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Abstract—Deep-learning-based multilabel remote sensing im-
age annotation (MLRSIA) is receiving increasing attention in re-
cent years. MLRSIA needs a large volume of labeled samples
for effective training of the deep models. However, the scarcity
of labeled samples is a common challenge in this field. Domain
adaptation (DA), aiming to transfer knowledge from label-rich
datasets (source domains) to label-scarce datasets (target domains),
has become an effective means to address this problem of limited
labeled samples. But most of the existing DA models are primarily
designed for single-label annotation tasks, leaving the application
of DA to multilabel annotation tasks as an open issue. In this
article, a DA method for MLRSIA, named contrastive pseudo-label
generation (CPLG), is proposed. CPLG mainly consists of two
parts: generating and selecting pseudo-labels for the samples in the
target domain, and enhancing the cross-domain feature consistency
through contrastive learning. Specifically, the soft predictions (or
posterior probabilities) and the corresponding pseudo-labels of the
target samples are first generated using neighborhood aggregation.
Then, a positive and negative pseudo-label selection strategy is
designed to refine these pseudo-label. Finally, a contrastive loss is
introduced to align the similar sample features between the source
and target domains to avoid the pseudo-labels of the target samples
being overly biased toward the source domain, further improving
the precision of these pseudo-labels. The MLRSIA experiments,
conducted across four different DA scenarios on three benchmark
datasets, demonstrate the advantages of the proposed CPLG com-
pared to other state-of-the-art methods.

Index Terms—Contrastive learning, domain adaptation (DA),
multilabel image annotation, neighborhood aggregation (NA),
remote sensing images.

I. INTRODUCTION

W ITH the rapid advances in earth observation technol-
ogy, large quantities of high-resolution and content-

rich remote sensing images have become available for land
cover monitoring, urban planning, disaster prediction, and in-
telligent transportation [1], [2], [3], [4]. To fully utilize the
ever-increasing remote sensing images, it is urgent to classify
and interpret these images and obtain the associated semantic
information from them. It is common for a single remote sens-
ing image to contain multiple land covers, so the single-label
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Fig. 1. Example images from two remote sensing datasets. Scene label: river.
Object label: bare soil, grass, water. (a) Image from AID dataset. (b) Image from
UCM dataset.

annotation [5], [6], [7], which assigns a label to the image, is
insufficient to fully understand it. Therefore, multilabel remote
sensing image annotation (MLRSIA) [8], [9], [10] has received
increasing attention and become an active research area. Fig. 1
specifically illustrates the difference between single-label and
multilabel annotations. Single-label annotation typically assigns
a relatively general single label to describe the entire image,
such as “river,” “bridge,” “grassland,” etc. However, multilabel
annotation describes the images with more specific object-level
labels, aiming to identify fine-grained information.

Despite significant progress in MLRSIA tasks in recent years,
these supervised methods often struggle with the issue of limited
labeled training samples. Labeling is a labor-intensive and time-
consuming task, and the single-label annotated remote sensing
images available could not be directly used for multilabel learn-
ing [12]. Therefore, a significant degradation in performance
can be observed in the deep neural network where more training
samples are needed to achieve a full-trained model with better
generalization capability. To address the issue, the idea of do-
main adaptation (DA) [13], [14], [15], [16], [17], [18], [19], [20],
[21], which aims to transfer knowledge from a label-rich dataset
(source domain) to a label-scarce dataset (target domain), has
recently attracted increasing attentions. However, there exists
a significant distribution discrepancy between the domains of
source and target, which is called the domain shift. As illus-
trated in Fig. 1, while the two datasets share similarities at the
object level, there are distinct stylistic differences between them.
Effectively learning the common features from image samples
that belong to the source domain and target domain is key to
successful domain knowledge transfer.
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Many DA models have been proposed so far, including ad-
versarial DA methods (such as DANN [15], MCD [16], JAN
[17], CDAN [19], etc.) and pseudo-label generation DA methods
(such as ATDOC [20], MixMatch [21], etc.). Adversarial DA
methods first align source and target features by confusing a
domain discriminator and then obtain prediction results through
a shared classifier which is not specifically designed for the
samples of the target domain. Therefore, these methods may fail
in the fine-grained multilabel classification tasks. Pseudo-label
generation DA methods, which are inspired by semisupervised
learning (SSL) [22], [23], primarily generate pseudo-labels for
unlabeled target samples to guide the model training for target
domain data. Compared to the adversarial DA methods, these
methods directly focus on classifier training to enhance DA
performance without addressing the issue of feature alignment.
Therefore, the methods inevitably lean toward source data during
the training process and result in low-quality pseudo-labels for
samples in the target domain. In addition, most existing DA
methods are primarily tailored for single-label classification
tasks. Single-label learning, where each instance is only assigned
with a single label, can be deemed as a simplified version of
multilabel learning. Consequently, multilabel learning poses
greater challenges, and the same is true for DA in multilabel
learning scenarios. In MLRSIA tasks, an image may belong to
multiple classes, and thus the boundaries between these classes
are less distinct. Compared to the single-label DA, the label space
in multilabel DA is significantly larger because each sample can
be associated with a subset of labels, leading to a more complex
label-level alignment or adaptation.

