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Adjacent-Scale Multimodal Fusion Networks for
Semantic Segmentation of Remote Sensing Data

Xianping Ma ", Xichen Xu, Xiaokang Zhang

Abstract—Semantic segmentation is a fundamental task in re-
mote sensing image analysis. The accurate delineation of objects
within such imagery serves as the cornerstone for a wide range
of applications. To address this issue, edge detection, cross-modal
data, large intraclass variability, and limited interclass variance
must be considered. Traditional convolutional-neural-network-
based models are notably constrained by their local receptive
fields, Nowadays, transformer-based methods show great poten-
tial to learn features globally, while they ignore positional cues
easily and are still unable to cope with multimodal data. There-
fore, this work proposes an adjacent-scale multimodal fusion net-
work (ASMFNet) for semantic segmentation of remote sensing
data. ASMFNet stands out not only for its innovative interaction
mechanism across adjacent-scale features, effectively capturing
contextual cues while maintaining low computational complexity
but also for its remarkable cross-modal capability. It seamlessly
integrates different modalities, enriching feature representation.
Its hierarchical scale attention (HSA) module bolsters the as-
sociation between ground objects and their surrounding scenes
through learning discriminative features at higher level abstrac-
tions, thereby linking the broad structural information. Adaptive
modality fusion module is equipped by HSA with valuable insights
into the interrelationships between cross-model data, and it assigns
spatial weights at the pixel level and seamlessly integrates them
into channel features to enhance fusion representation through an
evaluation of modality importance via feature concatenation and
filtering. Extensive experiments on representative remote sensing
semantic segmentation datasets, including the ISPRS Vaihingen
and Potsdam datasets, confirm the impressive performance of the
proposed ASMFNet.
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I. INTRODUCTION

EMANTIC segmentation of remote sensing data has been
S widely applied in various fields, such as urban mapping [1],
[2], natural hazard monitoring [3], [4], and environmental pro-
tection [5], [6]. The goal of remote sensing semantic segmenta-
tion is to accurately identify the categories of ground objects
at the pixel level [7], [8], [9]. However, the performance of
semantic segmentation models is usually constrained by the
intraclass variability and interclass similarities of ground objects
in high-resolution remote sensing images. Furthermore, ground
objects may exhibit large variations of scales in remote sensing
images acquired from different locations. Recent advances in
multimodal remote sensing data present a new way to solve the
problem, which is effective in characterizing ground objects as
compared to conventional unimodal data [10], [11]. In particular,
combining multimodal data can better characterize these scale
variations by exploiting complementary information. However,
inappropriate integration of multiple modalities, such as addition
or concatenation, may incur performance degradation due to
their heterogeneous statistical properties [12], [13], [14]. Thus,
more effective cross-modal fusion approaches are required to
cope with these challenges in semantic segmentation for remote
sensing.

To fully harness the information within and between modali-
ties, convolutional neural network (CNN)-based approaches are
commonly considered in the literature [15], [16]. For example,
ResNet-a [17] addressed segmentation by simply stacking mul-
timodal information and constructing multitasks. Yang et al. [18]
introduced a novel multipath encoder for simultaneous extrac-
tion and fusion of multimodal data. However, these CNN-based
fusion methods are ineffective in modeling global context infor-
mation [19]. To cope with this challenge, the transformer archi-
tecture has been adopted as the backbone for image classification
as it can achieve fine-grained interaction and model long-range
dependencies across modalities [20], [21], [22]. More recently,
STGCNet [23] established a self-attention-based feature decom-
position module to eliminate redundant information from com-
mon features. However, the transformer was also limited by suf-
fering from expensive computational complexity. To overcome
these drawbacks, the Swin transformer [24] was developed with
reduced computational complexity and excellent performance
in semantic segmentation [25], [26], [27], [28]. For instance,
features from the auxiliary Swin-transformer-based branch
are embedded into the main CNN-based branch to achieve
better performance in [26] while STransFuse [25] exploits
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coarse-to-fine feature correlation between the Swin Transformer
and CNN branches. Despite the fact that these methods achieve
obvious improvements, these transformer-based methods focus
on unimodal data and cannot be straightforwardly generalized
to multimodal segmentation. Thus, it remains an open ques-
tion on effectively utilizing the Swin transformer for semantic
segmentation of multimodal remote sensing data.

In recent years, multiscale contextual information has been
proven crucial for semantic segmentation tasks [29]. For in-
stance, the atrous spatial pyramid pooling [30] samples fea-
tures by employing convolution kernels of multiple sizes in
parallel, utilizing different receptive fields to acquire more
comprehensive information. DFCN [31] exploited rich feature
representation and semantic information by dense connections.
CMFNet [32] is designed to effectively utilize the global infor-
mation by exploiting features from all scales simultaneously.
However, they can lead to a steep increase in computation
dimensions and introduce redundant information. Inspired by
AFNet [33], which argued that the information of adjacent scales
is the most closely related, this work explores the multimodal
fusion task from the perspective of adjacent scales.

