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Abstract—Recently, a sparse super-resolution method based on
L1 iterative reweighted norm (IRN) has been proposed to improve
the azimuth resolution of forward-looking radar. However, this
method suffers from poor adaptability and high computational
complexity due to its noise-sensitive user-parameter and the ne-
cessity for high-dimensional matrix inversion. To this end, a fast
adaptive L1-IRN sparse super-resolution method is derived in this
article, allowing for the user-parameter-free and efficient sparse
imaging of forward-looking radar. First, we establish the super-
resolution model of forward-looking radar and analyze the user
parameter selection problem in the conventional L1-IRN method.
Second, based on Bayesian theory, adaptive iterative weights of dif-
ferent azimuths are derived by transforming the sparse estimation
problem into a maximum posterior (MAP) estimation problem.
Finally, by using QR decomposition and Sherman–Morrison for-
mula, the dimensionality of the echo and antenna pattern involved
in the iteration is reduced to further diminish the computational
complexity. Compared to the existing L1-IRN method, the pro-
posed method eliminates the need for any user parameters, and
the computational complexity has been reduced from O(JN3)
to O(JN2a). Simulation and measured data demonstrate the
superiority of the proposed method.

Index Terms—Forward-looking, radar imaging, super-resolu-
tion.

I. INTRODUCTION

RADAR forward-looking imaging technology finds wide
applications in aircraft autonomous landing, material air-

drop, and terrain mapping [1], [2], [3], [4], [5]. However,
traditional Doppler beam sharpening and synthetic aperture
radar techniques encounter difficulties in enhancing the imaging
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resolution of the forward-looking area due to the reduction in
Doppler gradient [6], [7], [8].

Real aperture radar (RAR) is frequently employed for
forward-looking imaging due to its omnidirectional capability.
Nevertheless, its resolution is determined by the size of the
antenna aperture. While a larger antenna can enhance resolution,
it requires more spatial resources. This tension between needing
larger antennas and the constraints of small platforms restricts
RAR’s azimuth resolution, thereby limiting its use in airborne
forward-looking imaging [9], [10].

To alleviate the above issue, scholars have proposed various
azimuth super-resolution imaging methods, including spectral
estimation methods [11], [12], [13], Bayesian methods [14],
[15], [16], and regularization methods [17], [18], [19], [20].
In [11], a fast conjugate gradient iterative adaptive super-
resolution algorithm is proposed for forward-looking radar
imaging. This method accurately represents the azimuth and
elevation velocity migration for airborne platform, eliminates
the range and azimuth-elevation coupling, improving the az-
imuth and elevation resolution. Based on Bayesian theory,
Chen et al. [14] proposed an efficient Bayesian forward super-
resolution imaging algorithm grounded on Doppler deconvo-
lution in extended beam space, which transforms the imaging
problem into a convex optimization problem and improved
the performance of forward imaging. Utilizing the regulariza-
tion framework [17], a truncated singular value decomposi-
tion forward-looking super-resolution imaging algorithm is pro-
posed, combined with the total variation norm. This algorithm
preserves contours even under low signal-to-noise ratio (SNR)
conditions and achieves high-quality imaging results.

Recently, the sparse reconstruction problem has garnered
significant attention and discussion [21], [22], [23]. For sparse
target scenes such as ships in ports and aircraft in airports, Tuo
et al. [21] proposed a sparse super-resolution method based on
the L1 norm. This method effectively addresses the issue by
minimizing the L1 norm to enhance the imaging resolution
of scanning radar. However, this method faces several chal-
lenges. First, its penalty parameter requires manual adjustment
according to the actual environment and exhibits poor adaptive
capability due to sensitivity to noise. The L-curve can serve as a
guideline for selection, but it necessitates prior knowledge of the
SNR and may not always be reliable [5]. To solve this problem, a
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weak-depended method was proposed in [24], which reduces the
influence of parameters on super-resolution imaging. However,
this method can only attenuate the parameter influence, not
self-adjust. Second, each iteration of the method necessitates
the computation of the inverse of a high-dimensional matrix,
resulting in exceedingly high computational complexity. These
factors render the method unsuitable for hardware implementa-
tion and practical engineering applications.