In this article, we propose an unsupervised DA method for
multilabel learning, which is named contrastive pseudo-label
generation (CPLG). In the proposed framework, the neighbor-
hood aggregation (NA) idea is first used to generate the soft
predictions (or posterior probabilities) for the target domain
samples. Specifically, for a target sample, its prediction is ob-
tained by averaging the posterior probabilities of its multiple
nearest neighbors. Then, a positive–negative pseudo-label confi-
dence selection strategy is designed to refine the target sample’s
pseudo-label based on its soft prediction. Next, we introduce
a contrastive loss [24], [25], [26] to align features of similar
samples between source and target domains, aiming to address
the issue that the generated pseudo-labels of target samples are
overly biased toward source domain and to further improve the
precision of these pseudo-labels.

The main contributions of this article can be summarized as
follows.

1) Presenting an unsupervised DA method for MLRSIA,
which involves NA-based pseudo-label generation for
target samples and contrastive-learning-based consistency
enhancement for feature alignment across domains.

2) Designing a strategy for multilabel positive-negative
pseudo-label confidence selection to obtain credible
pseudo-labels of target samples for network training.

3) Introducing contrastive learning to enhance feature consis-
tency between samples with similar labels across domains,
thereby aligning feature differences.

4) Conducting extensive experiments in four DA scenarios
to demonstrate the advantages of the proposed method
CPLG.

II. RELATED WORK

A. Multilabel Remote Sensing Image Annotation

Early multilabel image annotation is composed of two sep-
arate steps, namely feature extraction and classification. The
handcrafted features are extracted and used as the inputs of
traditional machine learning methods, such as support vector
machines [27], and ML-KNN [28]. These methods usually fail
due to the less representational capacities of the handcrafted
features and the lack of interaction between the two steps.

In recent years, deep-learning-based methods have been
widely applied to remote sensing image classification [29].
These methods present end-to-end frameworks with powerful
feature learning abilities and have shown promising perfor-
mances. In the deep learning models, the attention mechanism
[30] is introduced for better feature representation. For example,
Tong et al. [7] proposed a Channel-Attention DenseNet network
for scene classification, Li et al. [31] presented a CNN multi-
augmentation scheme based on the attention mechanism, and
Yu et al. [32] used hierarchical attention and bilinear pooling
for feature fusion in remote sensing image classification. In
addition, dependencies among different labels, namely label
correlations, are helpful for performance improvement for mul-
tilabel learning. The CNN-RNN framework proposed by Wang
et al. [33] allow the RNN model to learn joint image-label
embeddings from CNN features and use the memory mechanism
of RNN to predict labels in an orderly prediction path. Hua
et al. [34] fed the image features into a bidirectional LSTM
for classification, implicitly learning label co-occurrence infor-
mation. In ML-GCN [11], label correlations are modeled as a
graph and integrated into feature classification through a graph
convolutional network. Liu et al. [29] added a global channel
attention mechanism and label correlation fusion to the shallow
feature extraction network. However, these methods need suffi-
cient labeled samples for model training. As is known, manual
annotation is labor-intensive, and thus the number of training
samples is insufficient. The situation is particularly severe in
MLRSIA, leading to performance degradation of deep learning
models.

B. Unsupervised DA

Unsupervised DA (UDA), which aims to transfer the knowl-
edge learned from the labeled source domain to the unlabeled
target domain, presents a promising solution to the issue of lack
of training samples in MLRSIA.