In this work, a Swin-transformer-based adjacent-scale multi-
modal fusion network (ASMFNet) is proposed by effectively
exploiting cross-scale dependencies of multimodal features.
Specifically, a novel hierarchical scale attention (HSA) module
is developed to integrate adjacent-level contexts in a coarse-to-
fine manner. Furthermore, the adaptive modality fusion (AMF)
module infers the weights assigned to different locations within
representations, and then, integrates them into channel features
to enhance fusion representation. This fine-grained assessment
allows for the optimized balancing of representations from dif-
ferent modalities. The main contributions of this work are as
follows.

1) A novel HSA module is proposed to bridge the gap be-
tween local object details and broader scene context. It first
extracts hierarchical features across adjacent scales, and
highlights relevant contextual cues, enabling ASMFNet to
better understand the spatial relationships between objects
and their environment.

2) A novel AMF module is developed by recalibrating the
complementary information between different modalities.
It can effectively infer the weights of different locations in
representations while balancing representations between
different modalities.

3) Endowed with the HSA and AMF modules, ASMFNet
is proposed for multimodal semantic segmentation of re-
mote sensing data. Its unique function lies in the ability
to harness global context, accommodate scale variations,
and seamlessly integrate multimodal data. To the best of
our knowledge, this is the first work to apply adjacent-
scale fusion using Swin transformer-based segmentation
networks.

The rest of this article is organized as follows. Section II first
reviews the related works on multimodal semantic segmentation,
whereas Section III elaborates on the proposed ASMFNet. After
that, extensive experimental results are presented and analyzed
in Section IV. Finally, Section V concludes this article.
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II. RELATED WORK
A. Multimodal Data Fusion

Generally speaking, multimodality refers to heterogeneous
information in different data forms [34]. In remote sensing,
data acquired by different types of sensors with varying resolu-
tions are considered multimodalities, such as LiDAR, Vis, and
HSI. As compared to unimodality, multimodalities can provide
more useful information for decision making by capturing com-
plementary information from heterogeneous multimodal data.
However, it has been observed in [34] that existing deep learning
methods often overlook the fact that multimodal data are not of
equal relevance for the semantic context. As a result, the naive
approach of simply stacking all multimodal data may introduce
redundancy [12].

In recent years, deep learning techniques have been suc-
cessfully applied in multimodal fusion [35], [36]. According
to where the fusion occurs in the model, data fusion can
be divided into two approaches, namely, the early fusion of
features and the late fusion of predictions. Audebert et al.
[37] investigated the impact of both approaches on remote
sensing data by adopting the FuseNet [38]. Recently, Peng
et al. [31] utilized dual-path densely convolutional networks
in which encoders extract the semantic features of modalities
before gradually fusing them together for up-sampling. Further-
more, attention-based methods have been reported in the litera-
ture [11]. However, balancing the complexity of network struc-
tures with the efficiency of fusion modules remains a challenging
problem.

B. Transformer-Based Segmentation Models

The conventional transformer is known to suffer from high
computing complexity and weak capability for detail percep-
tion [39], [40], [41]. To cope with these obstacles, Swin trans-
former [24] has been proposed using shifted window-based
transformer blocks to obtain local and global features. Zhang
etal. [42] reported a hybrid architecture of CNN and Swin trans-
former to extract more comprehensive features. DC-Swin [43]
introduced a decoding module to enhance the communication
between multiple-scale information produced by Swin trans-
former, whereas STransFuse [25] and ST-UNet [26] established
parallel CNN and Swin transformer branches to effectively
merge fine details from CNN with global relationships from
Swin transformer. NGST-Net [44] introduced an N-Gram strat-
egy to learn the spectral feature relationships between window
sequences. In contrast to the aforementioned methods, this work
deploys a pure Swin transformer network and activates the
interaction between adjacent-scale features to compensate for
multimodal fusion.

