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Abstract—Continuous and large-scale surface deformation mon-
itoring is critical for the comprehension of natural hazards and
environmental changes. This can be facilitated by time-series in-
terferometric synthetic aperture radar (TS-InSAR), which pro-
vides unprecedented spatial and temporal resolution. However, the
original TS-InSAR measurements, being a superposition of trend,
seasonal, and noise signals, often suffer from outlier and annual
seasonal variations due to the influences of atmospheric delay,
especially in coastal and mountainous areas, resulting in skewed
monitoring if neglected. To address these issues, an integration
method of variational mode decomposition and gated recurrent
unit (VMD-GRU) is proposed in this study to enhance the ro-
bustness of continuous large-scale surface deformation monitor-
ing. The VMD decomposes low-frequency trend, specific-frequency
seasonal, and high-frequency noise components from the original
TS-InSAR data via frequency-domain variational optimization
first. Then, by eliminating the seasonal component decomposed by
VMD from the original time series, the time series is reconstructed,
effectively removing the influence of annual seasonal variations.
Subsequently, GRU is utilized to further eradicate noise from the
reconstructed time series, mitigating the influence of outliers and
noise, thereby yielding a trend component that intuitively reflects
surface deformation. Experiments on physical-based synthetic and
real-world datasets demonstrate that the proposed VMD-GRU
outperforms the existing methods. By introducing the frequency
priors, the proposed method significantly enhances the robustness
and accuracy of continuous large-scale surface deformation moni-
toring, providing a more reliable understanding of natural hazards
and environmental changes.

Index Terms—Frequency priors, gated recurrent units (GRUs),
surface deformation monitoring, time-series InSAR, variational
mode decomposition (VMD).

I. INTRODUCTION

INTERFEROMETRIC synthetic aperture radar (InSAR)
is a powerful geodetic technique enabling the remote
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monitoring of Earth’s surface under all conditions, with high
resolution and wide spatial coverage. It has been proven fruitful
in various geophysical applications such as earthquake, volcanic
activity, and tectonic movement monitoring [1], [2], [3], [4],
[5]. Time-series InSAR (TS-InSAR), an advanced iteration of
the InSAR technique, harnesses time-series of SAR images or
interferograms to precisely measure geodetic and geophysical
parameters, including ground displacements [6], [7], [8]. The
mitigation of atmospheric delays, a pivotal challenge in InSAR,
is facilitated by TS-InSAR through temporal filtering and least-
squares methods, thus enhancing the accuracy of deformation
estimates [9], [10], [11]. The monitoring of surface deformation
based on TS-InSAR is therefore of significant importance, pro-
viding high-precision, wide coverage, and consistent data for
tracking earth movements.

When employing TS-InSAR for surface deformation mon-
itoring, atmospheric delays in interferograms, resulting from
changes in the refractivity of the atmosphere during two SAR
acquisitions, are a significant source of error in TS-InSAR
measurements [12], [13]. These delays comprise three main
components: a short-scale component (few kilometers) likely
introduced by turbulent or coherent dynamics in the troposphere
[14]. A longer-scale component (tens of kilometers) potentially
stems from lateral variations in pressure, temperature, or hu-
midity. Finally, there is a topography-correlated component,
which is due to changes in the pressure, temperature, or relative
humidity as a function of height [15]. These atmospheric delays
in TS-InSAR not only include systematic biases but also contain
stochastic components, making these delays among the most
challenging influencing factors to model accurately [16]. As a
result, significant research efforts continue to explore the spa-
tiotemporal characteristics of atmospheric delays to enhance the
accuracy and reliability of TS-InSAR for surface deformation
monitoring. The tropospheric delay, which can be divided into
stratified and turbulent mixing delay, is due to the refraction of
radar signals as they pass through the troposphere [14]. While
the stratified delay is dependent on pressure and temperature and
correlates with topography, the turbulent mixing delay primarily
depends on water vapor variations, which are particularly severe
in coastal and mountainous regions [17].

In the context of TS-InSAR, where the data consists of numer-
ous images without extensive temporal gaps, the tropospheric
delay can be assumed to be uncorrelated over time, as each
image mainly captures the turbulent mixing delays [18], [19].
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For urban areas with low relief, the turbulent mixing delay often
dominates the atmospheric delay, leading to the assumption
that atmospheric noise in the InSAR deformation time series
is stochastic. Common approaches to estimate and mitigate
this atmospheric noise in the deformation time series involve
low-pass temporal filtering techniques such as Gaussian and
triangular filtering [20], [21]. However, the effectiveness of these
methods greatly depends on parameter settings, like the choice
of weighting strategies and the length of the filtering window.
An inadequate filtering process could either leave residual noise
in the deformation or obscure minor changes in the data.

As deep learning has made remarkable progress in fields
such as computer vision [22], [23], speech recognition [24],
and natural language processing [25], applying deep learning to
TS-InSAR analysis shows considerable promise in alleviating
atmospheric delay and improving monitoring accuracy. Recur-
rent neural network (RNN) and its variants, such as long short-
term memory (LSTM) [26], and gated recurrent unit (GRU)
[27], are specialized for discrete sequence analysis tasks such
as time series denoising, forecasting, or change detection in the
realm of remote sensing [28], [29]. Due to the nonstationary
nature of InSAR data, previous studies usually divide its time
series into three signals: seasonal, nonseasonal, and noise [30],
[31]. This approach effectively improves the possibility of using
deep learning to model different components in the InSAR time
series.

Despite these advancements, two significant challenges re-
main when applying deep learning-based methods to continuous
and large-scale surface deformation monitoring using InSAR
data: 1) Annual seasonal variation. Existing deep learning meth-
ods assume seasonal components as static periodic functions
irrespective of interannual variances in seasonal intensities, risk-
ing progressively cumulative monitoring errors [32]. 2) Abnor-
mal outliers. Abnormal outliers in InSAR data, often stemming
from atmospheric anomalies or instrumental errors, can signifi-
cantly distort analysis, posing challenges to both traditional and
deep learning models by potentially leading to overfitting and
misleading interpretations of surface deformation trends [33].