In UDA, there exists the domain shift or distribution difference
between source and target data. To minimize domain shift,
various UDA methods have been proposed. Alignment-based
methods, such as maximum mean discrepancy [35] and HΔH-
distance [36], reduce domain shift by minimizing the differences
in statistical distribution measures. Inspired by the generative
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adversarial networks [37], adversarial-based methods introduce
domain discriminators and use the idea of adversarial learning
for domain confusion [16], [17], [18], [19]. In the field of remote
sensing, Du et al. [38] utilized middle-layer feature extraction to
address feature heterogeneity in remote sensing images. Lin et al.
[12] combined the idea of an adversarial domain discriminator
with GCN for multilabel classification. DAA-MLIC [39] lever-
ages the classifier’s predicted probability distribution as the basis
for domain adversarial alignment, effectively eliminating the
need for an additional discriminator. However, the discriminator
only aligns global domain statistical information and ignores
key semantic information on each category, making it relatively
coarse-grained for DA. Sample-matching-based methods can
effectively address this issue by matching samples with similar
categories through the analysis of their features. For example,
ATDOC [20] generates pseudo-labels for target samples by
comparing feature similarities. Clustering-based methods [40],
[41] apply unsupervised clustering for the unlabeled samples
to reduce domain shift. PCLUDA [42] leverages pseudo-labels
and consistency regularization to enhance retrieval performance
while minimizing class confusion without relying on adversarial
learning. However, these fine-grained DA methods are mostly
designed for single-label classification.

C. Contrastive Learning

Contrastive learning [24], [25], aiming to align categories by
comparing distances between samples, has been widely studied
in self-supervised learning [43], SSL [44], and supervised learn-
ing [45]. In these works, the basic idea is to encourage similar
sample pairs to have more similar feature representations in the
feature space, while also separating the features of dissimilar
sample pairs. It is noted that sample pairs all come from the
same domain. In UDA, contrastive learning is used for sam-
ple pairs crossing domains. SpCL [46] proposes a self-paced
contrastive learning framework, jointly distinguishing source
domain classes, target domain clusters, and noncluster instances.
In CPGA [47], representative features for each source class are
generated from the source model rather than source samples,
and each pseudo-labeled target data are aligned to source rep-
resentative features via contrastive learning. PCS [41] aggre-
gates unlabeled samples through intradomain and cross-domain
contrastive loss. CMFT [25] solves the class imbalance prob-
lem in DA through a centroid memory-based directed memory
transfer mechanism and fine-grained neighborhood prototypes.
MemSAC [48] proposes a variant of contrastive loss to improve
DA classification performance in the case of a large number
of categories. SRKT [49] derives domain-invariant as well as
discriminative representations by adversarial pattern and con-
trastive learning. However, these studies also mainly focus on
single-label classification.

III. METHODOLOGY

In the article, the effectiveness of UDA in MLRSIA tasks
is explored and a DA method CPLG using ideas of sample
matching and contrastive learning is proposed. In this section,
we will discuss the details of the proposed CPLG framework.

A. Problem Definition

In the UDA task for MLRSIA, two domains, namely source
domain and target domain with different distributions, are in-
volved in the model’s training and test procedures. During
the training phase, all the labeled source data and part of the
unlabeled target data are input into the model. During the test
phase, the test samples of the target data are fed to the trained
model for performance evaluation.

The source domain dataset is represented as DS =
{(xi,yi)|1 ≤ i ≤ ns} , where ns is the number of source sam-
ples and yi = {y1i , y2i , . . . , yCi } ∈ {0, 1}C is the C-dimensional
label vector of the sample xi ∈ RD. For the sample xi, yci = 1
indicates that category c is associated with it, while yci = 0 in-
dicates that the category does not belong to it. The target domain
dataset is represented as DT = {xj |1 ≤ j ≤ nt} , where nt is
the number of target samples. In this article, we mainly study
closed-set DA, that is, all categories in the source domain and
target domain are known and exactly the same. Our goal is to
better transfer the knowledge learned in the source domain to
the target domain in the same label space.

As shown in Fig. 2, the framework of CPLG includes a feature
extractor G and a classifier F, with network parameters θG and
θF , respectively. In addition, two nonparametric memory banks
[50], [51] named source memory bank and target memory bank
are used to store the features and corresponding labels for the
source samples or posterior probabilities for the target samples.
In CPLG, two stages of transfer learning are involved: 1) Gen-
erating confident pseudo-labels for the target domain through
NA and pseudo-label confidence selection to overcome domain
classifier bias, and seamlessly integrating output-level DA with
feature-level DA. 2) Introducing contrastive DA to enhance the
feature similarity of similar samples across domains to achieve
fine-grained interdomain consistency enhancement.