C. Multiscale Fusion

Multiscale fusion modules [30] are devised to generate a
feature map endowed with robust semantic and positional infor-
mation by integrating low- and high-resolution features or using
receptive fields with various sizes. On this basis, DenseNet [45]
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enhances semantic features while overcoming gradient explo-
sion by concatenating the outputs from each stage, whereas
HRNet [46] utilizes a multibranch network to perform multiple
rounds of multiscale fusion by continuously adding and incorpo-
rating subnetworks of different resolutions to enrich high-level
semantic information with detailed representations. However,
as semantic information on different scales varies greatly, such
simple concatenation-based fusion methods may inevitably en-
tail performance degradation [47]. CMFNet [32] capitalizes on
cross-attention in its multiscale fusion by exploiting long-term
relationships between all scales simultaneously. Nevertheless, it
fuses all scales simultaneously without considering the interac-
tion between features from adjacent scales. Compared with these
methods, the interaction of adjacent scales has been increasingly
recognized in recent years [48]. In CIMFNet [49], nonlocal
attention was proposed to extract correlations between adja-
cent layers in the optical-image (OI) branch while ignoring the
depth information. Finally, in contrast to all methods discussed
previously, the proposed ASMFNet addresses multimodal fu-
sion by exploiting adjacent-scale features.

III. METHODOLOGY
A. Framework

The overall framework of the proposed ASMFNet is depicted
in Fig. 1. ASMFNet is an end-to-end network adopting Swin
transformer as the backbone to leverage its inherent advantages
of hierarchical representations with local- and cross-window
multihead attention mechanisms. The E-Stage and D-Stage are
applied with “E” and “D” standing for the encoder and the
decoder, respectively. Note that ASMFNet is specifically de-
signed to improve the model performance in detecting low-level
details and capturing contextual information in remote sensing
imaging data. More specifically, the ASMFNet utilizes the HSA
module to enhance the discriminative structural features of
ground objects through efficient cross-scale fusion at adjacent
stages. Furthermore, the AMF module is proposed to integrate
information from different modalities in a shared representation
space.

B. Preliminaries

Let optical and DSM images be represented by R €
RErRXHXW and D € REH*W where H and W denote the
height and width of images, respectively, and C' stands for the
channel dimensions. Then, Ry is obtained through partitioning
R into distinct patches with positional embeddings, and then,
passed through several consecutive STE-stages whose output
takes the form of I; € Rzzcxﬂ%xﬂ%, where ¢ indexes the
layer and C' = 96. Similarly, the DSM encoder will derive D;
with the same dimensions as R;.

During this process, features produced by two adjacent stages
in each modality will be fused by their corresponding HSA
modules in which the semantic features of adjacent scales are
exploited to enhance extracted features. Finally, upon receiving
the output from the HSA module in each modality denoted

by HSA(R;) and HSA(D;) € R* OX 51 %57 | the proposed
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AMF module will combine the channel and spatial informa-
tion from different modalities by utilizing learnable weighting
parameters for cross-modal fusion.

C. Adjacent-Scale Feature Extraction and Fusion

The literature has reported that high-level semantic fea-
tures can guide the segmentation model to use low-level se-
mantic features more effectively [51], [52]. Motivated by this
observation, the HSA module is proposed to establish the inter-
actions between different semantic objects. The HSA module
in the Ol-encoder can be divided into two submodules, as
follows.

1) Multilevel Feature Interaction: This submodule aims to
link the high-level and low-level features. As shown in Fig. 2,
in each encoder, the output from the ¢th stage R; will first pass
through a 1 x 1 convolutional layer, then be concatenated with
the outputs of adjacent stages that have undergone upsampling
and are mapped through a 3 x 3 convolutional layer. Function-
ally, it bridges higher level semantic information into low-level
features, facilitating accurate localization and capturing fine
details. Finally, the intermediate output R, which has the same
dimensions as R;, is employed with the channel-wise weights
provided by the next submodule.

2) Channel-Wise Attention: The objective of this submod-
ule is to utilize advanced features to assess the indispens-
ability of various channels for the concatenated features R,
€ R O% 52 %5172 More specifically, a global average pooling
(GAP) layer is utilized to flatten the adjacent higher feature R;
as shown in Fig. 2. After that, it will be processed by a 1 x 1
convolution layer and Softmax activation function to obtain the
channel-attention distribution. As a result, R? can be derived
with various levels of feature representation. Mathematically,
these operations can be expressed as

R!" = Conv(Concat(R;, Up(Ri11)))
x (Softmax(Conv(GAP(R;+1))) (1)

where GAP(+), Concat(-), Up(+), and Softmax(-) stand for the
GAP layer, concatenation, upsampling, and the Softmax func-
tion, respectively. Similarly, D! can be derived in the same
manner.