For continued large-scale monitoring, ground deformation
is related to geological conditions and is almost monotonous.
Meanwhile, ground deformation exhibits seasonal variations
mainly influenced by weather and hydrological conditions [34],
[35]. Noise exists in every SAR image acquisition and is a
component that changes at high frequency. This implies differ-
ent frequencies associated with the three components of trend,
season, and noise, which can be leveraged as prior information to
improve the robustness of TS-InSAR analysis. To this end, this
study proposes a robust surface deformation monitoring method
integrating variational mode decomposition (VMD) and GRU.
With VMD, frequency priors are introduced and the original
TS-InSAR data is decomposed and reconstructed, which can
eliminate the influence of annual seasonal variations. With GRU,
the noise component is removed from the TS-InSAR and the
influence of the outliers is mitigated, so that the trend compo-
nent that can intuitively reflect the surface deformation state is
extracted. The integration of VMD with GRU, by introducing
frequency priors of TS-InSAR, can not only effectively enhance

the model’s robustness to annual seasonal variations, but can also
mitigate the influence of outliers, which is critically important
for improving the robustness and accuracy of continuous and
large-scale surface deformation monitoring.

The rest of this article is organized as follows. Section II
presents the method for obtaining TS-InSAR, and presents and
introduces the architecture of the proposed VMD-GRU model.
Section III conducts experiments on synthetic and real-world
data to verify the robustness and effectiveness of the proposed
VMD-GRU method. Section IV discusses the robustness of the
proposed model to annual seasonal variation, the effect of time
series reconstruction on the model performance, the generaliza-
tion of the proposed method to different revisit periods, and the
limitations of this study. Finally, Section V draws conclusions
and directions for future work.

II. METHODOLOGY

This study proposes a novel perspective on TS-InSAR data
through the lens of the frequency domain. The crucial aspect
of pre-existing knowledge pertaining to the frequency of each
data component has often been disregarded when identifying
their causes. As previously stated, surface deformation trends are
predominantly influenced by geological and hydrological condi-
tions, resulting in largely monotonic variations over continuous
monitoring. This implies that the trend component corresponds
to a low-frequency signal. The seasonal component, cycling
annually, aligns with a specific frequency signal. While the
noise component, inherent in every acquisition, corresponds to a
high-frequency signal in each sample. Therefore, when viewed
from the frequency domain, each TS-InSAR component should
manifest distinct boundaries on the frequency domain. To this
end, this study implements VMD to segregate each component
within the frequency domain, decomposing trend, seasonality,
and noise components into separate frequency bands.

This section outlines the acquisition process of time series
data on surface deformation using robust multitemporal InSAR.
Subsequently, the proposed VMD-GRU model is detailed, out-
lining its potential to improve the robustness of TS-InSAR-based
deformation monitoring. The overall workflow of the proposed
method is depicted in Fig. 1.

A. Robust Multitemporal InSAR for Acquiring Time Series
Data

This study employed a robust two-tier multitemporal InSAR
method [36] for the detection of Persistent scatterer (PS) and
distributed scatterer (DS) points to acquire time series data for
surface deformation monitoring, as demonstrated in Fig. 1. The
coregistration of SAR images was achieved through a purely
geometric algorithm, facilitated by SRTM DEM data [37]. This
was subsequently followed by differential interferometry with a
multilook of 8× 2. The design of a two-tier network was intro-
duced for the identification of PS and DS, without the necessity
for preliminary atmospheric removal across the whole area. PS
candidates were handpicked with an amplitude dispersion value
of 0.3, and subsequently linked within a densified Delaunay
network. Following the phase differentiation of two connected
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Fig. 1. Workflow of the proposed robust surface deformation monitoring method.

PS candidates, the signal model could be expressed as

y = AΥ (1)

where y = [y1, . . . , yNs
]T (Ns is the number of SAR im-

ages) represents the differential interferograms, Υ stands for
a Ns × 1 vector that includes the complex reflectivity of all
objects equidistant to the SAR sensor, andA denotes the sensing
matrix containing a(Δh,Δv) within its columns (Δh and Δv)
represent the sampled relative height and deformation velocity
between two PS candidates, respectively.

The combined utilization of beamforming and a robust M-
estimator facilitated the inversion of (1) and the estimation of
Υ. Should the maximum element in abs(Υ) exceed the preset
threshold of P St1 = 0.72, the arc was preserved, and the cor-
responding height and deformation velocity could be extracted.
The temporal coherence PSt1 of the first-tier network was set
to 0.72 based on practical experience. For C-band Sentinel-1
interferometric measurements, temporal coherence thresholds
of |γ̂| = 0.72, 0.8, 0.9, 0.95, and 0.975 correspond to estimated
σ̂disp values of 3.6, 3, 2, 1.44, and 1 mm, respectively [58]. The
1 mm threshold represents an indicative limit on the accuracy of
C-band deformation measurements. Setting the temporal coher-
ence threshold to 0.72 ensures that the precision of deformation
measurements is better than 3.6 mm, meeting the precision re-
quirements for measuring mining-induced subsidence. Relative
parameters were then integrated via network adjustment, which
included the implementation of a ridge estimator to counteract
potential ill-conditioning in the robust parameter integration.

The most stable PSs were extracted from the densified Delau-
nay network, serving as a reference for the detection of further
PS and DS points. The adoption of an omnidirectional point
extension strategy allowed for the progressive construction of

local networks and multidirectional extension. For DS detection,
SqueeSAR optimizes the differential phase through the appli-
cation of the Broyden–Fletcher–Goldfarb–Shanno algorithm,
which necessitates the inversion of covariance matrix C [38].
However, the inversion process may yield unreliable results if
C is not positive definite, potentially introducing further errors.
To rectify this issue, the optimal phase was calculated using
coherence-weighted phase-linking (CWPL). Temporal coher-
ence thresholds for identifying additional PSs and DSs were
established at P St2 = 0.7 and D St2 = 0.65, respectively.

The line of sight (LOS) deformation velocity and time-series
deformation of all PS and DS points were ultimately ascertained.
For vertical surface deformation monitoring, the surface LOS
deformation can be divided by cos(θ) (where θ is the incident
angle) and converted into vertical deformation. In steep terrains,
LOS deformation can be converted to the downward direction,
using the slope gradient under the assumption that slope move-
ments correspond to the downward direction.

B. TS-InSAR Decomposition Based on VMD

VMD is an unsupervised signal decomposition method that
excels in analyzing complex nonstationarity signals into a set
of nearly orthogonal intrinsic modes. Through alternating mini-
mization of the sum of the estimated spectral bandwidths, VMD
effectively decomposes a signal by seeking the analytic signals
of various modes with minimal bandwidths [39]. In contrast to
traditional methods such as empirical mode decomposition [40]
and wavelet transform [41], VMD offers superior nondistortion,
analytical solutions, and fewer parameters. Coupled with its
capacity to deliver compact mode information and to analyze
the inherent structures of complex datasets, VMD has found
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extensive use in image processing, biomedical signal analysis,
and a variety of other fields [42], [43].

