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Cross Teaching-Enhanced Multispectral Remote
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Abstract—Remote sensing platforms are often equipped with
sensors of multiple spectrums to capture the diverse reflective
properties of ground areas, typically including the visible spectrum
and the near infrared (NIR) spectrum. Moreover, thermal infrared
(TIR) sensors capture the radiated heat of targets and are capable
of all-day observation regardless of illumination conditions. By
leveraging the complementary features of different spectrums, mul-
tispectral fusion techniques enhance the precision and robustness
of remote sensing object detection methods. In this article, we
present an object detection method for remote sensing imagery
named multispectral detection transformer (multispectral DETR).
The model fuses multispectral features with deformable attention
and utilizes fused features for object detection. The multispectral
deformable attention fusion block integrates the flexibility of dy-
namic weights with the principle of fusion based on local regions.
Then, we propose a simple yet effective oriented object detection
scheme based on angle prediction. Finally, we introduce a novel
cross-teaching method between single-spectral and multispectral
models, which alleviates the spectral interference issue caused by
inconsistent target visibility. Experimental results demonstrate that
multispectral DETR achieves state-of-the-art results on both the
RGB-NIR VEDAI and the RGB-TIR DroneVehicle datasets.

Index Terms—Detection transformer, feature fusion, knowledge
distillation, multispectral remote sensing image, object detection.

I. INTRODUCTION

OBJECT detection in remote sensing imagery is crucial
in various applications, including urban planning, traffic

management, search and rescue operations, as well as harbor and
airport monitoring. Remote sensing platforms, such as satellites
and drones, are often equipped with multispectral imaging sen-
sors to capture ground areas with diverse reflective properties.
The most commonly used spectrums in remote sensing platforms
are the visible (RGB) spectrum and the infrared (IR) spectrum,
particularly the near-infrared (NIR) spectrum [1], [2], [3]. Re-
cently, the manufacturing of thermal infrared (TIR) cameras has
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Fig. 1. Images captured with RGB, NIR, and TIR cameras on remote sensing
platforms [4], [5] at different times.

become more feasible. TIR cameras can capture the radiated heat
of objects in the 8–14 µm wavelength range, enabling all-day ob-
servation of ground scenes regardless of illumination conditions.
This overcomes the imaging limitation of traditional remote
sensing platforms, which are restricted to daytime observation.
However, TIR images lack color and texture information, mak-
ing it challenging for humans and computer vision algorithms to
distinguish between objects of different categories. In contrast,
RGB images capture rich color and texture information but are
susceptible to illumination conditions. Samples of RGB, NIR,
and TIR remote sensing images are shown in Fig. 1.

Considering the complementary or enhancing features of
different spectrums, an all-day remote sensing object detection
method with high precision can be developed through fusion
of multispectral information. The majority of previous studies
have shown that feature fusion, also known as halfway fusion,
outperforms input image fusion and decision fusion in deep
learning models [6], [7]. Existing research focused on designing
convolutional blocks for multispectral feature map fusion [8],
[9], [10], a process that often involves extensive trial and error.
Recently, some studies [11], [12] explored the use of transform-
ers for feature fusion [13]. The transformer’s ability to handle
an arbitrary number of input tokens enables the joint processing
of RGB and IR tokens, allowing the model to compute their
relationships. However, the original self-attention mechanism
of transformer can incorrectly fuse unrelated regions of the
RGB-IR image pairs, such as fusing the upper left corner of
the RGB image with the bottom right corner of the IR image.

In this work, we propose a multispectral fused oriented
object detector based on the detection transformer (DETR)
mechanism [14] and deformable attention [15]. Our proposed
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Fig. 2. Performance comparison between Single-spectral DETR and multi-
spectral DETR with different numbers of inconsistent targets. The complete set
is the original training set of DroneVehicle. The consistent set is a subset that
excludes training images with more than two inconsistent targets.

Multi-spectral DETR) fuses RGB-IR features using an extended
multispectral deformable attention (MDA) module, which sam-
ples RGB-IR feature tokens around the same coordinate with
computed attention weights. The attention weights enable flex-
ible feature fusion, while sampling around the same coordinate
prevents fusion of unrelated regions. To deal with the arbitrary
orientations of targets in remote sensing imagery, we also pro-
pose a simple yet effective oriented object detection scheme.

However, a fundamental assumption in multispectral fused
object detection is that the same target should appear in the same
position on both images, which may not hold true for RGB-TIR
remote sensing image pairs captured at night. In extremely low-
light conditions, many targets become invisible to human eyes
in RGB images, as illustrated in the dark nighttime image pair in
Fig. 1. We refer to these targets as inconsistent targets, as they do
not consistently appear in both spectrums. The RGB features of
the inconsistent targets might interfere with their TIR features,
causing the fused features to have lower quality than TIR features
alone.

To verify the feature interference problem in a multispec-
tral model arising from inconsistent visibility, we compare the
performance of multi-spectral DETR and its single-spectral
counterpart on the DroneVehicle dataset [5], as shown in Fig. 2.
Without losing generality, deformable DETR [15] trained and
tested on TIR images is referred to as single-spectral DETR
throughout this article. The test set of DroneVehicle is split
according to the number of inconsistent objects. On the 6657
image pairs where all targets have consistent visibility, mul-
tispectral DETR outperforms single-spectral DETR by 3.2 in
terms of mean average precision (mAP). However, as the number
of inconsistent targets increases, the performance gap between
multispectral DETR and single-spectral DETR narrows. On the
1456 image pairs containing at least three inconsistent objects,
single-spectral DETR surpasses multispectral DETR by 0.2 in
mAP. To emphasize the problem, we exclude images with no
less than three inconsistent targets from the training set and
retrain the single-spectral and multispectral models using the
remaining consistent data. As shown in Fig. 2, the performance
gap widens to 1.6. This finding confirms that, despite having
access to the complete TIR image, the multispectral model is

affected by the interference from invisible targets in the RGB
spectrum, which degrades its performance. In other words, the
multispectral model is lacking in robustness against inconsistent
target invisibility. Therefore, a multispectral model needs to
learn not only to fuse multispectral features but also to mitigate
interference.