To address these challenges, this article presents a novel ap-
proach: A fast adaptive L1 iterative reweighted norm (L1-IRN)
method with no user parameters and low complexity. First,
the echo model of scanning radar is established and the issue
of user parameter selection in traditional L1-IRN methods is
analyzed. Second, leveraging Bayesian criterion, the maximum
posterior (MAP) estimation of the target scattering coefficient
m and echo y is derived. Subsequently, an adaptive iterative
weighted parameter is obtained by substituting probabilistic
models P (m) and P (y|m) into the objective function. Third,
an orthogonal matrix is constructed through QR decomposi-
tion to reduce the dimensionality of antenna pattern function
D and the echo y. Finally, employing the Sherman–Morrison
formula, the operation of high-dimensional matrices is trans-
formed into low-dimensional matrix operations to achieve the
low-complexity forward-looking super-resolution target scatter-
ing reconstruction. Compared to existing L1-IRN methods, the
proposed method boasts several advantages. First, it completely
eliminates the need for user parameters and exhibits excellent
adaptive capabilities. In addition, there is no requirement to
compute the inverse of high-dimensional matrices, significantly
reducing computational complexity compared to traditional L1

methods. This feature facilitates the hardware implementation
of the algorithm.

The rest of this article is organized as follows. Section II
introduces the echo model of the forward-looking scanning
radar. Section III presents a comprehensive overview of the
proposed method. Sections IV and V provide the simulation
and measured data results. Finally, Section VI concludes this
article.

II. ECHO MODEL

The geometric motion model of the forward-looking scanning
radar is depicted in Fig. 1. The height of the aircraft is H .
The velocity along the Y -axis is v, and the radar beam scans
counterclockwise with an angular velocity ω. The pitch angle of
the beam is α, and at time t = 0, the aircraft is located at point
A. Assuming there is a target P in the space at time t, with P
located at a distance R0 from point A, and having a horizontal
azimuth of ϕ0 and a spatial azimuth of θ0. Geometric relations
yield cos θ0 = cosϕ0 cosα.

Suppose that at time t, the aircraft moves from point A to
point B and the horizontal azimuth of the target P relative to
the aircraft is ϕ and the spatial azimuth is θ, then the distance
between the aircraft and the targetP can be expressed as follows:

R(t) =
√

R2
0 + (vt)2 − 2R0vt cos θ0. (1)

Fig. 1. Geometric motion model of forward-looking scanning radar.

The Taylor series expansion ofR(t) at t = 0 yields as follows:

R(t) = R0 − v cos θ0t+
v2 sin2 θ0

2R0
t2. (2)

Based on literature [17] and [25], ignoring the influence of the
quadratic term in the above formula, R(t) can be approximated
as follows:

R(t) ≈ R0 − v cos θ0t. (3)

Forward-looking scanning radar emits large bandwidth linear
frequency modulation (FM) signals, such that

S(τ) = rect

(
τ

Tr

)
exp

(
j2πf0τ + jπKrτ

2
)

(4)

where τ is the fast time variable in range direction, Tr is the
pulsewidth of the linear FM signal, f0 is the carrier frequency,
Kr is the FM slope, and rect(·) is the rectangular window
function of width Tr.

For the target P , the echo signal after down-conversion can
be expressed as follows:

S(τ, t) = σ0f(t)rect

(
τ − τd
Tr

)
exp

(
jπKr(τ − τd)

2
)

exp (−j2πf0τd) (5)

where σ0 is the target scattering coefficient of P , f(t) is the
antenna pattern modulation function, t is the slow time variable
in azimuth direction, τd = 2R(t)/c is the echo delay, and c is
the speed of the electromagnetic wave.

By pulse compression of the echo signal, we can obtain the
following:

Src(τ, t) = σ0f(t)sinc [B(τ − τd)] exp (−j2πf0τd) (6)

where sinc[·] is the range pulse compression response function
and B is the transmitted signal bandwidth.
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After pulse compression, for low-speed platforms, the
Doppler term exp(−j2πf0τd) is ignored. Considering all targets
within the detection range, it can be observed that the azimuth
echo can be represented as a convolution of the azimuth antenna
pattern function and target scattering, illustrated as follows:

S̄rc (τ, t) =

∫∫
σ0f(t)sinc [B (τ − τd)]dτdt. (7)

Assuming the range and azimuth angle of a random target in
this space is R and θ, we can get the following:{

τ = 2R
c

t = θ−θ0
ω .

(8)

Substituting (8) into (7) can obtain the following:

S̄rc (R, θ) =

∫∫
σ0f (θ − θ0) sinc

[
2B

c
(R−Rd)

]
dRdθ.