VMD operates based on the premise that a signal is a su-
perposition of subsignals or intrinsic mode functions (IMFs),
each dominated by distinct frequencies. To qualify as an IMF,
a function must meet two criteria: 1) The number of local
extremum points and zero-crossing points across the entire
function’s time range must be either equal or differ by no more
than one. 2) At any time point, the mean value of the envelope
of the local maximum (upper envelope) and the envelope of the
local minimum (lower envelope) must be zero. This assumption
aligns with the decomposition of TS-InSAR into three distinct
frequency components.

IMFs are defined as amplitude-modulated-frequency-
modulated signals [44], expressible as

sk (t) = ak (t) cos (φk (t)) (2)

where the phase φk(t) is nondecreasing, and the signal envelope
ak(t) is non-negative. Furthermore, sk(t) is assumed to be a real
signal, hence its analytical signal is

s (t) = sk (t) + jH [sk (t)] (3)

where H is the Hilbert transform [45], and its system transfer
function is ĥ (w) = −jsgn(w).

Under the premise of VMD, all components are deemed
narrow-band signals concentrated around their individual center
frequencies. Thus, VMD establishes a constrained optimization
problem based on the narrowband condition of the component,
facilitating the estimation of the signal component’s center
frequency and the corresponding component’s reconstruction.
This optimization problem can be represented mathematically
as

min{uk},{ωk}

{∑
k

∥∥∂l [(δ (t) + jπl) ∗uk (l)] e
−jωkl

∥∥2
2

}

s.t.
∑
k

uk (l) = f (4)

where f denotes the input signal, uk represents the kth compo-
nent decomposed from signal f ,ωk denotes the centre frequency
of component uk, δ(t) is the Dirac delta function, ∗ denotes
convolution operation, ∂

∂t [·] calculates the differential of [·] with
respect to time t, | · |2 computes the 2-norm of [·].

The optimization problem seeks to minimize the sum of
Hilbert transform smoothness of all components | ∂∂t [(δ(t)
+ jπt)∗uk(t)]e

−jωkt|22under the constraint that the sum of com-
ponents is equal to the original signal f(

∑
k uk(t) = f). To

solve this problem, the above-equality-constrained optimisation
problem can be transformed into an unconstrained optimization
problem through an augmented Lagrangian [46], [47], expressed
as

L ({uk} , {ωk} , λ)

:= α
∑
k

∥∥∥∥∂t [(δ (t) + j

πt

)
∗uk (t)

]
e−jωkt

∥∥∥∥2
2

+

∥∥∥∥∥f (t)−
∑
k

uk (t)

∥∥∥∥∥
2

2

+

〈
λ (t) , f (t)−

∑
k

uk (t)

〉
. (5)

The solution to this constrained problem can be obtained via
the alternate direction method of multipliers [48], [49], [50],
which proposes updating one of the variables while keeping
the other two variables fixed, as represented in the following
equations:

un+1
k = argmin

uk

L
({

un+1
i<k

}
, {ωn

k } , λn
)
;

ωn+1
k = argmin

ωk

L
({un

k} ,
{
ωn+1
i<k

}
, λn
)
;

λn+1 = λn + ρ

(
f (t)−

∑
k

un+1
k (t)

)
. (6)

VMD, bolstered by a solid mathematical framework, essen-
tially operates as an adaptive optimal Wiener wave filter group.
The specification of its target IMF number significantly impacts
its decomposition accuracy [43], [51]. For TS-InSAR data, the
frequency difference of the three components of trend, season,
and noise is introduced into the model as prior knowledge,
setting the corresponding number of target IMFs to three. This
ensures that the decomposition of TS-InSAR data is underpinned
by a clear physical basis. Further details on VMD’s implemen-
tation can be found in Appendix A.

C. Integrated VMD-GRU Model

The integration of VMD and GRU methods, as depicted in
Fig. 1, forms a potent method for the monitoring of large-scale
surface deformation, boasting increased robustness and preci-
sion. This section delves into the rationale behind this integration
and provides insights into the effective merger of the two meth-
ods. The chief purpose behind amalgamating VMD with GRU
is the augmentation of the robust qualities of both time series
data processing methods, as well as offsetting their respective
limitations. Among them, VMD facilitates the decomposition
of TS-InSAR data into multiple frequency signals, enabling the
identification of various deformative components in the data.
However, VMD’s effectiveness may be compromised by high
noise and mode mixing in the decomposition results due to its
unsupervised nature. Such limitations can result in decreased de-
composition accuracy and misinterpretation of similar frequency
components.

This section delves into the rationale behind this fusion and
provides insights into the effective merger of the two methodolo-
gies. The chief purpose behind amalgamating VMD with GRU
is the augmentation of the robust qualities of both time series
data processing methods, as well as offsetting their respective
limitations. The usage of VMD leads to the fragmentation of
TS-InSAR data into a range of frequency components, thus
paving the way for the identification of unique deformation
signals in the data. Despite its strengths, VMD, an unsupervised
mode decomposition method, is vulnerable to noise interference
and mode mixing (such as low-frequency outliers) in the results
of the decomposition. In high-noise environments, the accuracy
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Fig. 2. Architecture of the proposed VMD-GRU model.

of the decomposition outcomes diminishes, leading to the po-
tential fusion of similar but distinct frequency components into
one mode, or the fragmentation of a single mode into various
components. This limitation could cause the failure of VMD
in accurately capturing complicated, nonlinear deformation pat-
terns, particularly in prolonged monitoring scenarios. However,
VMD offers the significant benefit of removing annual seasonal
variances in regions experiencing significant atmospheric delay,
as it uses the prior knowledge of specific seasonal signal fre-
quency. On the other hand, GRU, a specialized type of RNN,
has demonstrated remarkable success in predicting time-series
data with nonlinear patterns [27]. Although GRU performance is
limited in nonstationarity time series, it can model the temporal
dependency of a single component over a long period, making it
ideal for continuous and large-scale monitoring of surface defor-
mation. Thus, integrating VMD and GRU can result in a hybrid
model with superior performance. The proposed VMD-GRU
model architecture is illustrated in Fig. 2.

In this study, inspired by [52], a layer of GRU with decay
(GRU-D) is utilized to address the issue of potential missing
values in TS-InSAR data. Subsequently, two layers of GRU fur-
ther extract the features of the reconstructed time series, mapping
the extracted features into separated trend components through
multi-layer perception (MLP). The implementation details of
GRU and GRU-D are presented in Appendix B. To better utilize
the contextual content of time series data for noise removal, all
networks in the model are set to bidirectional connectivity [53].