D. Adaptive Modality Fusion

The AMF module is developed to fuse features from different
modalities. It primarily consists of two components, i.e., the
spatial-wise feature enhancement and the channel-wise feature
fusion, as shown in Fig. 3. More specifically, the spatial cor-
relation is first calculated using the multimodal features RI
and Dzh derived from the HSA module. Simultaneously, the
ECA module [50] is employed to augment the expression of
salient channels in multimodal features. Since the noisy DSM
signal usually may not be able to completely match with the OI
data during the spatial correlation calculation, the channel-wise
feature fusion is designed to suppress the disruption of inade-
quate DSM signal on OI data through a squeeze operation. This
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Architecture of the proposed ASMFNet. It consists of multiencoders for OI and DSM feature extraction and HSA modules for adjacent scale fusion in

each modality. Besides, a decoder adopts swin transformer [24] as the backbone and uses multihead attention layers. Finally, the multimodality fusion module
consists of AMF and efficient channel attention (ECA) [50] layers for fusing enhanced OI and DSM features from each encoder stage.

process derives its weight matrix based on the features from
adjacent stages.

In the spatial-wise feature enhancement process, the output in
the previous sub-module is processed by GAP to gather spatial
information, resulting in the integrated information from the OI
data following its alignment and fusion with the DSM signal.
Then, it is fed into a novel adaptive fusion process as shown
in Fig. 4. We denote A7 from the ‘adaptive fusion” process as
the spatial correlation. The detailed operation of the “adaptive
fusion” process will be elaborated in the next paragraph. Mean-
while, R and D! are individually fed into two ECA modules
before the resulting outputs are added together to generate A¢,

i.e., the channel correlation. Finally, A and A? are individually
processed by a fully connected (FC) layer before the resulting
output is added together to generate cross-modal features M F;.
Mathematically, the operations above can be written as

MF; = EC(AF(R!', D! ,Conv(FE(R!, D!")))
+ FC(ECA(R!, DI), i=1,2,3 )

where FC(-) consists of the FC layer, ReLU, and Sigmoid
function. Furthermore, FE(-) and AF(-) represent the feature en-
hancement operation and adaptive fusion, respectively. ECA(-)
is the ECA module operation.
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Fig. 2. Illustration of the proposed HSA module.
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Fig. 3. Illustration of the AMF module.

g T e i The adaptive fusion process is designed to evaluate the sig-
nificance of different modalities at the pixel level, as shown in
Fig. 4. More specifically, the spatial-wise enhanced information
E!is first concatenated with R? and D" separately before 1 x 1
convolution layers and a ReLU function is applied to adjust
channel numbers. The resulting outputs are concatenated before
a softmax operation to generate weighting coefficients o and 3.
Finally, the output of the “adaptive fusion” process denoted by
A? is computed as the weighted sum of various modalities in
spatial correlation. Mathematically, the output of the A7 can be
written as follows:

“Enhanced Features

I | AUODIXI |

| AUODIXT |

©c

Fig. 4. Illustration of the adaptive fusion process inside AMF.

Af =ax R+ B x D! (3)
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where

o Conv(Concat(R?, EI")))
~ Conv(Concat(R!', E))) 4 Conv(Concat(D!", EI')))

. Conv(Concat(D!, E!)))
~ Conv(Concat(R!', E))) 4 Conv(Concat(D!", EI")))
“)

where ReLu is omitted to make the formula more concise. In
this fusion module, the learnable latent weighting coefficients «
and 3 provide the process with strong adaptability.

It has been observed that cross-channel interaction can sub-
stantially enhance the model’s performance. This work adopts
the ECA module depicted in Fig. 5. The GAP first processes the
input data and converts it to F; € RE*!*! before being fed into
the convolution kernel. Note that the size of the convolution ker-
nel in the ECA module denotes the scope of channel interaction
and is typically ascertained through nonlinear mapping of the
channel dimension. The output from the convolution kernel is
passed through a Sigmoid function and converted into a vector
Fy € RE*!X! whose entries are in a range of [0,1]. Finally, F
is element-wise multiplied with the input, generating the final
weighted features.

E. Decoder

This work employs the decoder architecture of Swin-
UNet [53] to reconstruct the image, which serves as the baseline
method for our work. In the decoder, each patch is treated as
a token and undergoes five stages. The first stage consists of a
single Swin transformer block (STB), while the middle three
stages comprise pairs of STBs and a patch-expanding layer.
Within each block, tokens are partitioned into several windows
of fixed size and the similarity between patches within and
across windows is computed separately. The patch-expanding
layer plays a crucial role in up-sampling the feature map to a
higher resolution while reducing the number of channels. The
outputs from all four stages are concatenated with intermediate
results from the encoder to enhance feature representation.

F. Loss Function

Since the final output images have a resolution identical
to the original input images, a pixel-by-pixel comparison is
performed with the ground truth label. The standard multiclass
cross-entropy function is applied during training to minimize
the training loss.
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IV. EXPERIMENTS AND DISCUSSION
A. Dataset

To validate the effectiveness of the proposed ASMFNet,
extensive experiments have been conducted on the Vaihin-
gen and Potsdam datasets published by the International So-
ciety for Photogrammetry and Remote Sensing (ISPRS). The
Vaihingen dataset was collected from a small village in Germany
characterized by dense buildings and forests. It comprises 33
remote sensing images derived from top-level orthophotos and
the corresponding digital surface model features. All images
have three bands, namely near-infrared, red, and green channels.
In total, 12 labeled images were manually selected for training
in our experiment, while four were for testing.