B. Generation of Pseudo-Labels for Target Domain Data

The NA classifier [20], inspired by the idea of passing message
via neighbors, is an effective classifier that characterizes local
data structures. In DA, this classifier is used to describe the data
structure of target domain through the neighborhood centers of
samples with local similarity. It needs to build a global memory
bank to store features and their posterior probabilities of all target
samples. Based on the classifier for single-label learning, we
further design a multilabel NA classifier by introducing a novel
positive–negative pseudo-label confidence selection strategy to
obtain more reliable pseudo-labels for the training samples in
the target domain to guide the training process.

1) Multilabel Pseudo-Label Generation via NA: Memory
bank initialization and update. The memory bank is essentially a
key-value store. In the target memory bank, the key is the feature
representation of each target sample, and the value corresponds
to its posterior probability predicted by the classifier. During
training, an iterative update is applied to the memory bank with
a mini-batch of samples for consistency between the features
and predictions. The initial posterior probabilities in the target
memory bank are set to 0.5. For each target sample in the
mini-batch, the feature vector and probability vector are updated
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Fig. 2. Framework of our proposed method CPLG, which consists of a shared feature extractor and classifier, as well as the source and target memory banks.
Source images and target images are input into the network, and their forward propagation processes are indicated in blue and green arrows, respectively. The role
of the bottleneck layer is to reduce the dimensionality of image feature obtained from the feature extractor and GAP operation. Yellow arrows indicate the update
procedures of the two memory banks. The target features with red borders have similar data distributions. In the confident pseudo-labels obtained from pseudo-label
selection, dark color represents negative labels, light color represents positive labels, and shaded areas represent less confident labels. There are three kinds of
losses, namely source image loss, target image loss, and contrastive loss. The parts enclosed by the dashed lines do not participate in the gradient computation.

according to the sample’s global index which records the storage
location of the sample in the bank.

Pseudo-label generation based on NA. The multilabel
pseudo-label generation adopts a nonparametric NA strategy
which greatly reduces the training time. First, the feature of the
target sample xj in the current mini-batch is obtained through
f j = G(xj), and the corresponding initial posterior probability
is obtained through pj = F (f j). Then, the cosine similarity
metrics between the feature and all other features in the target
memory bank are calculated. Based on the metrics, the top m
nearest neighbors of sample xj are retrieved. The clustering
center of these m nearest neighbors’ posterior probabilities is
defined as the final posterior probability of samplexj as follows:

p̃j =
1

m

∑
k∈Nj , k �=j

pk (1)

where Nj is the set of m nearest neighbor indices of the target
sample xj in the memory bank, pk ∈ RC (k ∈ Nj) is the poste-
rior probability of the sample in the nearest neighbors ofxj . The
pseudo-label ỹj = {ỹ1i , ỹ2i , . . . , ỹCi } ∈ {0, 1}C of the target
samplexj can be generated by thresholding the probability with
0.5.

Based on the true labels of the source samples and the pseudo-
labels of the target samples, the multilabel binary cross-entropy
loss is used as the objective function for the source samplexi and
target sample xj , respectively

Ls = − 1

C

C∑
c = 1

[yci log (p
c
i ) + (1− yci ) log (1− pci )] (2)

Lt = − 1

C

C∑
c = 1

[
ỹcj log

(
pcj
)
+
(
1− ỹcj

)
log

(
1− pcj

)]
(3)

wherepci andpcj denote the probabilities of source samplexi and
target sample xj belonging to class c, respectively.

The loss function Ls aims to increase the classification accu-
racy of the model based on the true labels of the source domain
data, while the loss function Lt tries improve the generalization
performance to the target domain with the help of the pseudo-
labels of the target domain data.

2) Positive–Negative Pseudo-Label Confidence Selection:
In UDA, it is necessary to obtain more reliable pseudo-labels
of target samples to guide the training. Therefore, we further
propose a positive–negative pseudo-label confidence selection
strategy. Let gj = {g1j , g2j , . . . , gcj} ∈ {0, 1}c be a binary vector
of the confidence level of the pseudo-label vector for the target
sample xj , where gcj = 1 when ỹcj is considered reliable, and
gcj = 0 when ỹcj is considered unreliable. gcj is defined as
follows:

gcj =

{
1, p̃cj ≥ γp or p̃cj ≤ γn
0, γn < p̃cj < γp

(4)

where γp and γn are the confidence thresholds for positive
and negative labels. Specifically, γp is set to 0.6 and γn is set
to 0.1. The probability p̃cj exceeding γp or below γn can be
determined that class c is a credible positive or negative label
for xj . Equation (3) can be rewritten as

Lt,ps = − 1

sj

C∑
c = 1

gcj .
[
ỹcj log

(
pcj
)
+
(
1− ỹcj

)
log

(
1− pcj

)]
(5)

where sj =
∑
c
gcj is the number of pseudo-labels with high con-

fidence. Strategically selecting high-confidence pseudo-labels
effectively mitigates the impact of noise on the training process,
thereby enhancing the correctness of pseudo-label generation.
The selection strategy plays an important role in the learning
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TABLE I
NUMBERS OF IMAGES IN UCM, AID, DFC15 DATASETS FOR DIFFERENT

CLASSES

process, in which it curtails the propagation of errors from low-
confidence predictions. Its effectiveness will be demonstrated
through subsequent ablation studies.