To address this issue, we further propose a knowledge
distillation-based approach that encourages the multispectral
model to mimic the single-spectral model, which is naturally
unaffected by the interference problem, on inconsistent targets.
Building upon this concept, we first use multispectral DETR to
help train an enhanced single-spectral DETR, which is then used
in return to guide multispectral DETR on inconsistent targets. In
contrast to conventional unidirectional distillation methods [16]
that transfer knowledge from a high-performance teacher to a
student model, our proposed cross-teaching between single-
spectral DETR and multispectral DETR (CT-SSMS) method
combines the strengths of both single-spectral and multispectral
models, thereby improving their performance simultaneously.

This article is an extended version of [17] and a conference
paper in IGARSS 2024. However, in the previous publications,
multispectral fusion based on deformable attention was not com-
pared with other fusion choices and the design of oriented object
detection was not thoroughly justified. Therefore, this extended
paper makes several new contributions, including a compari-
son between multispectral feature fusion with convolution and
fusion with deformable attention in terms of computational
budget and precision. Also, we conduct an ablation study on key
choices in our oriented object detection scheme quantitatively
as well as qualitatively with visualizations of detection results
and sampling points. Finally, we extend experiments to oriented
object detection on the VEDAI dataset [4]. This extension and
previous research revolve around one purpose: realizing a high-
precision multispectral fused object detection model suited to
remote sensing imagery in both daytime and nighttime scenes.
The overall contributions of this extended journal version are
summarized as follows:

1) We introduce multispectral DETR, a novel multispectral
remote sensing object detection model leveraging the
deformable attention mechanism. We compare the mul-
tispectral deformable attention module with input fusion
and convolutional fusion in terms of precision and com-
putational efficiency. In addition, we design a simple yet
effective oriented object detection scheme applicable to
DETR-like models.

2) We propose cross-teaching between single-spectral and
multispectral DETRs (CT-SSMS) to address the interfer-
ence issue caused by inconsistent targets. CT-SSMS en-
hances single-spectral DETR with the high-performance
multispectral DETR, while utilizing the enhanced single-
spectral DETR to guide multispectral DETR on inconsis-
tent targets.

3) Comprehensive experiments on DroneVehicle and
VEDAI datasets demonstrate the state-of-the-art perfor-
mance of multispectral DETR and the effectiveness of the
CT-SSMS method.



ZHU et al.: CROSS TEACHING-ENHANCED MULTISPECTRAL REMOTE SENSING OBJECT DETECTION WITH TRANSFORMER 2403

II. RELATED WORKS

A multispectral fused remote sensing object detector com-
prises two essential components: multispectral fusion and ori-
ented object detection. The former enables all-time detection,
while the latter is necessitated by the characteristics of remote
sensing platforms. This section reviews relevant research in
general-purpose object detection, remote sensing object detec-
tion, and multispectral fused object detection, with a focus on
transformer-based approaches.

A. General-Purpose Object Detection

In the deep learning era, object detection algorithms were
initially categorized into two-stage models [18], [19], [20] and
one-stage models [21], [22], [23]. The advent of transformer [13]
led to the development of DETR [14], which introduced a query
mechanism into the object detection task. The core of DETR
is an encoder–decoder architecture consisting of transformer
modules, where the encoder performs global feature attention
and the decoder queries the image feature map to determine the
presence of a target of interest in its corresponding region. By
leveraging the Hungarian algorithm, DETR realizes one-to-one
matching between object queries and ground-truth (GT) objects,
eliminating the need for nonmaximum suppression (NMS).
However, the original DETR model is plagued by slow training
and low precision in detecting small targets.

Several subsequent studies [15], [24], [25], [26] proposed
different solutions to address the two limitations of DETR.
Specifically, deformable DETR [15] introduces the deformable
transformer as an alternative module for the original transformer.
The deformable transformer calculates sampling offsets relative
to the query’s reference position and their attention weights by
passing the query vector through linear layers. This conversion
from global to local attention introduces an inductive bias for
object detection, facilitating model training. Also, the reduced
computational budget enables the use of multiscale feature maps,
leading to improved small target detection.

Although deformable DETR reduces computational costs in
single-scale attention, it still struggles with a computational
bottleneck of multiscale attention. Sparse DETR [27] observes
that most regions of the feature maps do not require atten-
tion enhancement, especially those not queried by the decoder.
Therefore, sparse DETR proposes to sparsify the encoder, which
fuses local information in a subset of regions predicted by
a scoring network. We adopt the sparsification introduced in
sparse DETR into our single-spectral and multispectral DETRs
due to its computational efficiency.

B. Remote Sensing Object Detection

Remote sensing platforms capture ground scenes from an
overhead perspective, resulting in targets with random orien-
tations and dense distributions. Oriented object detection was
proposed to make bounding boxes align with the orientations
of targets so that one bounding box does not contain multiple
objects. A straightforward approach to oriented object detection
is to predict an angle for each bounding box, yielding a five-
parameter representation (x, y, w, h, θ), where (x, y) denote the

center coordinates, (w, h) represent width and height of the
bounding box, and θ is the orientation angle. However, the
periodic nature of angles can lead to abrupt increases in loss
values at boundary cases [28], [29], [30].

Previous studies have proposed solutions based on two main
approaches. One approach is to transform the angle regression
task into an angle classification task [28], [29], [31]. For instance,
circular smooth loss [28] reformulates angle prediction as a
180-classification problem, with GT values in the range of
[−90◦, 90◦). The key is the use of smooth labels, which tolerates
classifying one angle into its neighboring angles, including
boundary cases. In specific, predicting −90◦ for an angle with
GT value 89◦ will not incur a large loss value. Then, densely
coded labels [29] furthers this approach by reducing the encod-
ing length.