In contrast, the Potsdam dataset was collected from a historic
city with expansive buildings and narrow streets. It consists of
38 remote sensing images with a size of 6000 x 6000 pixels, of
which 24 are labeled. Unlike the Vaihingen dataset, it has four
bands, namely near-infrared, red, green, and blue channels. In
our experiment, 18 labeled images were used for training and
six for testing.

It should be noted that both datasets contain six categories
including five foreground classes, namely Building (Bui.), tree
(Tre.), Low vegetation (Low.), Car, Roads (Roa.), and one back-
ground class. In our experiments, each image was cropped to
a size of 224 x 224 pixels with a 32-pixel stride for training
testing.

B. Experimental Setting

All experiments are implemented with Pytorch on a single
NVIDIA RTX2080TI with 12GB RAM. In addition, the opti-
mizer is set to stochastic gradient descent with a 0.001 initial
learning rate for decoders and 0.0005 for encoders. Moreover,
the batch size is 10. To evaluate the segmentation performance,
the following performance metrics are employed, including the
overall accuracy (OA), mean F1-Score, and mean intersection
ratio (mloU), which are given as follows:

TP

A = 5)
TP + TF + FP 4+ FN
Fl, = 2 X Préc{isionc X Recall, ©)
Precision, + Recall,.
Recall TP 7N
ecall, = ———
TP, + F'N,.
TP,
Precision, = ———— ®)
TP, + FP,.
TP
TIoU, = )

~ TP, + FP, + EN,

where TP, FP, TN, and FN represent the true positives, false
positives, true negatives, and false negatives of the cth class,
respectively. mF1 and mloU are derived from the mean F'1. and
IoU, of five foreground classes.

To avoid introducing heterogeneity between different en-
coders and to simplify the design, the same encoder in ASMFNet
is applied to process both OI and DSM data. We compare the
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TABLE I
EXPERIMENTAL RESULTS ON THE VAIHINGEN DATASET
Modality Method Bui. Tre. Low. Car Roa. OA F1 mloU
Unimodal PSPNet [54] 96.70 92.18 71.93 86.16 90.78 90.52 88.53 79.85
Swin-UNet [53] 95.39 91.79 77.18 70.01 90.42 89.91 85.85 76.03
ACNet [55] 96.64 92.12 78.15 79.87 91.23 90.92 88.25 79.96
FuseNet [38] 93.42 93.13 71.72 70.66 84.56 89.95 85.03 73.43
ESANet [56] 98.04 92.77 77.74 83.62 90.07 90.98 87.89 80.18
Multimodal RFNet [57] 95.44 92.37 76.51 75.98 91.65 90.51 87.72 78.73
CMFNet [32] 95.99 90.41 80.03 85.58 91.53 91.05 89.16 80.24
MFTransNet [58] 97.73 90.43 80.72 88.37 91.25 91.25 88.76 80.12
FTransUNet [11] 97.14 90.99 80.60 89.53 91.47 91.53 89.32 80.34
ASMFNet 95.92 91.32 83.21 81.21 91.84 91.46 88.99 80.47
Bold values are the best.
TABLE II
EXPERIMENTAL RESULTS ON THE POTSDAM DATASET
Modality Method Bui. Tre. Low. Car Roa. OA F1 mloU
Unimodal PSPNet [54] 97.38 87.05 87.35 95.80 91.71 90.36 91.75 85.02
Swin-UNet [53] 97.45 86.77 87.92 94.23 90.10 90.17 91.33 84.28
ACNet [55] 97.63 85.43 87.62 95.69 92.83 90.75 91.71 85.02
FuseNet [38] 97.53 87.77 87.05 96.56 91.00 90.61 91.71 85.01
ESANet [56] 97.70 87.24 87.13 94.73 92.21 90.67 91.63 84.88
Multimodal RFNet [57] 97.69 85.89 88.57 95.76 92.23 90.56 91.71 85.03
CMFNet [32] 97.32 86.31 86.02 94.98 91.52 90.11 91.07 84.47
MFTransNet [58] 97.84 87.83 86.07 94.74 91.61 90.31 91.42 84.76
FTransUNet [11] 98.37 87.65 87.52 96.30 92.76 91.26 91.89 85.22
ASMFNet 97.95 87.99 88.03 95.38 93.55 91.17 92.06 85.34

Bold values are the best.

performance of the proposed ASMFNet on the ISPRS Vaihin-
gen and Potsdam datasets against nine existing segmentation
models, namely PSPNet [54], Swin-UNet [53], ACNet [55],
FuseNet [38], ESANet [56], RFNet [57], CMFNet [32], MF-
TransNet [58], and FTransUNet [11]. It is worth noting that
PSPNet and Swin-UNet are unimodal methods focusing on
only OI data, whereas other methods are multimodal methods.
The present of the single-modal method is to demonstrate the
performance of some classical methods in order to make our
method easier to evaluate.