C. Consistency Enhancement Based on Contrastive Loss

In this section, the consistency enhancement based on con-
trastive learning for multilabel cross-domain alignment is pre-
sented. The fine-grained sample-level information is explored to
enhance the consistency of similar samples between domains.
The similar sample-pairs between domains are identified, and
the features associated with these pairs are expected to exhibit
similarity. For each target sample in the target mini-batch ℬt,
the hamming distance dham is employed to measure the simi-
larity between its pseudo-label and the ground-truth labels of
the source samples. The samples are considered similar if the
hamming distance is below a predefined threshold dth. Based on
this criterion, a subset of source samples similar to the target
sample xj can be obtained, which is denoted as ℬxj

s+ = {xi ∈
ℬs|dham(ỹj ,yi) < dth}, where ℬs represents the mini-batch of
source samples. A sample consistency loss function based on
hamming distance and contrastive loss is defined as follows:

Lsc,ℬ = − 1

|ℬt| |ℬs+|
∑
j∈ℬt

log

⎛
⎝ ∑

i∈ℬs+

exp
(ϕij

τ

)
∑

i∈ℬs
exp

(ϕij

τ

)
⎞
⎠

(6)
where ϕij is the cosine similarity between two feature vectors

f i and f j with ϕij = ϕ (f i, f j) =
fT

i ·fj

||f i||·||fj || , τ is the tem-
perature parameter used to measure the contribution of positive
and negative pairs [48]. This loss function enhances the feature
similarities of similar sample-pairs between the source and target
mini-batches. However, due to the complexity of label distribu-
tions in multilabel classification tasks, it is possible that there
are no similar sample-pairs in a local mini-batch. An alternative
solution is to expand the mini-batch size. However, it will lead to
a considerable memory augmentation, impacting the scalability
of the model. Inspired by the previously discussed concept of
a global target memory bank, a global source memory bank is
established to address the issue where no similar samples are
present in the local mini-batches. In the global source memory
bank, more source samples similar to the target sample can be
found, and the global similar sample pairs are more in line with
our expectations for domain-level style feature alignment. Based
on the global sample-level similarity, the consistency loss Lsc

evolves as follows:

Lsc = − 1

|ℬt| |ℳs+|
∑
j∈ℬt

log

⎛
⎝ ∑

i∈ℳs+

exp
(ϕij

τ

)
∑

i∈ℳs
exp

(ϕij

τ

)
⎞
⎠

(7)
where ℳs is the source memory bank, and ℳs+ = {xi ∈
ℳs|dham(ỹj ,yi) < dth} is the subset of source samples similar
to the target sample xj . To ensure the source memory bank ℳs

contains reliable and representative features, we first train the
feature extractor withLs andLt,ps losses for several epochs, and
then incorporate the consistency loss Lsc to align the features of
similar samples across domains. The source memory bank ℳs

is updated in the same way as the targe memory bank ℳt, in
which the update happens at the end of each training iteration in
mini-batch sizes.

D. Training Procedure

The loss function of CPLG consists of three components: the
source domain loss Ls, the target domain loss Lt,ps, and the
contrastive loss Lsc. It is can be formulated as

LCPG = Ls + λtLt,ps + λscLsc (8)

where λt and λsc are the hyperparameters to balance the loss.
The model is trained in an end-to-end way. The source domain
loss Ls is designed to boost the network’s ability to accurately
classify images from the source domain. The target domain loss
Lt,ps is intended to promote better generalization of the model
from the source to the target domain. Meanwhile, the contrastive
loss Lsc serves to minimize the feature space discrepancies
between similar samples across domains, thereby facilitating
sample-level domain feature alignment.

In the early stage of training, the classification performance
of the model is poor, and thus the quality of pseudo-labels
generated by NA is less satisfactory. Therefore, a dynamically
increasing weight parameter λt ∈ (0, 1) is applied to Lt. The
parameter ensures that the influence of the target domain loss
on the network training is small at the beginning of the training
but will continuously strengthen with the ongoing training. This
indicates that the training of the model initially focuses more on
improving the classification accuracy of the source domain data,
and gradually shifts the emphasis to inter-domain generalization
and feature alignment.