The second line of approaches uses loss functions that
measure the Intersection-over-Union (IoU) between bounding
boxes, rather than directly measuring parameter differences [32],
[33]. In boundary cases, IoU-based losses only require high over-
lap between predicted and GT boxes, without directly comparing
predicted and GT angles, thereby circumventing the periodicity
issue. Building on this idea, the Rotated IoU Loss [34] measures
the intersection area of two rotated rectangles with the Shoelace
theorem [35]. Several studies transform oriented bounding boxes
into Gaussian distributions and measure the distance between
them using Gaussian Wasserstein Distance (GWD) Loss [32]
and Kullback–Leibler Divergence (KLD) loss [33], respectively.
KFIoU Loss [36] first obtains the overlapping distribution of
the two Gaussians with Kalman filtering, and then converts
the overlapping Gaussian into an oriented box, whose area
approximates the overlap of the two oriented boxes.

Recently, efforts have been devoted to integrating the DETR
method with oriented object detection. AO2 DETR [37] modifies
different components of deformable DETR to accommodate ori-
ented bounding box prediction, including an oriented proposal
generation mechanism, an adaptive oriented proposal refinement
module, a transformer decoder with angle prediction, and a
set of rotation-aware matching costs. However, AO2 DETR is
susceptible to the angle periodicity problem due to its use of
angle regression with L1 Loss. ARS DETR [38] adopts an angle
classification approach and introduces an aspect ratio-aware
circular smooth label method. In addition, it proposes rotating
the sampling points of deformable attention based on a coarse
predicted angle.

In this work, we employ the Rotated IoU Loss [34] to su-
pervise angle prediction. Within this framework, we investi-
gate various choices of L1 Loss and sampling point rotation.
Furthermore, we demonstrate that our proposed oriented object
detection scheme for DETR achieves comparable performance
to recent state-of-the-art methods [37], [38].

C. Multispectral Fused Object Detection

Given the complementary or enhancing features of RGB-IR
images, fusing multispectral information can enhance the preci-
sion and robustness of downstream vision tasks. In the context
of RGB-TIR fused pedestrian detection for autonomous driving,
Liu et al. [6] compared various fusion stages, including early
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Fig. 3. Structure of multispectral DETR. There are four main components, namely, the RGB backbone, the IR backbone, the multispectral encoder, and the
multispectral decoder. The RGB backbone and the IR backbone are separable and do not share weights.

fusion, halfway fusion, late fusion, and score fusion, and showed
that halfway fusion yielded the best performance. Early studies
of feature fusion [6], [39] combine multispectral feature maps
into a single feature map and propagate it through subsequent
convolutional layers. Later, Fusion CSPNet [7] reveals that it is
more effective to propagate RGB-IR images through complete
and independent backbones and then extract their feature maps
from different stages for fusion.

In remote sensing imagery, such as satellites, uncrewed aerial
vehicles (UAVs), and drones are often equipped with sensors
of multiple spectrums, it is logical to develop multispectral
fused object detection methods. On the vehicle detection in
aerial imagery (VEDAI) dataset [4], which provides RGB-NIR
images, YOLOrs [40] also compares input fusion with feature
fusion and demonstrates the superiority of feature fusion. Fang
et al. [10] proposed a cross-modality attentive feature fusion
network designed to select shared features across modalities
while amplifying modality-specific features.

With the DroneVehicle dataset [5] providing RGB-TIR image
pairs, recent researches have also identified the problem of
inconsistent visibility. C2Former [11] describes the inconsis-
tent visibility problem as fusion imprecision and proposes a
transformer-based fusion module for RGB-TIR fusion. CAL-
Net [12], on the other hand, describes the same problem as se-
mantic conflict. Their proposed solution is a conflict rectification
module based on transformer, which incorporates K-nearest-
neighbors (KNN) to prevent the fusion of conflicting features.
Our work characterizes the same problem as interference, high-
lighting that it is the low-quality RGB features that cause this
problem. We propose to address this issue with CT-SSMS, a
training-time-only knowledge distillation method that does not
change the model architecture.

III. PROPOSED METHOD

In this section, we first introduce the overall architecture of
multispectral DETR, focusing on its MDA block and oriented
object detection scheme. Then, the proposed CT-SSMS method
is described in detail.

A. Structure of Multispectral DETR

Multispectral DETR is a multispectral object detection model
that leverages the deformable attention mechanism [15]. The

architecture of multispectral DETR is illustrated in Fig. 3. The
input to multispectral DETR is the RGB-IR aerial image pair
{XR,XI} that shows different information about the same
scene. The two images go through their separate backbones.
Multiscale image features are extracted as follows:

xl
R = fR (XR) ,x

l
I = fI (XI) , l = 1, 2, . . ., L (1)

where fR and fI denote the RGB and IR backbones, and L is
the number of feature levels. Then, multiscale feature maps from
the two spectrums are concatenated along the level dimension,
forming a 2L-level feature pyramid. Note that the multispectral
features are not fused within the two backbones, which have
separate weights.

Subsequently, the RGB and IR feature maps, each comprising
L levels, are fused in the encoder. In the decoder, object queries
calculate attention with the fused feature maps. The output are
decoder embeddings with the same dimension as the object
queries, which will be processed with the prediction heads into
class labels and bounding boxes. The specific structures of the
encoder and decoder will be discussed in the next section. The
GT value for each prediction is determined via the one-to-one
matching mechanism of DETR. The optimal matching result is
obtained by minimizing the matching cost

σ̂ = argmin
σ

Nq∑
i=1

Lmatch(yi, ŷσ(i)) (2)

where yi is the ith GT bounding box and ŷσ(i) is the predicted
bounding box of the σ(i)th decoder embedding. In short, by
minimizing the matching cost, each predicted bounding box is
assigned to a GT box in a way that the overall distance between
the predicted and GT boxes is the smallest.