As depicted in Fig. 2, the VMD-GRU model operates on two
primary levels: reconstruction and decomposition. Initially, TS-
InSAR data is decomposed into several IMFs via VMD, each
IMF representing a distinct frequency band of the component.
This can be mathematically represented as

F (t) =
K∑

k=1

IMFk (t) +Rt (7)

where F (t) represents the original TS-InSAR data, IMFk(t)
denotes the kth IMF and K signifies the total number of IMFs.
Rt stands for the residual noise value postdecomposition. This
value is typically minimal and is determined by the parameter
τ in VMD, which is used to ascertain the convergence of
VMD after numerous iterations. Based on the aforementioned
decomposition outcomes, the IMF corresponding to the seasonal
component IMFs is subtracted from the original time series,
thus leading to the reconstruction of the original signal. Why
this method of reconstructing first and then decomposing will
be elaborated in the discussion section later. This computation
can be represented as

Rects = F (t)− IMFs. (8)

In the decomposition stage, the reconstructed signal is fed
into the stacked GRU networks for the extraction of trend
components. Owing to the ability of GRU-D and GRU to handle
complex temporal dependencies, the trend component can be
extracted from the reconstructed signal. The effective combina-
tion of these methods exploits the feature extraction capability
of VMD and the powerful temporal modeling capabilities of
GRU, culminating in superior prediction performance. Further-
more, this model benefits from the application of separate GRU
networks on each IMF, which aids in capturing distinct temporal
patterns existing in different frequency bands. Consequently, the
VMD-GRU model allows for more robust and precise monitor-
ing of continuous and large-scale surface deformation.

III. EXPERIMENTS AND RESULTS

In this section, the efficacy of the proposed VMD-GRU is elu-
cidated through the analysis of synthetic data and real-world data
from the Lantau Island and the Guangdong-Hong Kong-Macao
Greater Bay Area (GBA). The performance of the VMD-GRU
model is juxtaposed against commonly used Gaussian filters and
the original GRU model.

A. Experimental Data

The data used in the performance evaluation encompasses
both synthetic and real-world data. Synthetic data, designed in
line with [32] (termed as GRU model in the following), are
produced based on physical mechanism simulations tailored to
the requirements of the deep learning model. Synthetic data
consists of the amalgamation of three components: trend, season,
and noise. Thus, synthetic data X(t) can be formulated as
follows:

X (t) = (Trend (t) + Season (t) + Noise (t)) ·M (t) (9)

where Trend(t) represents the trend component, which may
display linear, decelerating, or accelerating behavior as outlined
by [31]. The seasonal component is represented as Season(t).
Noise(t) signifies the noise component. A binary mask matrix,
M(t), indicates the possible missing values within the time
series, a frequent occurrence in TS-InSAR data. GRU-D model
aids in managing these missing values, thus reducing their
impact on the accuracy of deformation monitoring results.

Synthetic datasets are fabricated as the reverse process of
InSAR data acquisition according to physical mechanisms.
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Fig. 3. Location of the real-world study area. The red box is the SAR coverage
area, and the blue triangle indicates the positions of the GNSS stations.

Therefore, individual components and their ground truth values
are annotated, thereby providing a quantitative metric for the per-
formance evaluation of the proposed VMD-GRU against other
existing methods. In addition to the synthetic data, real-world
InSAR data forms an integral part of the experimental datasets.
To comprehensively assess the robustness of the proposed VMD-
GRU, Lantau Island (coastal areas with strong terrain) near Hong
Kong airport and the GBA were selected as the study area,
as shown in Fig. 3. These regions, located in the subtropical
region of southern China, experience frequent cloudy and rainy
weather, leading to the amplification of atmospheric noises in
InSAR signals. Lantau Island was chosen to demonstrate the
effectiveness of the proposed method in coastal areas with strong
terrain variations. Proximate to the Hong Kong Airport, whose
Ts-InSAR data were used to validate the GRU model, Lantau
Island exhibits significant topographical variations compared to
the relatively flat Hong Kong airport, thereby contributing to
stratified delays in TS-InSAR that cannot be ignored. Surface
deformation monitoring data from a GNSS station on Lantau
Island was obtained to validate the proposed method’s effec-
tiveness in monitoring surface deformation trends. In addition,
to further verify the proposed method’s robustness on a larger
spatial scale, data from the GBA, covering several cities and a
GNSS station in Zhuhai city, was used.

Sentinel-1 SAR images for these areas, spanning from January
1, 2019, to December 27, 2021, were processed using the robust
multi-temporal InSAR method to procure the time-series data of
the measurement points within these regions. Ideally, satellites
Sentinel-1A and Sentinel-1B collect SAR images at 12-day in-
tervals, and their combined use allows for observations at 6-day
intervals. In this study, a total of 88 SAR images were obtained
at a minimum interval of 12 days due to the low sampling rate
over Hong Kong. Accordingly, over the period from 1 January
2019 to 27 December 2021 with a 12-day interval, the number
of SAR images should be 92. However, with 4 (92-88) missing
observations, the missing rate approximates 4.3%.

B. Model Configuration and Training

The experiment configuration and execution utilize a Win-
dows operating system, Python programming language, and the
TensorFlow deep learning framework [54]. All experimentations

were conducted on a GeForce GTX 3090 GPU, with 24 GB
RAM and an Intel i7-11700KF CPU with 64 GB RAM. The
training process for the VMD-GRU model is performed on a
dataset composed of 60 000 synthetic time series in accordance
with the synthetic dataset specifications of the construction of
the original GRU model. The dataset includes 20 000 samples
for each of decelerating, accelerating, and linear deformation
trend types, inclusive of stable deformations. In the VMD-GRU
model, both the GRU-D and GRU layers consist of 64 hidden
units. A dropout rate of 0.2 is imposed on the GRU layers and the
subsequent MLP to improve model generalization and prevent
overfitting. The model parameters are optimized using the Adam
method [55], [56], with the aim of minimizing the mean squared
error (MSE) loss. Early stopping is employed to identify the best
weights for the model, with the validation dataset comprising
9000 synthetic time series. All input time series are globally
normalized within a range of -1 to 1 for consistency, while output
supervisions retain their original values. The initial learning rate
is set at 3× 10−4 and the batch size for training and testing is
fixed at 64.