For the same reason, the contrastive loss weight λsc is set to 0
during the first 10 training epochs in which the source and target
memory banks are updated. After 10 epochs of training, λsc is
set to 0.01 to refine the feature alignment across domains.

IV. EXPERIMENT

In this section, we conduct DA experiments on three multil-
abel remote sensing image datasets to validate the performance
of our method CPLG. The experiments are primarily divided
into two parts. First, CPLG is compared with other state-of-
the-art multilabel DA methods. Second, the roles of different
components of our proposed method are evaluated.
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TABLE II
COMPARISONS OF THE PROPOSED METHOD WITH STATE-OF-THE-ART METHODS FROM UCM TO AID (MEAN%±STD%)

TABLE III
COMPARISONS OF THE PROPOSED METHOD WITH STATE-OF-THE-ART METHODS UCM TO DFC15 (MEAN%±STD%)

TABLE IV
COMPARISONS OF THE PROPOSED METHOD WITH STATE-OF-THE-ART METHODS FROM AID TO UCM (MEAN%±STD%)

TABLE V
COMPARISONS OF THE PROPOSED METHOD WITH STATE-OF-THE-ART METHODS AID TO DFC15 (MEAN%±STD%)

A. Experiment Details

1) Datasets: We conduct classification experiments on three
multilabel remote sensing image datasets, namely UCM [52],
AID [2], and DFC15 [53]. The details of these datasets are as
follows.

a) UCM multilabel dataset: The UCM multilabel dataset is
reannotated based on the UCM dataset [52], which orig-
inates from aerial images provided by the US Geological
Survey National Map. It contains 2100 images, with a
size of 256 × 256 × 3 and a spatial resolution of 0.3 m.
There are 17 object-level labels, including airplane, bare-
soil, buildings, cars, chaparral, court, dock, field, grass,
mobile-home, pavement, sand, sea, ship, tanks, trees, and
water.

b) AID multilabel dataset: The AID multilabel dataset is
reannotated from the AID dataset [2] released by Wuhan
University in 2017. It contains 3000 multilabel images
with an image size of 600 × 600 × 3 and a spatial
resolution of 0.5–8 m. There are 17 labels which are the
same as those of the UCM dataset.

c) DFC15 multilabel dataset: The DFC15 multilabel dataset
[53] was first used in the 2015 IEEE GRSS Data Fusion
Contest. It contains 3342 images with a higher spatial
resolution (5 cm) than the UCM dataset. The label set
includes eight objects: building, boat, car, clutter, imper-
vious, water, vegetation, and trees.

There exist six classes, namely water, grass, building, trees,
boat, and car, in all three datasets. For the closed-set UDA
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TABLE VI
COMPONENT EFFECTIVENESS EVALUATION OF CPLG (MEAN%±STD%)

TABLE VII
CLASSIFICATION RESULTS OF THREE IMAGES FROM UCM TO AID

task, only the six class labels are considered in the transfer
experiments from UCM or AID to DFC15. After excluding
images with none of the six labels from the three datasets, there
are 1726, 2740, and 2190 images in them, respectively. Table I
lists the total number of images for each dataset as well as the
number of images when only six classes are considered. In the
experiments, we randomly select 80% images of each dataset
for training and the rest images for test.

2) Evaluation Metrics: The mean average precision (mAP)
is adopted as the evaluation metric to assess the overall perfor-
mance of the model. The precision, recall, and F-score based on
samples and labels are also calculated, respectively.

For sample-based metrics, the Average Precision (OP), Recall
(OR), and F-score (OF1 and OF2)

OP =
1

n

n∑
i = 1

TPi

TPi + FPi
, OR =

1

n

n∑
i = 1

TPi

TPi + FNi

(9)

OFβ =
(
1 + β2

) OP · OR
β2OP + OR

, β = 1, 2 (10)

whereTPi represents the number of correctly predicted positive
labels for sample xi, FPi represents the number of positive
labels that are not recognized for sample xi, FNi represents
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Fig. 3. mAP values in four DA scenarios under different numbers of nearest
neighbors.

the number of negative labels that are incorrectly predicted for
sample xi, and n represents the number of images.