Multispectral fused object detection assumes that every target
appears in the same position of both spectrums. Therefore,
given an aligned RGB-IR aerial image pair, multispectral DETR
generates a single set of predictions that encompasses all objects,
rather than producing separate predictions for each spectrum.

B. Multispectral Deformable Attention

To enable RGB-IR fusion, we extend the deformable attention
block to a MDA block. The structure of the MDA block in the
encoder (MDA-Enc) is shown in Fig. 4(a). In MDA-Enc, queries
are feature tokens of the two spectrums. A query ql0 is a token
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Fig. 4. Structures of the MDA blocks in the encoder and decoder of multispectral DETR. Queries are RGB or IR feature tokens in the encoder, which performs
multispectral feature fusion. Queries are object queries in the decoder, where attention is calculated with multispectral fused features. (a) Multi-spectral deformable
attention in encoder. (b) Multi-spectral deformable attention in decoder.

from the l0th layer in the feature pyramid as

ql0 = xl0
(
pq

)
, l0 = 1, 2, . . ., 2L (3)

where pq is the 2-D position of the query, which serves as the
reference point andxl0(pq)means picking the query token from
position pq of the feature map xl0 . As shown in Fig. 4(a),
when l0 ≤ L, ql0 is an RGB feature token. Conversely, when
L < l0 ≤ 2L, ql0 corresponds to an IR feature token. On each
of the 2L levels, K sampling offsets Δpl

k are calculated by
passing query token ql0 through a linear layer, yielding relative
positions with respect to pq . As a result, the sampled points
on the first half of layers are RGB features, while those on
the second half are IR features. Likewise, the attention weight
matrix A ∈ R2L×K is obtained by passing ql0 through a linear
layer followed by a softmax layer. Finally, all sampling points,
processed with another linear layer, are multiplied by their
corresponding attention weights and aggregated into an output
token zl0 at the same position as ql0

zl0 = L
{

L∑
l=1

K∑
k=1

[Al
k × L(xl

R(pq +Δpl
k))

+Al+L
k × L(xl

I(pq +Δpl+L
k ))]

}
(4)

where L() denotes a linear layer. When l0 ≤ L, zl0 is an RGB-
queried multispectral fused token; otherwise, when L < l0 ≤
2L, zl0 is an IR-queried token.

As can be seen, the deformable attention block can inherently
manage multispectral fusion. Compared to multispectral fusion
based on global attention of the original transformer, which
calculates attention between unrelated regions, the local atten-
tion of the deformable transformer performs fusion at the same
positions across RGB-IR spectrums.

The structure of MDA in the decoder (MDA-Dec) is shown
in Fig. 4(b). In MDA-Dec, queries are the N object queries.

A reference point p̂q is first calculated with the object query
passing through a linear layer and a sigmoid function. Simi-
larly, sampling offsets and attention weights are computed with
the object queries. The weighted sum of the sampled feature
tokens is the same as (4). By viewing RGB-queried and IR-
queried features together, the object queries are updated into
decoder embeddings, which contain features of both RGB and
IR spectrums and information of target category and position.
Therefore, subsequent prediction heads can process the decoder
embeddings into bounding boxes.

While being reasonable, MDA offers a more flexible and
generalizable alternative to traditional multispectral feature fu-
sion methods, such as feature map addition or concatenation
followed by a 1 × 1 convolution, as used in [6] and [7]. Notably,
when L and K are set to 1, all Δpl

k are 0, the feature token
at the query position is summed with the corresponding feature
token from the other spectrum, with their weights learned by
the model. Under these restrictions, the MDA block resembles
convolutional fusion.

The computational complexity of MDA fusion can also be
compared with convolutional fusion. It is worth noting that
convolutional fusion lacks the capabilities of multiscale fusion
and spatial attention, requiring additional modules to achieve
comparable effects. To simplify the calculation, we limit our dis-
cussion to fusion at a single scale. Assume the sizes of the RGB
feature map and the NIR feature map are both H ×W × C,
where H , W , and C represent the height, width, and number of
channels, respectively. Then:

(1) The computational complexity of convolutional fusion is
2HWC2 when the output feature map has C channels. When
the output feature map has 2C channels, the computational
complexity is increased to 4HWC2.

(2) According to [15], the computational complexity of the
deformable attention module is given by

Ω(Nq,K,H,W,C) = 2NqC
2 +min(HWC2, NqKC2) (5)
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where Nq is the number of query vectors, and K is the number
of sampling offsets. In the MDA block, due to the introduction
of the encoder sparsification method [27], Nq is ρ×H ×W ,
where ρ is the update ratio (set to 30% according to the default
choice of [27]), and K is 2 × 4. Since the RGB feature points
and IR feature points alternately serve as query, the computation
in (5) is repeated twice, resulting in the final computational
complexity of

Ω(0.3HW, 8, H,W,C) = 3.2HWC2. (6)

The module’s output has 2C channels.
From the analysis above, it is evident that the MDA block has

a comparable computational complexity (3.2HWC2) to con-
volutional fusion (4HWC2) due to encoder sparsification [27].
The module also includes spatial attention, making it an efficient
multispectral fusion block.

C. Oriented Object Detection With DETR

DETR and its variants are typically designed for horizontal
object detection, rendering them inadequate for handling targets
of arbitrary orientations in remote sensing imagery. To address
this limitation, we propose a simple yet effective solution to
enable oriented object detection with DETR. We adopt a basic
angle-based representation, where the output of the bounding
box regression branch is modified to predict an angle θ alongside
the (x, y, w, h) parameters. Matching cost and loss functions
associated with the bounding boxes are also adapted, where
Rotated IoU Loss [34] serves as the primary guide for oriented
bounding box matching and regression

LRIoU = 1− AP (B1 ∩B2)

AR(B1) +AR(B2)−AP (B1 ∩B2)
(7)

where B1 and B2 are the two oriented bounding boxes, AR()
is the function to calculate the area of a rectangle, and AP () is
the function to calculate the area of a polygon. Notably, the loss
function in (7) does not directly involve the angles of B1 and
B2, thereby avoiding the periodicity problem.

