns from left to right represent the
original image, ground truth, feature map input to MGIEB, heatmap output from
IDConv, heatmap output from MGDC, and heatmap output from MGIEB.

dataset. Performance on the other two datasets is moderate.
When compared to the network with only MGIEB added, the
inclusion of the LGFF module led to optimal results in nearly
all metrics across the three datasets. Specifically, IoU increased
by 0.06%, 2.38%, and 1.48% on the NUDT-SIRST, IRSTD-1K,
and SIRST-Aug datasets, respectively, while F1 increased by
0.04%, 2.24%, and 1.48%. Pd showed improvements of 1.35%
and 1.52% on the latter two datasets. Although Fa performance
declined on NUDT-SIRST, it improved on the other two datasets.
Overall, the computational overhead introduced by LGFF is
minimal, enhancing model performance across all datasets.

V. CONCLUSION

In this article, we propose a novel network for infrared target
detection—MDIGCNet. To address the issues of low image
information utilization and the lack of prior information in
existing methods, we design IDConv, MGIEB, and LGFF. We
use IDConv as both encoder and decoder within the U-Net
architecture, enabling the extraction of rich image features. The
skip connections employ the MGIEB module to capture gradient
features of infrared small targets, enhancing network perfor-
mance by fusing gradient features from multiple directions.
With reparameterization techniques, performance improvement
is achieved with low computational costs. Moreover, the LGFF
module integrates shallow and deep features, enhancing the
model’s utilization of features. Extensive experimental results on

various datasets scientifically demonstrate that our proposed net-
work significantly improves detection accuracy, particularly in
complex ISTD tasks, validating the soundness of our approach.
Notably, the model achieves a lower false alarm rate and higher
precision compared to existing methods.

While the MDIGCNet shows promising results, future re-
search will focus on optimizing the network’s computational
efficiency and reducing false positives in more complex real-
world scenarios. For example, in the MGIEB module, although
we employ a 5 × 5 convolution kernel to model gradient
features and use reparameterization techniques to limit param-
eter growth, further reduction in computational complexity is
possible. Future work will also explore refining the differential
convolution-based modules and applying differentiated designs
at various network layers to reduce redundancy. Moreover, we
plan to introduce transformer-based modules to further mitigate
missed and false detections in challenging environments.
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