For label-based metrics, the Average Precision (CP), Recall
(CR) and F-score (CF1 and CF2) are formulated as

CP =
1

C

C∑
c = 1

TPc

TPc + FPc
, CR =

1

C

C∑
c = 1

TPc

TPc + FNc

(11)

CFβ =
(
1 + β2

) CP · CR
β2CP + CR

, β = 1, 2 (12)

whereTPc represents the number of correctly predicted positive
labels for class c, FPc represents the number of positive labels
that are not recognized for class c,FNc represents the number of
incorrectly predicted negative labels for class c, and C represents
the number of categories in the dataset.

3) Implementation Details: We employ SGD as the network
optimizer to fine-tune the feature encoder based on the ImageNet
pre-trained ResNet-50 model. The learning rate is set to 0.001.
The 2048-dimensional image features are then fed into the
bottleneck layer and classifier. The bottleneck layer and classifier
are trained from scratch using a learning rate of 0.01. The
bottleneck layer’s dimensionality is set to 256, and the output
features are stored in the memory banks. We adopt the learning
rate scheduler from ATDOC [20], setting the momentum to
0.9, weight decay to 0.001, and batch size to 16. In CPLG, the
number of nearest neighbors m is set to 5, and the consistency
loss temperature parameter τ is 0.07. The network is trained
for a total of 40 epochs. Before conducting the classification
experiments, all dataset images are processed by resizing to 256
× 256 pixels and cropping to 224 × 224 pixels.

All experiments are based on an NVIDIA GeForce GTX 1080
Ti GPU, and implemented in the PyTorch framework.

B. Quantitative Analysis

In the subsection, performance comparison of CPLG and
other state-of-the-art methods and ablation analysis of CPLG
are presented.

1) Comparisons With State-of-the-Art Methods: We com-
pare our proposed method CPLG with the following state-of-the-
art methods, including one MLRSIA method, two DA methods,
and one DA for MLRSIA method.

SIGNA [29]: An MLRSIA method that integrates the label
correlations into shallow features of the image.

CDAN [19]: An adversarial DA method that employs a
ResNet-50 architecture as well as a conditional domain discrim-
inator.

ATDOC [20]: A domain adaptation method inherently de-
signed for single-label classification and modified for multilabel
classification.

DA-MAIC [12]: A domain adaption method for MLRSIC
which integrates MLGCN and DANN.

The experiments are carried out in four scenarios. The first
two are with the UCM dataset as the source domain and the
AID and DFC15 datasets as the target domains, respectively; the
last two are with the AID dataset as the source domain and the
UCM and DFC15 datasets as the target domains, respectively.
The experimental results are reported as the mean and standard
deviation over 10 runs.

Tables II–V show the experimental results of six methods
across different DA scenarios. In the tables, CPLG+CDAN rep-
resents the proposed CPLG method combined with the CDAN
domain discriminator. The best value is in bold and the second-
best value is underlined.

From the tables, it can be seen that CPLG and CPLG+CDAN
achieve very competitive results on all metrics. Since we have
4 scenarios and 9 evaluation metrics, there are a total of 36
comparing conditions. Among them, CPLG ranks in the top two
31 times and CPLG+CDAN ranks first 33 times. Among the five
methods, SIGNA performs worse than the other DA methods,
indicating that the DA methods can effectively align interdomain
features. In UCM→AID, CPLG and CPLG+CDAN perform
better than the other methods in terms of all metrics except
for OP where ATDOC outperforms them. In UCM→DFC15,
CPLG+CDAN achieves the best results on all metrics, while
CPLG is inferior to CDAN on OP and CP and to DA-MAIC on
mAP. In AID→UCM and AID→DFC15, both CPLG+CDAN
and CPLG almost attained the best or second-best metric val-
ues. Compared to the other DA methods, CPLG introduces
the classifier with a pseudo-label confidence selection strategy
to better generalize toward the target domain by aligning the
feature representations, and consistency enhancement based
on contrastive loss to minimize feature discrepancies between
analogous samples across different domains. Therefore, it shows
notable performance improvements.

Comparing Tables III and V with the DFC15 dataset as
the target domain, it can be observed that when all methods
except DA-MAIC use the UCM dataset as the source domain,
they perform better than when the AID dataset is used as the
source domain. This may suggest that the spatial resolutions
of the source and target domains can affect the DA perfor-
mance. Specifically, the spatial resolutions of the UCM, AID,
and DFC15 datasets are 0.3, 0.5-8, and 0.05 m, respectively.
When the images in the AID and DFC15 datasets are resized
to 256 × 256 pixels, their spatial resolutions will be reduced.
The spatial resolution of the DFC15 dataset becomes closer to
that of the UCM dataset and remains higher than that of the
AID dataset. Better performance can be achieved when the
source and target domains exhibit similar spatial resolution.
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Fig. 4. Heat maps of CPLG. The top two images are from the AID dataset in the scenario of UCM→AID, while the bottom two images are from the UCM dataset
in the scenario of AID→UCM.