L1 loss is another loss function used in original DETR, which
directly compares estimated parameters against GT parameters.
Contrary to the original design, we do not impose constraints
on w, h, or θ to circumvent the angle periodicity problem [28].
Center point coordinates (x, y) remain in L1 loss to facilitate
convergence of DETR. With these modifications, DETR gains
the capability to effectively detect oriented objects. The ef-
fectiveness of these design choices will be evaluated through
experiments.

D. Cross Teaching Between Single-Spectral DETR and
Multispectral DETR

In this section, we first specify how to determine consistent
and inconsistent objects. The DroneVehicle dataset provides
separate annotations for RGB and TIR images. Following [5],
TIR annotations are considered GT as TIR images are not
affected by varying lighting conditions. RGB annotations reflect
whether the annotator can identify the target in the RGB image,
i.e., whether the target is visible. Therefore, objects are deemed

consistent if they possess annotations in both RGB and TIR
images.

Since vehicles do not overlap in remote sensing imagery,
consistency can be determined by calculating the IoU between
the ith TIR bounding box and each RGB bounding box. The
ith TIR object is labeled as a consistent object if there exists an
RGB bounding box that satisfies

IoU(BTIR
i , BRGB) ≥ T (8)

where IoU() is the IoU calculator and T is the IoU threshold.
Conversely, objects annotated exclusively in the TIR images are
considered inconsistent. This means that if no RGB bounding
box satisfies (8), the ith TIR bounding object is labeled as
inconsistent. Taking the misalignment [41], [42] problem into
consideration, threshold T is set to 0.3. It turns out that, while
the majority of objects captured during daytime hours or well-lit
nighttime conditions exhibit consistency, a notable proportion of
targets captured in dark nighttime scenes are inconsistent. For
example, Fig. 5(a) shows a pair of RGB-TIR images with a
total of ten targets identified from the TIR image, 7 of which
are consistent. The remaining three targets are not visible in the
RGB image, thus labeled as inconsistent.

The overview of CT-SSMS is illustrated in Fig. 5(b) with
consistency determined. To solve the interference problem, the
knowledge of single-spectral DETR, which is unaffected by
RGB features, is utilized to teach multispectral DETR. On
inconsistent targets, multispectral DETR is trained to mimic the
output of single-spectral DETR with distillation losses. Also,
it has been demonstrated that a single-spectral model can learn
from a multispectral model [43], despite having no access to
the second spectrum. Therefore, the knowledge of multispectral
DETR can also be utilized to enhance the overall performance
of single-spectral DETR. Based on the finding that multispectral
DETR performs worse on inconsistent targets, distillation loss
from multispectral DETR to single-spectral DETR is only cal-
culated on consistent targets. When every iteration of training
contains knowledge distillation of the two directions, the cross
teaching cycle is formed, which is a virtuous circle that combines
the strengths of both multispectral and single-spectral DETRs.

For the proposed fine-grained knowledge distillation based
on visibility consistency, the one-to-one matching mechanism
of DETR [14] is considered. In each iteration, the bipartite
matching results of single-spectral DETR and multispectral
DETR are first obtained with (2). Then, knowledge is distilled
between object queries that match the same GT object. For the ith
GT object, if it is consistent, the matched single-spectral object
query QSS

i learns from the multispectral object query QMS
i .

Conversely, if the object is inconsistent, QMS
i learns from QSS

i .
The learning directions in CT-SSMS are illustrated in Fig. 5(b).
For the seven consistent targets, the learning direction is from
multispectral DETR to single-spectral DETR (MS2SS). For the
three inconsistent targets, reverse distillation is performed from
single-spectral DETR to multispectral DETR (SS2MS).

The knowledge distillation loss is computed based on detected
bounding boxes and includes both classification and regression
parts. KLD loss is applied to the classification part based on the
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Fig. 5. Demonstration of the proposed CT-SSMS method. Note that knowledge distillation is done on all pairs of object queries that match a GT target. For
clarity of demonstration, only one arrow is shown for each distillation direction. (a) Consistent and inconsistent objects. (b) Cross teaching directions.

determined learning directions

LKLD =

Nq∑
i=1

(
IConsistent(i)× ŷcls∗

σ̂MS(i) log
ŷcls∗
σ̂MS(i)

ŷcls
σ̂SS(i)

+IInconsistent(i)× ŷcls∗
σ̂SS(i) log

ŷcls∗
σ̂SS(i)

ŷcls
σ̂MS(i)

)
(9)

where I is the indicator function, ŷσ̂MS(i) and ŷσ̂SS(i) are the
predictions of multispectral DETR and single-spectral DETR
that match the same GT box, superscript cls denotes the clas-
sification part of the prediction, and * indicates that gradient is
not propagated through this vector. For the regression part, mean
square error (MSE) loss is used

LMSE =

Nq∑
i=1

(
IConsistent(i)×

∥∥∥ŷreg∗
σ̂MS(i)

− ŷreg
σ̂SS(i)

∥∥∥2

+IInconsistent(i)×
∥∥∥ŷreg∗

σ̂SS(i)
− ŷreg

σ̂MS(i)

∥∥∥2
)

(10)

where superscript reg denotes the regression part of the
prediction.

IV. EXPERIMENTAL SETTINGS

A. Datasets

Currently, two public datasets are available for the task of
multispectral fused remote sensing object detection: the VEDAI
dataset [4] with RGB-NIR spectrums and the DroneVehicle
dataset [5] with RGB-TIR spectrums.