C. Performance Comparison

1) Performance Analysis: Careful inspection of the exper-
imental results presented in Tables I and II reveals that multi-
modal fusion models are generally more effective than unimodal
models, which hints that unimodal PSPNet and Swin-UNet
were less effective in extracting comprehensive features. In-
terestingly, it was observed that PSPNet performed well on
small objects such as “Cars” by exploiting its synchronized
parallel convolution kernels and aggregation of contextual in-
formation from different scales [59]. Among the multimodal
models, FuseNet and STFuse ignored the heterogeneity among
modalities. As a result, their performance in the evaluation
metrics was poor. Furthermore, ACNet and RFNet overlooked
the long-distance dependencies and spatial correlations between
pixels, which incurred performance degradation. In addition,
ESANet performed well on “Buildings” while failing on com-
plex landscapes such as “Roads.” This observation suggests that
ESANet cannot effectively handle edge semantic information
as boundary information is crucial for classifying “Roads” and
“Low vegetation.” The proposed ASMFNet achieved improved
classification accuracy for almost all classes compared with the

baseline Swin-UNet. In particular, Table I shows that the pro-
posed ASMFNet attained the highest classification accuracy for
“Low vegetation” and “Roads.” For instance, ASMFNet demon-
strated substantial performance improvement of 2.49% and
2.61% over the second and third-best models, i.e., MFTransNet
and FTransUNet, for “Low vegetation.” Similar observation was
obtained from Table II derived from the ISPRS Potsdam dataset.
More specifically, ASMFNet achieved the best performance on
two classes, namely “Trees,” and “Roads.” Inspection of Tables I
and IT suggests that ASMFNet attained impressive performance
in OA, F1, and mloU.

Fig. 6 visually illustrates the results derived with the Vai-
hingen dataset using the nine models under consideration. In
particular, the rectangular area highlights the differences be-
tween models under consideration. Careful observation suggests
that ASMFNet effectively distinguished complex boundaries
between “Low vegetation” and other classes while demon-
strating improved classification performance for continuously
distributed objects, such as “Buildings” and “Low vegetation.”
Fig. 7 shows the results derived with the ISPRS Potsdam dataset.
It is observed that our method achieves more complete object
segmentation, demonstrating that the adjacent-scale enhanced
multimodal fusion strategy equips ASMFNet with a superior
ability to assess object integrity. It ultimately improved the
overall performance of our method.

2) Modality Analysis: To evaluate the necessity and role of
multimodal information, we present the results of four meth-
ods. The first and the second are the single-modal approach,
Swin-UNet, which serves as our baseline. However, the first
experiment inputs only single-modal information, while the
second experiment inputs stacked multimodal information. Ex-
tending Swin-UNet to the multimodal task results in the STFuse
model. It uses dual-branch encoders to extract features from
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PSPNet, (d) Swin-UNet, (e) ACNet, (f) FuseNet, (h) ESANet, (i) RFNet, (j) CMFNet, (k) STFuse, and (1) proposed ASMFNet. The subscripts [1,2] represent the

serial number of the samples displayed.

TABLE III
MODALITY ANALYSIS ON THE VAIHINGEN DATASET AND POTSDAM DATASET

Dataset Method Bui. Tre. Low. Car Roa. OA F1 mloU
Swin-UNet (OI) 95.39 91.79 77.18 70.01 90.42 89.91 85.85 76.03

Vaihingen Swin-UNet (OI+DSM) 95.33 87.46 80.55 78.91 91.23 90.21 87.02 77.93
STFuse 94.97 90.88 80.42 78.03 91.84 90.69 87.93 79.00

ASMFNet 95.92 91.32 83.21 81.21 91.84 91.46 88.99 80.47

Swin-UNet (OI) 97.45 86.77 87.92 94.23 90.10 90.17 91.33 84.28

Potsdam Swin-UNet (OI+DSM) 97.53 85.96 87.51 94.65 91.87 90.31 91.36 84.43
STFuse 97.44 90.48 85.41 95.37 91.43 90.62 91.16 84.02

ASMFNet 97.95 87.99 88.03 95.38 93.55 91.17 92.06 85.34

Bold values are the best.

different modalities, with the simplest element-wise addition
for information fusion, making it the baseline for multimodal
fusion. The structure of Swin-UNet and STFuse are presented
in Fig. 8. The proposed ASMFNet improves the fusion strategy
on the basis of STFuse.