C. Evaluation of Synthetic Data

Since synthetic data is embedded with ground truth, it is an
ideal tool for the quantitative evaluation of the proposed VMD-
GRU method. Utilizing the same configuration as the GRU
model, this study generates 20 000 diverse synthetic time series
to test the proposed VMD-GRU model and compare it with other
existing methods, including temporal Gaussian filtering with
various standard deviation σ parameters and the GRU model.
Temporal Gaussian filtering is a frequent choice for InSAR time
series denoising, although it necessitates careful selection of
the appropriate standard deviation σ parameter. The σ value is
tested at 1, 2, 3, and 4 to empirically ascertain the optimal param-
eter choice for temporal Gaussian filtering. For missing values,
Gaussian filtering discards missing time steps, utilizing only
available data within the filtering window for output. The GRU
model directly employs the original TS-InSAR data as input. Its
key divergence from this study lies in its lack of VMD usage
to introduce frequency priors for data reconstruction. Notably,
separating deformation trends from raw TS-InSAR data is a
sequence-to-sequence multioutput regression task, where output
values are not independent. Several machine learning algorithms
inherently support this type of multiple-output regression, with
decision trees being a popular example. Despite this, decision
trees for multiple output regression may encounter limitations, as
the relationship between inputs and outputs can become blocky
or highly structured based on the training data. Furthermore, the
performance is sensitive to tree depth. If the tree’s maximum
depth is set too high, it may overlearn the fine details of the
training data and consequently overfit the noise. More impor-
tantly, traditional machine learning methods often struggle with
optimization due to the interdependence of hundreds of output
values, and thus were not selected as baselines for comparative
experiments.

The quantitative results from the experiments on synthetic
datasets are presented in Table I. The proposed VMD-GRU
model exhibits comparable performance to the original GRU
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TABLE I
EVALUATION RESULTS ON THE SYNTHETIC TESTING DATASET

Metric
Gauss

GRU VMD-
GRU

=1 =2 =3 =4

MSE 8.842 5.053 5.442 8.518 3.528 3.287

MAE 2.352 1.781 1.850 2.311 1.485 1.522

Fig. 4. Example of the proposed VMD-GRU on synthetic data. (a) Is the
original synthetic data, where the red is the synthetic time series data, and
the ground truth trend and seasonal signals are represented in blue and green,
respectively. (b)–(d) Three components separated by VMD, corresponding to
trend, season and noise respectively. The green line in (c) represents the ground
truth of the seasonal component, consistent with the green in (a). The black in
(e) represents the reconstructed time series after removing the seasonal compo-
nent separated by VMD, and the blue is the ground truth trend component, which
is consistent with that in (a). The trend component separated after VMD-GRU
is indicated in orange.

model and significantly outpace temporal Gauss filtering meth-
ods, which are heavily dependent on appropriate parameter
choice. In addition, when σ is 2, the Gaussian filter achieves
the best performance, so when visualizing the trend estimation
results, only σ equal to 2 is displayed.

In addition, a visual representation of the synthetic time
series data processing using VMD-GRU is provided in Fig. 4,
demonstrating the original signal reconstruction process and
deformation trend extraction. Fig. 4 shows promising aptitude in
extracting seasonal components. The deformation trend derived
from the reconstructed signal aligns closely with the ground
truth.

In addition, the proposed VMD-GRU is also evaluated under
different trend types. As depicted in Fig. 5, the proposed method

shows good performance under different trends. It merits men-
tion that the synthetic data is generated following a physical
mechanism assumption, in which there is no large change in
the amplitude of the seasonal signal, and the annual seasonal
variation is not fully considered. As such, the synthetic data
can be viewed as a unique subset of real-world data where
differences in annual-seasonal components are absent. The per-
formance similarity of the VMD-GRU to the GRU model in such
circumstances demonstrates the feasibility of the VMD-GRU
model for continuous surface deformation monitoring based
on TS-InSAR. The presence and impact of variations between
annual seasons will be further explored through experiments
detailed in the subsequent sections.

D. Evaluation of Real-World Data

Unlike synthetic data, where the annotated ground truth can
be leveraged as a reference, most of the real-world data are not
manually annotated, but the spatial distribution of deformation
can be qualitatively analyzed or validated using nearby GNSS
stations or existing research. This section contains two areas, the
validation on Lantau Island and the performance on GBA.

1) Validation on the Lantau Island: The Lantau Island, prox-
imate to Hong Kong airport where the original GRU model
was validated, has been selected as one of the study areas.
This area is characterized by strong terrain in contrast to the
airport’s low terrain. The study area is depicted in Fig. 3, which
also contains a GNSS station (represented by a blue triangle in
Fig. 3). The surface deformation data gathered by this station,
collected by the Nevada Geodetic Laboratory of the University
of Nevada, Reno, are available for public access [57] and serve as
an empirical benchmark to validate the performance of different
methods.

In an endeavor to validate the proposed VMD-GRU method’s
robustness in strong terrain areas, Sentinel-1 SAR data of Lantau
Island are processed using the Gauss filtering, the original GRU
model, and the proposed VMD-GRU. The spatial distribution of
cumulative deformation over different periods is showcased in
Fig. 6.

As revealed in Fig. 6(a) and (c), the original GRU model fails
to yield effective results in regions with strong terrain. Unre-
moved seasonal variations accumulate in the trend component,
manifesting an overall upward surface deformation trend. Con-
trarily, the trend component extracted by the proposed VMD-
GRU demonstrates commendable resilience to terrain changes.
Temporal Gaussian filtering removes some noise interference
but may also cause some trend components to be removed
unnecessarily. In addition, it can be clearly seen in Fig. 6(c) that
temporal Gaussian filtering cannot deal with the impact of strong
terrain. As the altitude increases from west to east, the surface
deformation appears an undue overall uplift. Fig. 6(b) shows
an obvious outlier in TS-InSAR. The original signal suddenly
dropped below 0. Although both temporal Gaussian filtering
and the original GRU model have corrected this outlier to a
certain extent, it can be seen that the deformation value increases
with the elevation from west to east, obviously there have been
regional changes that should not have occurred. The original
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Fig. 5. Evaluation of the VMD-GRU model performance under different trend types.

Fig. 6. Spatial distribution of cumulative deformation in different periods.

GRU model is affected by outliers, and the overall values are
not robust. This highlights the challenges faced by the original
GRU model in effectively managing outliers with contextual
content of time series. Conversely, the proposed VMD-GRU
method displays strong robustness to outliers. It preprocesses
outliers in the time domain while reconstructing the signal,
thereby ensuring the accuracy of continuous monitoring.