The DroneVehicle dataset [5] was collected using a DJI M200
drone with a Zenmuse XT 2 imaging device, with the TIR
camera operating in the 7.5–13.5μm wavelength range. The
dataset contains 28 439 pairs of 640 × 512 resolution RGB-TIR
images, annotated with five categories of vehicles: car, truck,
bus, freight-car, and van. The DroneVehicle dataset is divided
into 17 990 pairs of training images, 1469 pairs of validation

images, and 8980 pairs of test images. Most experiments in this
section adhere to this division. For experiments on knowledge
distillation, we also use subsets of the test set with 0 and ≥ 3
inconsistent targets, respectively.

The VEDAI dataset [4] was built on the high-resolution satel-
lite images from the Utah Automated Geographic Reference
Center in June 2012. The dataset contains 1251 pairs of fully
aligned RGB and NIR images at a resolution of 1024 × 1024.
The images in the VEDAI dataset are divided into ten folds,
each containing 1089 training images and 121 test images. The
dataset includes annotations for a total of nine categories: car,
truck, small truck, van, camper, tractor, plane, boat, and other.
The ablation experiments in this article are conducted on the first
fold of the VEDAI dataset, while the comparative experiments
with existing research use tenfold cross-validation.

B. Implementation Details

The multispectral DETR model is implemented with the
Pytorch framework [44]. The AdamW [45] optimizer is used
with an initial learning rate set to 10−4. Swin transformer [46]
is selected as RGB and IR backbones.

On the DroneVehicle dataset, the model is trained for 60
epochs, with the learning rate reduced by a factor of 0.1 after the
40th epoch. On the VEDAI dataset, due to its smaller number of
samples, the training schedule is extended to 120 epochs, with
the learning rate decayed after the 100th epoch.

In CT-SSMS, both single-spectral DETR and multispectral
DETR serve as teacher models and are initially trained separately
for 50 epochs using default hyperparameter settings. Then, CT-
SSMS is carried out for ten epochs with a learning rate of 1e − 5.
Original detection losses are included during CT-SSMS.

The comparisons on the DroneVehicle and VEDAI datasets
use mAP under IoU threshold 0.5 as the evaluation metric.

V. DISCUSSION

In this section, we first discuss the design choices of multi-
spectral DETR through ablation studies, focusing on the MDA
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TABLE I
COMPARISON OF DIFFERENT FUSION METHODS

block and the proposed oriented object detection scheme. Then,
several sets of experiments on knowledge distillation are con-
ducted to provide a detailed discussion on the effectiveness of
CT-SSMS. Further, we compare our method with state-of-the-art
remote sensing object detection methods on both RGB-NIR and
RGB-TIR datasets. Finally, by analyzing limitations and chal-
lenges of the proposed methods, we suggest several directions
for future research.

A. Ablation Studies

In Table I, different fusion methods are compared with single-
spectral models on the two datasets. Computational budget mea-
sured in giga floating point operations (GFLOPs) and network
parameters are also compared. GFLOPs is measured assuming
input resolution 640 × 512 of the DroneVehicle dataset. The
RGB-only and IR-only models are sparse DETRs trained and
tested exclusively on RGB and IR images, respectively. The
input fusion model, treating the IR image as a fourth channel
concatenated to the RGB channels, can be implemented with
Sparse DETR by modifying the first layer of the backbone.
Convolutional Fusion concatenates different stages of feature
maps along the channel dimension and fuses them with a 1 × 1
convolution before feeding them to the deformable attention
blocks.

As shown in Table I, the IR-only model outperforms the
RGB-only model by a large margin on DroneVehicle due
to the invisibility of RGB targets in nighttime scenes. By con-
trast, the RGB-only model has a higher mAP on VEDAI, which
contains daytime scenes only. Therefore, subsequent experi-
ments use the TIR spectrum for DroneVehicle and the RGB
spectrum for VEDAI when evaluating single-spectral models.

As for multispectral fusion, on both datasets, incorporat-
ing multispectral information improves the accuracy of remote
sensing detection. Like existing works [6], [7], it verifies the
effectiveness of fusing the complementary features of RGB and
IR images. Among the three compared fusion methods, Input
Fusion shows slightly better results than the single-spectral
models. The convolutional fusion model demonstrates some
improvement over the input fusion model, which is consistent
with most studies [6], [7]. Among the fusion methods, MDA
achieves the highest results, with an mAP of 76.9 on DroneVe-
hicle and 77.3 on VEDAI. In terms of computational budget and
network parameters, while the proposed multispectral DETR
with MDA as the fusion method has higher performance than
the convolutional fusion model, it is also more lightweight.

Next, in Table II, we compare different choices of L1 Loss and
rotated deformable attention (RDA) proposed in [38]. Rotated
IoU Loss is consistently used in all experiments. It turns out that

TABLE II
ABLATION STUDY ON ORIENTED OBJECT DETECTION

Fig. 6. Predicted oriented bounding boxes of multispectral DETR. (a) Includ-
ing all (x, y,w, h, θ) parameters in L1 Loss. (b) Including only (x, y) in L1
Loss.

simply adding an angle parameter θ in model prediction and L1
Loss falls into the angle periodicity problem. As visualized in
Fig. 6(a), when a target has an angle with the image boundary,
the predicted oriented bounding box is accurate. However, when
a target is nearly horizontal, the predicted bounding box remains
rotated. The reason can be that, in the training phase, the model is
often penalized for predicting nearly horizontal boxes, as bound-
ary cases lead to a large L1 Loss. On the other hand, Rotated
IoU requires that the predicted boxes overlap with the GT boxes.
Consequently, the model finds a compromise by predicting a
rotated box for every target, which is a local minimum where
neither L1 Loss nor rotated IoU Loss is excessively large.

As parameters (x, y) are not influenced by the periodic-
ity problem, while parameters (w, h, θ) have boundary cases,
experiments were conducted by removing (w, h, θ) from L1
Loss and by removing L1 loss altogether. It can be seen from
Fig. 6(b) that multispectral DETR with the modified L1 Loss
can accurately predict oriented boxes, indicating alleviation of
the periodicity problem. Table II shows that, eliminating the
periodicity problem significantly improves the performance of
multispectral DETR. In addition, keeping (x, y) in L1 Loss
provides a slight advantage on the datasets.