The performance is suboptimal when images from the source
domain have a lower spatial resolution compared to the target
domain images. However, it should be noted that CPLG and
CPLG+CDAN significantly enhance performance even when
employing the AID dataset with lower spatial resolution as the
source domain.

2) Ablation Study: The proposed method CPLG is com-
prised of two key components: the positive–negative pseudo-
label confidence selection (PS) and the consistency enhancement
based on contrastive loss (CE). To verify the effectiveness of
each module, the following ablation experiments are carried out,
and the results are shown in Table VI. The best value is in bold.

From the table, we can see that the PS component provides a
notable enhancement in F-scores, recall, and mAP. Specifically,

in the scenarios of UCM→AID, UCM→DFC15, AID→UCM,
and AID→DFC15, the average increases across various metrics
are 6.08%, 2.88%, 3.26%, and 6.33%, respectively. At the same
time, the CE component substantially boosts the F-scores and
mAP. The average increases across various metrics are 2.01%,
2.76%, 2.37%, and 3.16%, respectively.

We also investigate the impact of the number of nearest
neighbors in the NA on the performance of CPLG. As shown
in Fig. 3, performance improvement can be observed with
the increase in the number of nearest neighbors. It is because
the model becomes more susceptible to local noise when the
number of nearest neighbors is smaller. But the enhancement in
performance is not significant when the number is larger than
6. Considering both local sensitivity and global robustness, the
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TABLE VIII
VALUES OF THE TWO EFFICIENCY METRICS

number of nearest neighbors can be selected within the range of
4–6.

3) Efficiency Analysis: A comparison of computational
complexity between CPLG and other methods is listed in
Table VII. The number of floating-point operations (FLOPs)
and the number of model parameters are used as the efficiency
metrics. “Source-only” means directly applying a ResNet-50
model trained on the source domain to the target domain for
classification. From the table, we can see that CPLG has small
numbers of FLOPs and parameters. CPLG is only composed of
a feature extractor and a classifier like source-only and ATDOC,
so they have the same minimum number of parameters. On the
other hand, FLOPs of CPLG are slightly higher than those of
source-only and ATDOC, as the pseudo-label generation and
consistency enhancement increase a small amount of computa-
tional load. It demonstrates the efficiency of CPLG.

In addition, we assess the inference speed of CPLG on an
NVIDIA GeForce GTX 1080 Ti GPU. With batch sizes of 1,
4, 8, and 16, the average inference times are 0.0075, 0.0121,
0.0172, and 0.0292 s, respectively. In other words, the inference
rates can reach 133, 83, 58, and 34 fps, respectively. This shows
that CPLG can meet the real-time performance requirements.

C. Qualitative Analysis

For a more intuitive assessment of CPLG, we present a
qualitative analysis with UCM as the source domain and AID as
the target domain. Table VIII illustrates the annotation results
of three representative images from the AID test set using our
method and four alternative approaches. In the table, the ground-
truth labels and the labels predicted by different methods are
listed. The correct predictions are highlighted in green, the false
positive predictions are in red, and the false negative predictions
are in blue. It is observed that CPLG distinguishes itself by
being the only one capable of correctly predicting the labels for
all three images.

To further demonstrate the effectiveness of CPLG in detecting
objects within images, we conduct a visualization analysis on
four images from the AID and UCM datasets under the scenarios
of UCM→AID and AID→UCM, respectively. The heat maps, as
shown in Fig. 4, indicate that the proposed model can effectively
focus on the regions where objects are located.

V. CONCLUSION

In this article, we propose an unsupervised DA method CPLG
for the MLRSIA task. In CPLG, pseudo-labels for samples in

the target domain are generated through NA and refined by
the positive–negative pseudo-label confidence selection. Addi-
tionally, a contrastive loss is introduced into the loss function
to minimize feature discrepancies between analogous samples
across different domains. The DA experimental results on the
UCM, AID and DFC15 multilabel datasets show that our pro-
posed CPLG method can effectively improve the classification
performance for the target domain. Moreover, when integrated
with other adversarial DA methods (e.g., CDAN), CPLG can
further improve the classification performance.

CPLG does not exploit the dependencies among labels, which
are considered helpful for performance improvement in mul-
tilabel classification. In future work, we will explore how to
incorporate label correlations to further enhance the precision
of the pseudo-labels for samples in the target domain.
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