To further evaluate the effectiveness of the proposed method
in the time domain, the data of a measurement point located
near the GNSS station is extracted as an input. Fig. 7 illustrates
the results of different methods on the time series data obtained
from Lantau Island, including the original GRU model, VMD-
GRU, and GNSS station’s measurements, respectively. Among
them, the deformation measured by the GNSS station is strictly
quality-controlled by Nevada Geodetic Laboratory solutions and
thus can be considered a true deformation of the Earth’s surface
[57]. But this measure also incorporates seasonal variation, so
the average deformation rate can be considered to closely reflect
the deformation trend.

Fig. 7. Results of different methods on the time series data obtained from
Lantau Island. The red line is the original InSAR time series, the wine-red line
is the surface deformation trend estimated by the original GRU model, the black
line is the proposed VMD-GRU estimated surface deformation trend, and the
green line is the GNSS measurement. The annual average deformation velocity
obtained by GNSS, the original GRU model, and the VMD-GRU are 1.081,
3.925, and 1.009 mm/yr, respectively.

Observing the results presented in Fig. 7, annual seasonal
variations are discernible in the original time series data across
three years from 2019 to 2021. The original GRU model fails to
separate the trend component from the seasonal component fully
when extracting the trend component. Consequently, residual
seasonal signals accumulate in the trend component, leading
to an overall V-shaped trend component. Also as shown in
Fig. 7, the annual average deformation velocity estimated by
GNSS is 1.081 mm/yr, original GRU model is 3.925 mm/yr, and
VMD-GRU is 1.009 mm/yr. VMD-GRU has achieved a level far
exceeding the original GRU model and is closer to the estimated
value of GNSS.

Further, the VMD’s decomposition results for the time series
data mentioned above are depicted in Fig. 8. Fig. 8(a) illustrates
the original time series, the seasonal components decomposed
by VMD, and the reconstructed time series from top to bottom.
Fig. 8(b) exhibits the spectrum diagram during the decompo-
sition process of each component, signifying the convergence
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Fig. 8. Decomposition results of VMD for the above time series data. (a) Is the original time series, the seasonal components decomposed by VMD, and the
reconstructed time series from top to bottom. (b) Is the spectrum diagram during the decomposition process of each component.

Fig. 9. Test results of different methods on GBA data. Each row corresponds
to the cumulative deformation spatial distribution of the surface in different
periods, and each column corresponds to the original time series data, results
of the Gaussian filtering, results of the original GRU model, and results of the
VMD-GRU.

process of the VMD decomposition signal from the perspective
of the frequency domain. When it finally converges, the fre-
quency of the corresponding seasonal signal is approximately
0.038, and its corresponding period is about 26, which is highly
consistent with the acquired TS-InSAR data period. Given
Sentinel-1’s revisit period of 12 days, the theoretical year encom-
passes about 30 timestamps. This corresponds to a frequency of
about 0.033, with an error of about 6.1% [(0.033-0.035)/0.033]
relative to the seasonal frequency of VMD decomposition. This
may be due to the existence of missing values, and small differ-
ences between the frequency of the seasonal component of the
VMD decomposition and the true frequency.

2) Performance on GBA Data: After demonstrating the ef-
fectiveness of the proposed VMD-GRU method in areas with
strong terrain, further validation is performed in the context
of the GBA, to confirm the model’s robustness in large-scale
surface deformation monitoring. The study area in GBA is
marked by a red box in Fig. 3, and the performance of the various
methods on GBA data is presented in Fig. 9.

The substantial spatial inhomogeneity is presented in the
original data (topmost row of Fig. 9) of the large-scale GBA. The

Fig. 10. Test results of different methods in the subsidence area of GBA.

temporal Gaussian filtering significantly suppresses the noise
signal, yet it also runs the risk of unnecessarily removing por-
tions of the deformation signal. In addition, temporal Gaussian
filtering can only eliminate noise that obeys random distribution
from the time series, and it is effective for the noise effect
caused by strong terrain, and there is still a large amount of
noise remaining in the mountainous area of the GBA.

The implementation of the original GRU model presents a
substantial improvement in spatial inhomogeneity, even though
large, interconnected deformation regions endure. Even certain
areas in Hong Kong previously exhibiting minor deformation
are misinterpreted as uplift by the original GRU model. In terms
of spatial distribution, the original GRU model’s impact resem-
bles the effect of temporal Gaussian filtering with a standard
deviation (σ) of 2, corroborating the findings of prior research
[32]. Following the VMD-GRU, the surface deformation trend
remains largely unaffected by topography. In addition, relevant
settlements, such as those in Zhuhai [Fig. 9(b), red area of the
origin], which align with prior studies [13], are well preserved
within the VMD-GRU results. This emphasizes the utility of
VMD-GRU in preserving important deformation information
while effectively managing spatial inhomogeneities and noise
effects. Fig. 10 presents the results of different methods in the
subsidence area of GBA. It can be seen from the results that
the estimation obtained by VMD-GRU are closer to the data
obtained by GNSS stations than the temporal Gaussian filtering
and the original GRU model.
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TABLE II
EVALUATION RESULTS ON THE SYNTHETIC TESTING DATASET WITH ANNUAL

SEASONALITY CHANGE

Metric Gauss GRU VMD-
GRU=1 =2 =3 =4

MSE 11.329 8.662 8.102 8.340 6.528 3.937

MAE 5.667 6.131 3.063 4.283 4.875 2.010

The empirical experiments conducted on synthetic data, Lan-
tau Island data, and GBA data demonstrate that the proposed
VMD-GRU exhibits formidable robustness against time-series
signals superimposed by multiple components, noise, and strong
terrain. This robustness is immensely valuable for the continuous
and large-scale monitoring of surface deformation.

IV. DISCUSSION

A. Robustness to Annual Seasonal Variation

Fig. 7 reveals the widespread presence of annual differences
in TS-InSAR through a comparison of TS-InSAR time series
data and GNSS station measurement data. To assess the im-
pact of annual seasonal differences, the synthetic data method
used to train the original GRU model is modified, generating
an additional 20 000 samples of synthetic data with varying
seasonal amplitudes to evaluate the effectiveness of the existing
methods. The synthetic data are assumed to consist of three
periods, with the amplitude of the seasonality in each period
set to differ. Trend and noise components continue to follow
previous settings for synthetic simulation data. Table II provides
a performance comparison of the proposed VMD-GRU and
existing comparative methods on synthetic data with annual
seasonal differences.