Under this scheme, the sampling points of MDA are visualized
in Fig. 7(d). On a shallow, high-resolution feature map layer,
the sampling points are searching for the edges of targets, with
points on the edge having larger attention weights. On a deep,
low-resolution feature map layer, the sampling points form three
crosses, which is the result of the eight attention heads sampling
in eight different directions. This regular pattern of sampling
points indicate that the DETR model is well-trained.

The problem is that the sampling points that match a target do
not automatically align with the direction of the target. The RDA
mechanism [38] was proposed to rotate the sampling points to
a roughly predicted angle. As shown in Fig. 7(a), the sampling
points of ARS DETR align with the targets. When adopted in
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Fig. 7. Sampling points of deformable attention on shallow and deep feature map layers. (a) ARS DETR [38] with RDA. (b) RDA from scratch. (c) RDA finetune.
(d) Ours.

TABLE III
RESULTS OF UNIDIRECTIONAL KNOWLEDGE DISTILLATION AND CT-SSMS

multispectral DETR, as shown in Fig. 7(b), the RDA mecha-
nism also rotates the sampling points to align with the targets.
However, the RDA mechanism disrupts the regular pattern and
leads to a 0.9-point decrease in the performance of multispectral
DETR, as shown in Table II.

To simultaneously achieve the regular pattern and aligned
sampling points, we test a finetune strategy that rotates the
sampling points of a well-trained multispectral DETR. Mean-
while, the learning rate of the decoder, i.e., the linear layers that
calculate sampling offsets, is decreased to 1e−6 to maintain the
regular pattern of sampling points. As shown in Fig. 7(c) and
Table II, although the finetuning strategy maintains the regular
sampling pattern while rotating the sampling points, it does not
improve model performance. Therefore, it can be concluded that
the RDA module does not work on multispectral DETR with
angle regression.

B. Results and Analysis of CT-SSMS

In this section, the proposed CT-SSMS method is evaluated
on the RGB-TIR DroneVehicle dataset. Note that the interfer-
ence problem is unique to RGB-TIR nighttime scenes. Thus,
CT-SSMS is not tested on VEDAI, which does not have incon-
sistent targets.

Table III presents the results of unidirectional knowledge
distillation and CT-SSMS. The performance is measured on the
complete test set of DroneVehicle as well as the two representa-
tive subsets with 0 and≥ 3 inconsistent targets, which is aligned
with Fig. 2. On the complete test set, single-spectral DETR and
multispectral DETR without distillation achieve mAP scores
of 74.5 and 76.9, respectively. It is worth noting that, for fair
comparison, the training schedule of the two baseline models
have the same number of epochs as those with knowledge
distillation as reported in Section IV-B. On the ≥ 3 inconsistent
subset, though the model size of multispectral DETR is twice
that of single-spectral DETR, its mAP is 0.2 lower.

Before proceeding to CT-SSMS, it is necessary to first analyze
unidirectional knowledge distillation to show the importance of
selecting consistent or inconsistent targets for distillation of the
two directions. Table III compares two different unidirectional
knowledge distillation schemes: one with all targets and one
with selected consistent or inconsistent targets. When all targets
are used for MS2SS knowledge distillation with KLD and MSE
Losses, the performance improvement of single-spectral DETR
is minimal. When consistent targets are selected for MS2SS
distillation, however, the improvement becomes more pro-
nounced, especially on the ≥ 3 inconsistent subset, where
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single-spectral DETR gains 1.4 mAP. Experimental results in-
dicate that the knowledge of multispectral DETR is generally
beneficial for single-spectral DETR. However, the output of mul-
tispectral DETR on inconsistent targets exhibits low precision,
which has an adverse effect when used in distillation. Keeping
10% inconsistent targets from MS2SS distillation already brings
noticeable improvements.

A similar trend is observed in SS2MS distillation. That is,
using all targets for SS2MS distillation leads to minimal im-
provements for multispectral DETR (0.1 on the whole test and
0.0 on the ≥ 3 inconsistent subset), whereas selecting inconsis-
tent targets for SS2MS distillation yields gains of 0.3 and 0.5
mAP, respectively. It may seem counterintuitive that, despite its
lower performance, single-spectral DETR can still contribute
to improving multispectral DETR when all targets are used
for distillation. We hypothesize that the knowledge distillation
loss serves as a regularization term for multispectral DETR. On
the other hand, single-spectral DETR has an advantage over
multispectral DETR in scenarios with numerous inconsistent
targets. Thus, leveraging its output on inconsistent targets for
SS2MS distillation has a positive impact on multispectral DETR.

In addition to our consistency-based CT-SSMS, we introduce
a variant of CT-SSMS based on image capturing time, referred
to as CT-SSMS (Time). We categorize images into day, well-lit
night, and dark night categories, following [5]. As the name
suggests, CT-SSMS (Time) utilizes all targets in day and well-lit
night images for MS2SS distillation and reserves dark night
targets for SS2MS distillation. As can be seen in Table III,
both time-based and consistency-based CT-SSMS yield larger
improvements over unidirectional distillation. Thus, the core
competence of CT-SSMS lies in its bidirectional knowledge
distillation, where the two models mutually reinforce each other,
creating a positive feedback loop.

When comparing time-based and consistency-based CT-
SSMS, it becomes apparent that the latter achieves greater im-
provements. The key of CT-SSMS is to use the better predictions
of single-spectral DETR on certain targets to teach multispectral
DETR, and conversely use the better predictions of multispectral
DETR on other targets to teach single-spectral DETR. Accurate
separation of the two sets of targets can lead to better effect
of CT-SSMS. Therefore, this experimental result validates that
consistency, rather than image capturing time, better separates
targets on which single-spectral DETR performs better. How-
ever, in case separate annotations for the two spectrums are not
available, CT-SSMS based on image capturing time serves as a
viable alternative.