Table III shows the results of modality analysis. By com-
paring the results of Swin-UNet and STFuse, it is clear that
the effectiveness of multimodal methods also depends on the
chosen fusion techniques. On the Vaihingen dataset, STFuse
showed significant improvement, whereas on Potsdam, its per-
formance was similar to that of Swin-UNet. The results show
that the inherent heterogeneity of multimodal information would
cause simple fusion strategies to fail to effectively utilize the
complementary effects of multimodal information. However,
the proposed ASMFNet achieved notable improvements in both

datasets, proving that the proposed fusion strategy effectively
addresses this challenge.

3) Multiscale Strategy Analysis: This section compares the
performance of different multiscale fusion strategies depicted in
Fig. 9. The first strategy connects three consecutive stages (CS),
whereas the second strategy utilizes dense connection (DC) to
connect the next stage with all previous stages. Moreover, the
third strategy adopts the adjacent scale-based fusion proposed
in this work.

Table IV shows the experimental results derived with dif-
ferent multiscale fusion strategies using the STFuse model.
It is evidenced from Table IV that multiscale fusion in-
deed helped improve the segmentation performance. Further-
more, the proposed adjacent-scale fusion outperformed the
DC and CS multiscale fusion strategies regarding OA, FI,
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Qualitative visual results on the potsdam dataset: (a) OI images, (b) ground truth, and (g) DSM. Other images are enlarged visualization trained by (c)

PSPNet, (d) Swin-UNet, (e) ACNet, (f) FuseNet, (h) ESANet, (i) RFNet, (j) CMENet, (k) STFuse, and (1) proposed ASMFNet. The subscripts [1,2] represent the

serial number of the samples displayed.

TABLE IV
EXPERIMENTAL RESULTS UNDER DIFFERENT SCALES ON THE VAIHINGEN DATASET
Method Bui. Tre. Low. Car Roa. OA F1 mloU
No multi-scale fusion 95.34 90.49 82.58 80.02 90.94 90.86 88.06 79.77
Dense-connection (DC) fusion 95.77 90.67 81.33 68.78 91.62 90.72 86.79 77.47
Consecutive-stage (CS) fusion 96.25 92.75 77.20 65.67 91.46 90.67 86.87 77.42
adjacent-scale fusion 95.92 91.32 83.21 81.21 91.84 91.46 88.99 80.47

Bold values are the best.

and mloU. In particular, the proposed adjacent-scale fusion
strategy significantly obtained the highest accuracy for “Cars”
and “Low vegetation.” Finally, Fig. 10 visually shows some
examples of the experimental results, which confirmed the re-
sults in Table IV.

4) Interpretability of Representation Learning: Next, we
will explore some insights into the improvement provided by
the adjacent-scale fusion strategy. It is well known that detailed
structural information is lost during the downsampling process
in Swin-UNet. Fig. 11 shows the spectrogram of OI and DSM
data derived from the output of each stage of the proposed
ASMFNet and the baseline STFuse by exploiting 2-D discrete
Fourier transform. As observed from Fig. 11, the spectrogram
generated by the baseline STFuse is overall dimly lit with only
a few bright blocks, whereas that derived from the proposed
ASMFNet is more vivid with more glowing blocks showing
in the high-frequency regions, i.e., the regions far away from

the spectrogram center. Recall that high-frequency components
commonly characterize the edge information. In other words,
Fig. 11 confirmed that the proposed ASMFNet preserved a con-
siderable proportion of the high-frequency features even after
multiple down-sampling operations. This observation supported
the exceptional performance of the proposed ASMFNet on “Low
vegetation” and “Roads” as it retained rich texture and bordering
information to identify object boundaries, and subsequently,
distinguish ground objects by paying more attention to the
interaction between their local contextual cues.

D. Ablation Study

Ablation studies are performed in this section to verify the
performance improvement provided by each proposed module
with a focus on the proposed adjacent-scale fusion strategy,
the designed HSA module and the AMF module. Inspection
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TABLE V
ABLATION STUDY ON THE VAIHINGEN DATASET
AS HSA AMF Accuracy
90.69
v 90.86
v v 91.17
v v 91.28
v v v 91.46
Bold values are the best.
TABLE VI

ABLATION STUDY ON THE VAIHINGEN DATASET

Network STB Number
Depth in each stage 0A Fl mloU
3 [2,2,6] 90.64 87.53 78.16
3 [1,1,3.1] 91.28 88.48 79.89
4 [2,2,6,2] 91.46 88.99 80.47

Bold values are the best.

of Table V confirmed the effectiveness of each proposed mod-
ule. In particular, the joint utilization of AS, HSA, and AMF
offered nonnegligible improvement. More specifically, the HSA
weighs the feature map with higher-order semantic information,
whereas the AMF enables the network to learn the multimodal
data fused by the HSA adaptively.