The results in Table II demonstrate that when an annual
difference in the amplitude of the seasonal signal is present, the
original GRU model, trained on a fixed amplitude, struggles to
handle this change effectively. The performance of the Gaussian
filter at different σ levels is significantly impacted by parameter
settings, and no specific performance changes correspond to
different σ levels. Although the performance of the proposed
VMD-GRU model declines relative to the fixed amplitude in
Table I, it still significantly outperforms existing methods. An
example of the outcomes on the synthetic dataset with annual
seasonal variation is visualized in Fig. 11.

The results visualized in Fig. 11 highlight the superior ro-
bustness of the proposed VMD-GRU model to annual seasonal
variations. Although there are some differences between the
seasonal components separated by VMD and the real seasonal
components, the annual seasonal variation is fully reflected.
Therefore, after the input time series is reconstructed by VMD,
the annual seasonal variation is eliminated, and the seasonality
in the reconstructed time series can be approximately considered
as a constant that does not change with time, which can be
easily removed by the GRU in subsequent processing. This ro-
bustness renders it more suitable for continuous and large-scale

Fig. 11. Example of the results on the synthetic dataset with annual seasonal
variation. The original GRU model separates the fixed-amplitude seasonal and
trend components shown as blue and purple lines, respectively. Seasonal and
trend components separated based on VMD-GRU are shown in green and orange,
respectively.

surface deformation monitoring compared to the original GRU
model. Interestingly, the original GRU model appears to more
frequently align with the smallest amplitude situation in each
year, utilizing this as the amplitude for every year. This pattern
could potentially explain why the original GRU model assumes
a V-shape when an annual-seasonal difference is presented in
Fig. 9.

B. Reasons for Time Series Reconstruction

Inspection of Fig. 4(b) and (d) reveals a certain degree
of mode mixing between the trend component and the noise
component following VMD decomposition. This indicates that
direct utilization of VMD decomposition results as the trend
component may lead to substantial error. This situation may
arise from signal aliasing when VMD is engaged in component
decomposition. In the context of InSAR data acquisition, the
heterogeneity of atmospheric influence may contribute to out-
liers, which may originate from sporadic factors influenced by
specific meteorological events such as typhoons. These outliers’
frequency responses may display low-frequency characteristics
similar to the trend signal, thereby leading to a mix of trend
components and outliers. While the seasonal component, unlike
the trend and noise components, is a signal that manifests around
a particular center frequency, as Fig. 4(c) illustrates, i.e., the
seasonal component is relatively stable.

Consequently, this study utilizes a data reconstruction
method, subtracting the seasonal component decomposed by
VMD from the original time series. From a frequency domain
perspective, its features are more distinct compared to the trend
and noise components. By handling in this way, the influences of
outliers and annual seasonal variations originally mixed together
are separated. And it is more accurate to separately isolate the
seasonal components and use them to reconstruct the input time
series data rather than directly employing individual compo-
nents. This approach leverages the frequency prior introduced
by VMD to separate the components and taps into the GRU’s
exceptional nonlinear feature extraction capabilities. The robust-
ness of the proposed VMD-GRU method is corroborated by the
previously presented experimental results on real-world data.

C. Generalization to Different Revisit Periods

The real-world data used thus far to validate the proposed
VMD-GRU model were collected in the C-band by Sentinel-1,
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Fig. 12. Performance of VMD-GRU and existing methods on ALOS data.

Fig. 13. Spectrum diagram of the ALOS time series data decomposed by
VMD.

with a 12-day revisit period. One significant contribution of this
study lies in introducing the frequency prior to each component
in TS-InSAR to realize timing decomposition from a frequency
domain perspective. This naturally raises the question of whether
the proposed method can also display strong robustness with
different TS-InSAR data that have different revisit periods in
various bands.

To address this issue, this study also used the L-band Ad-
vanced Land Observing Satellite (ALOS) to obtain the SAR
data of Lantau Island from 24 June 2007 to 2 January 2011.
The ALOS revisit period is 46 days, unlike the 12-day revisit
period of Sentinel-1, which results in a significant shift in the
central frequency corresponding to the seasonal components
in TS-InSAR. The performance of VMD-GRU and existing
methods on ALOS data is shown in Fig. 12.

The periodicity of the ALOS TS-InSAR seasonal compo-
nent, which has a revisit period of 46 days, is calculated to
be 365/46 = 7.9, with a corresponding central frequency of
approximately 0.126. The central frequency associated with the
seasonal component shown in Fig. 13 is approximately 0.093,
which is in close proximity. These outcomes demonstrate that
the proposed VMD-GRU approach is capable of effectively
isolating seasonal components from the frequency domain of
SAR data collected by satellites with varying revisit periods
and across different bands, despite significant changes in center

Fig. 14. Comparison between the proposed method and STL with different
parameters.

frequency and noise sources. This supplementary experiment on
ALOS data further validates the robustness and generalization
of the proposed VMD-GRU method. For TS-InSAR data with
different revisit periods in different bands, its frequency prior
can also be introduced into the VMD-GRU model to improve
the robustness and accuracy of continuous large-scale surface
deformation monitoring.

For different regions, the seasonal periodic time may be dif-
ferent. The seasonality in some regions can be a year, half a year
or both. From the ALOS data experiments, it can be seen that
different seasonality will correspond to different center frequen-
cies on the spectrogram. Therefore, the proposed VMD-GRU
has better robustness than the fixed periodicity setting method,
such as Seasonal-Trend decomposition using LOESS (STL).
The comparison between the proposed VMD-GRU method and
STL with different parameters is shown in Fig. 14. It can be
seen that the existing decoupling methods are easily restricted
by parameter selection, while the proposed VMD-GRU shows
good generalization.

D. Limitations

While the VMD-GRU model advances the original GRU
model by combining VMD and GRU to achieve continuous and
large-scale surface deformation monitoring, it only processes the
time series data of independent measurement points. It does not
incorporate the spatial correlation information of the measure-
ment points into the analysis, which could be significant for un-
derstanding local deformation mechanisms and exploring more
robust and accurate monitoring. Moreover, there exists a certain
degree of aliasing between the trend component and the noise
component when using VMD to decompose TS-InSAR into
various components. Despite the possibility of further separation
by GRU, some remnants may persist. These remnants could be
continuously amplified during long-term monitoring, potentially
restricting the accuracy of surface deformation trend estimation.
In addition, the current approach treats phase unwrapping errors
as part of the noise. While this method allows for the effective
handling of these errors within the VMD-GRU framework, there
is potential for future research to develop specialized techniques
for more precise identification and mitigation of phase unwrap-
ping errors, enhancing the overall accuracy and reliability of the
monitoring system.
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V. CONCLUSION AND FUTURE WORK

This study has made significant efforts to advance the
understanding of large-scale surface deformation monitoring
through the development and application of the VMD-GRU
model. Building on the foundation of the original GRU model,
this study proposes a robust surface deformation monitor-
ing method integrating VMD and GRU and explores the
introduction of physics-based prior knowledge to the exist-
ing deep learning model. This integration has demonstrated
superior robustness to outliers and annual seasonal varia-
tions, thereby improving continuous and large-scale monitor-
ing potential. Several key conclusions can be drawn from the
study.