Finally, with consistency-based CT-SSMS, the mAP scores of
single-spectral DETR and multispectral DETR are elevated to
76.6 and 77.7, respectively. Through CT-SSMS, the performance
of single-spectral DETR approaches the multispectral baseline.
The mAP of multispectral DETR on the ≥ 3 inconsistent subset
(73.6) surpasses the baseline single-spectral DETR (73.0) by 0.6,
indicating that the interference problem has been substantially
mitigated and that the robustness of multispectral DETR is
enhanced.

C. Comparison With Existing Methods

In this section, we first compare with existing methods for
oriented object detection based on DETR in both single-spectral

TABLE IV
COMPARISON WITH OTHER ORIENTED OBJECT DETECTION METHODS FOR

DETRS

TABLE V
COMPARISON ON THE VEDAI DATASET

and multispectral settings. The results are summarized in
Table IV. ARS DETR [38] and AO2 DETR [37] can be expanded
to multispectral models with improved performance using the
MDA block in Fig. 4, which verifies that the proposed MDA
block can generalize to other methods. As shown in Table IV,
our angle regression-based approach outperforms AO2 DETR,
which is hindered by the angle periodicity issue, and performs
on par with ARS DETR, which is based on angle regression,
across the two datasets. It is worth noting that the DroneVe-
hicle dataset has a much larger number of testing images than
VDEAI, which better reveals the precision and generalizability
of the model. Therefore, it is demonstrated that our proposed
oriented object detection scheme for DETR-like models is
effective.

Next, we compare the performance of multispectral DETR
with other multispectral models on the VEDAI dataset, as pre-
sented in Table V. Since many existing works [10], [49], [50],
[51], [51], [52] perform horizontal object detection on VEDAI,
we also report horizontal object detection results in Table V for a
comprehensive comparison. For horizontal object detection, the
performance of multispectral DETR without angle prediction
is measured. In both oriented and horizontal object detection
settings, multispectral DETR achieves state-of-the-art results.

Finally, we compare the performance of CT-SSMS-enhanced
multispectral DETR with recent state-of-the-art methods for
RGB-TIR remote sensing object detection, as shown in Table VI.
MKD [43] represents a unidirectional knowledge distillation
method from a multispectral GGHL [53] to a single-spectral
GGHL. As evident from the results, CT-SSMS not only has a
higher mAP than MKD, but also brings larger relative improve-
ment to the single-spectral model. Among RGB-TIR models,
CT-SSMS-enhanced multispectral DETR also attains the highest
mAP score. Therefore, our proposed CT-SSMS method sets
a new state-of-the-art benchmark for both TIR and RGB-TIR
object detection in remote sensing imagery.
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Fig. 8. Detection results of single-spectral DETR and multispectral DETR on daytime and nighttime scenes. Both methods are enhanced with CT-SSMS.

TABLE VI
COMPARISON ON THE DRONEVEHICLE DATASET

Fig. 8 shows the detection results of single-spectral DETR and
multispectral DETR, both enhanced with CT-SSMS, in daytime
and nighttime scenes. The bounding boxes are color-coded to
indicate different detection outcomes: blue boxes for correct
detections, purple boxes for misclassifications, and red boxes
for false positives. Overall, the majority of targets are correctly
detected by both single-spectral DETR and multispectral DETR.
In daytime scenes, RGB images offer rich color and texture

information about targets, which cannot be obtained from TIR
images. As a result, while single-spectral DETR has several
misclassifications, multispectral can correctly classify the tar-
gets, distinguishing among buses, trucks, and freight-cars, which
demonstrates the advantage of multispectral fused object de-
tection. In well-lit nighttime scenes, RGB information remains
useful in preventing misclassifications. In dark nighttime scenes,
the detection results of multispectral DETR are similar to those
of single-spectral DETR. Note that the red box is an unlabeled
target at the image corner, which should not be considered a
false positive.

D. Limitations

Despite the promising results, several limitations in our ap-
proach warrant further investigation. While our feature fu-
sion mechanism with the MDA block effectively leverages
multispectral information to enhance detection performance,
it introduces additional computational overhead by approx-
imately doubling the network complexity. Furthermore, the
classification accuracy of our model, which relies on di-
rect classification of decoder embeddings, leaves room for
improvement.
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To address these limitations, future research could explore two
primary directions. First, the development of tailored knowledge
distillation methods could potentially compress the multispec-
tral knowledge into a more efficient architecture while main-
taining detection accuracy. Second, alternative classification
schemes, such as incorporating prototype-based classifiers [57],
could be investigated to replace the current direct classifica-
tion of decoder embeddings, potentially leading to more robust
and accurate object categorization. These improvements would
contribute to both the computational efficiency and detection
performance of object detection systems on remote sensing
platforms.

VI. CONCLUSION

In this article, we present a multispectral fused remote sensing
object detection method based on transformer. The multispectral
DETR model fuses RGB-IR feature maps with the multispectral
deformable attention module and is capable of oriented object
detection. Further, we examine the interference problem caused
by inconsistent targets and introduce a cross teaching approach
between singlespectral DETR and multispectral DETR. The CT-
SSMS method utilizes the respective strengths of single-spectral
and multispectral DETR to enhance each other, especially im-
proving the performance of multispectral DETR on inconsistent
targets. Experimental results show the effectiveness of multi-
spectral deformable attention and the oriented object detection
scheme. While experiments on unidirectional knowledge distil-
lation reveal the importance of selecting consistent and inconsis-
tent targets for distillation of the two directions, the bidirectional
CT-SSMS method outperforms unidirectional distillation. With
CT-SSMS, multispectral DETR achieves state-of-the-art results
on RGB-IR fused remote sensing object detection tasks.
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