E. Model Scale Analysis

In this section, we investigate the impact caused by different
numbers of STBs and model depths. In the proposed ASMFNet,
the default network depth was set to four, with {2, 2, 6,2} STBs
per layer. For comparison purposes, we change the number of
blocks to {1,1,3,1} . Furthermore, considering the influence
of different stages, the network depth becomes 3. Table VI
illustrates the experimental results on the Vaihingen Dataset.
It can be deduced that as the depth of the Swin Transformer
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TABLE VII
COMPUTATIONAL COMPLEXITY ANALYSIS MEASURED BY A 224 x 224 IMAGE ON A SINGLE NVIDIA RTX 2080 GPU

. FLOPs Parameter Memory Speed

Method Multimodal () (M) (MB) (FPS) MIoU(%)
PSPNet [54] N 51.23 46.72 3012 68.24 79.5
Swin-UNet [53] N 16.54 34.68 1297 38.64 76.03
ACNet [55] Y 12.96 62.37 2269 18.64 79.96
FuseNet [38] Y 60.44 42.08 2168 20.72 73.43
ESANet [56] Y 8.21 34.03 1856 12.24 80.18
RFNet [57] Y 5.42 14.60 1508 18.24 78.73
CMFNet [32] Y 80.67 112.44 3974 9.82 80.24
MFTransUNet [58] Y 9.52 41.36 1488 16.68 80.12
FTransUNet [11] Y 47.28 152.34 3364 11.66 80.34
ASMFNet Y 26.38 83.50 1894 26.86 80.47

Bold values are the best.

decreased, the network generally became shallow and failed to
extract features for effective segmentation performance.

F. Model Complexity Analysis

We assess the computational complexity of the proposed
ASMFNet using four evaluation metrics: floating point oper-
ations (FLOPs), model parameter count, memory footprint and
frames per second (FPS). FLOPs measure the model’s complex-
ity, while the parameter count and memory footprint gauge its
memory requirements. On the other hand, FPS evaluates the
execution speed. Ideally, an efficient model should have lower
values for the first three metrics and a higher FPS value.

Table VII presents the complexity analysis results for all meth-
ods compared in this study. As shown, the proposed ASMFNet
demonstrated lower FLOPs, parameter count, and memory us-
age, along with higher FPS, compared to hybrid architectures,
such as CMFNet and FTransUNet. This efficiency is primarily
due to the focus on reducing the complexity of both the en-
coder and the fusion module. Specifically, ASMFNet employs
the Swin Transformer for feature extraction and CNN-based
structure for feature fusion. Furthermore, despite the slight
increase in model complexity, ASMFNet achieved a significant
improvement in segmentation performance compared to other
networks.

G. Discussion

This work introduces a multimodal fusion approach to seman-
tic segmentation by exploiting adjacent-scale features. The inno-
vative interaction mechanism enhanced contextual understand-
ing while maintaining efficiency, which is crucial for remote
sensing applications. The extensive experiments in Section IV
demonstrated that the combination of HSA and AMF could
significantly fuse multimodal features, leading to more informed
decision-making in various datasets. Since its primary focus is
on exploring adjacent scales, this technique can be easily adapted
to other tasks and model architectures. However, its efficiency
and performance are also tied to the extraction of multiscale fea-
tures. In future work, we aim to apply it to tasks such as change
detection [60] and visual question answering [61]. Furthermore,
it is interesting to investigate the integration of global modeling
capabilities with high computational performance [62], [63] and
the fusion strategy.

V. CONCLUSION

In this work, we are dedicated to utilizing supplementary
information and contextual cues within and across modalities
to improve the segmentation capabilities of various ground ob-
jects. Therefore, a multiscale multimodal fusion network called
ASMFNet has been proposed for the semantic segmentation of
remote sensing data. The proposed ASMFNet takes advantage of
adjacency scale information fusion in sharp contrast to existing
multiscale fusion strategies. It has been confirmed that merging
features of adjacent scales preserve the high-frequency details
in data. In addition, an HSA module is devised to implement
the enhanced information exchange in adjacent fusion while
an AMF module is developed to balance pixel-level repre-
sentations between different modalities. Extensive experiments
have demonstrated the effectiveness of the proposed ASMFNet.
Finally, the proposed ASMFNet has exemplified a practical
design to leverage the hybrid CNN and transformer structure
in semantic segmentation.
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