1) The VMD-GRU model is more robust to outlier and annual
seasonal variations compared to the original GRU model,
demonstrating its applicability in continuous and large-
scale surface deformation monitoring.

2) The annual seasonal variation, as one of the core factors
affecting the accuracy of the existing GRU model, will lead
to the accumulation of incompletely separated seasonal
components into the trend component, thereby causing
errors. This shortcoming can be solved well by introducing
the frequency priors of each component in the proposed
VMD-GRU model.

3) Mode mixing, between the trend component and the noise
component, exists after VMD decomposition, suggest-
ing that direct use of VMD decomposition results may
cause substantial error. Instead, the VMD-GRU model
of reconstructing the input signal and then inputting
it into the GRU can effectively improve the robust-
ness of continuous and large-scale surface deformation
monitoring.

4) The VMD-GRU model proposed in this study has good
robustness and generalization and can be well extended
to SAR satellites with different revisit periods in different
bands when the revisit period is fixed, thus realizing con-
tinuous and wide-range ground deformation monitoring
across different satellites.

In the future, there are several potential directions worth
pursuing. First, the VMD-GRU model could be extended to
incorporate spatial correlation information of the measurement
points, which could significantly enhance the understanding of
local deformation mechanisms and aid in the development of
more robust and accurate monitoring methods. This extension
would involve analyzing the spatial relationships between PS
points and their neighboring points, integrating both temporal
and spatial data for more comprehensive deformation analy-
sis. In addition, further exploration is necessary to address the
existing aliasing between the trend component and the noise
component, which may impact the estimation of surface defor-
mation trends. This research could involve the development of
more sophisticated models or techniques to further separate the
components and reduce the amplification of remnants during
long-term monitoring. By leveraging both frequency-domain
decomposition and spatial correlations, the robustness and ac-
curacy of continuous and large-scale surface deformation mon-
itoring can be significantly improved.

APPENDIX A

The pseudocode of the implementation details of VMD is
shown in Algorithm 1.

Algorithm 1: Pseudocode for VMD Implementation With
Fixed K = 3.

Require: Signal s(t), Convergence parameter α, Tolerance
ε

Ensure: Modes u1(t), u2(t), u3(t)

1: Initialize u
(0)
1 (t), u(0)

2 (t), u(0)
3 (t), and ω

(0)
1 , ω(0)

2 , ω(0)
3

2: Set iteration n = 0
3: repeat:
4: Solve the following subproblems for u(n+1)

1 , u(n+1)
2 ,

u
(n+1)
3 respectively:

u
(n+1)
1 = arg min

u1

�{∫ ∣∣∣∂t ((s (t)− u
(n)
2 (t)− u

(n)
3 (t)

)
e−iω

(n)
1 t
)∣∣∣2dt}

u
(n+1)
2 = argmin

u2

�{∫ ∣∣∣∂t ((s (t)−u
(n+1)
1 (t)−u

(n)
3 (t)

)
e−iω

(n)
2 t
)∣∣∣2dt}

u
(n+1)
3 = argmin

u3

�{∫ ∣∣∣∂t ((s (t)−u(n+1)
1 (t)−u(n+1)

2 (t)
)
e−iω

(n)
3 t
)∣∣∣2dt} .

5: Compute the new center frequencies by taking the first
moment of the spectrum for each mode:

ω
(n+1)
1 =

∫
ω
∣∣∣û(n+1)

1 (ω)
∣∣∣2dω∫ ∣∣∣û(n+1)

1 (ω)
∣∣∣2dω

ω
(n+1)
2 =

∫
ω
∣∣∣û(n+1)

2 (ω)
∣∣∣2dω∫ ∣∣∣û(n+1)

2 (ω)
∣∣∣2dω

ω
(n+1)
3 =

∫
ω
∣∣∣û(n+1)

3 (ω)
∣∣∣2dω∫ ∣∣∣û(n+1)

3 (ω)
∣∣∣2dω

6: Set n = n + 1
7: Until convergence criteria is met,

max |ω(n)
k − ω

(n−1)
k | < for all k

APPENDIX B

GRU is a type of RNN that has proven effective in processing
sequential data. However, they face challenges when dealing
with missing or irregularly sampled data. To address these
issues, the GRU-D model was proposed, which incorporates
additional information about missing data and time intervals
between observations.
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B.1 Gated Recurrent Units

GRU is a simplified variant of LSTM units, another type of
RNN. The GRU model uses gating units to modulate the flow
of information, but unlike the LSTM, it does not have a separate
memory cell and uses fewer gates, making it computationally
more efficient.

The updated equations for a GRU are as follows:

rt = σ (Wrxt + Urht−1 + br)

zt = σ (Wzxt + Uzht−1 + bz)

h̃t = tanh (Wxt + U (rt � ht−1) + b)

ht = (1− zt) � ht−1 + zt � h̃t (10)

where xt is the input at time t, ht−1 is the hidden state at the
previous time step,σ is the sigmoid function,� denotes element-
wise multiplication, and W , U , and b are learnable parameters.

B.2 GRU With Decay

GRU-D extends the GRU model to handle missing values
and irregular time intervals in time-series data. It introduces
additional inputs: a masking vector to indicate missing values
and a time interval vector to capture the time elapsed since the
last observation.

The update equations for a GRU-D are similar to those of a
GRU, but with additional transformations to handle missing data
and irregular time intervals

rt = σ
(
Wrx̂t + Urĥt−1 + Vrmt + br

)
zt = σ

(
Wzx̂t + Uzĥt−1 + Vzmt + bz

)
h̃t = tanh

(
Wx̂t + U

(
rt � ĥt−1

)
+ V mt + b

)
ht = (1− zt) � ĥt−1 + zt � h̃i (11)

wheremt is the masking vector at time t, indicating the presence
of missing values, and V is the time interval vector at time t,
representing the time elapsed since the last observation.
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