(9)

Equation (9) can be written in convolution form as follows:

S̄rc (R, θ) = h (R, θ) ∗ σ (R, θ) (10)

where h(R, θ) is the antenna pattern function and σ(R, θ) rep-
resents the effective scattering function. Consider additive noise
n(R, θ), we have

S̄rc (R, θ) = h (R, θ) ∗ σ (R, θ) + n (R, θ) . (11)

For a certain range bin, discretization of (11) yields [26], [27]
as follows:

y = Dm+ n (12)

where y ∈ C
N represents the echo, N is the sampling number

of azimuthal echo, m ∈ C
N is the scattering coefficient of the

target, n ∈ C
N is the additive noise, and D ∈ C

N×N is the
antenna pattern matrix, respectively. In this article, the echo is
disregarded during the scanning of the beam in and out of the
scene, leading to the consideration of a truncated antenna pattern
matrix [28], which can be precisely formulated as follows:

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d(θ0) · · · d(θ−l)

...
. . .

. . .

d(θl)
. . . d(θ−l)

. . .
. . .

...
d(θl) · · · d(θ0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
N×N

(13)

where [d(θ−l) . . . d(θ0) . . . d(θl)] represents samples of the an-
tenna pattern, with the count of samples being governed by the
pulse repetition frequency, beamwidth, and antenna scanning
velocity.

III. PROPOSED METHOD

In this section, the conventional L1-IRN method was re-
viewed, and its parameter selection issues were analyzed. Then,
an adaptive method utilizing iterative weight parameters is
derived based on Bayesian theory. Finally, the computational
complexity of the algorithm is reduced by employing the matrix
dimension reduction strategy.

A. Conventional L1-IRN Method

Recovering the scattering coefficientm from the echoy poses
a challenging ill-posed issue. To relax this ill-posedness, regu-
larization methods can be employed, incorporating constraints
on unknown variables during the inverse solution process.

The conventional regularization function can be represented
as follows:

m̂ = argmin
1

p
‖y −Dm‖pp + λ

1

q
‖m‖qq (14)

where the selected norm type determines the values of p and q.
1
p‖y −Dm‖pp represents the term related to data fitting, while
1
q‖m‖qq signifies penalty term. The regularization parameter λ

ensures a balance between the sparsity of s and the amplification
of noise.

In terms of sparse super-resolution issues, theLq norm, where
0 � q � 1, is typically utilized as the penalty function. A smaller
q indicates a stronger sparse requirement. Therefore, the value
of q should be minimized in theory. When 0 � q � 1, obtaining
the global optimum solution is challenging. Hence, the sparse
characteristics of the L1 norm are commonly employed to
characterize the target.

When the values of p and q are 2 and 1, respectively, the
super-resolution problem of scanning radar can typically be ex-
pressed as an optimization problem constrained by the L1 norm.
Referencing [21], the objective function is established with
regularization imposed via the L1 norm and fidelity constrained
to minimize error energy. Thus, the optimization problem can
be articulated as follows:

m̂ = argmin
m

||y −Dm||22 + λ||m||1 (15)

where λ is the regularization parameter.
Employing IRN to tackle the above problem, the iterative

procedure can be outlined as follows [21]:

mj+1 =
(
DTD+ λQj

)−1
DTy (16)

where j represents the number of iterations, Qj = diag
(|mj |−1).

While this approach enhances angular resolution, it is impor-
tant to note the presence of a user-defined parameter λ in the
iterative process of IRN. This parameter necessitates manual
adjustment. However, λ proves to be highly sensitive to noise,
undermining the robustness and adaptability of IRN.

A curve of the mean square error (MSE) changing with λ,
when λ varies from 0.001 to 20, is given in Fig. 2. It can be seen
that with the increase of λ, the value of MSE first decreases and
then increases. In our simulations, a smaller λ yields higher res-
olution but compromises noise immunity. Conversely, a larger
λ results in lower resolution but smoother outcomes. The above
two cases will lead to the increase of MSE value. Therefore,
to obtain the expected imaging results, it is necessary to set
the value of λ with the smallest MSE in Fig. 2 when adjusting
the parameter λ, which can maintain a good balance between
lower noise and better resolution. However, for the measured
data without reference values, it is almost impossible to find the
optimal λ manually.
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Fig. 2. MSE versus λ.

B. Adaptive L1-IRN Method

In this section, the adaptive L1-IRN sparse super-resolution
algorithm designed for scanning radar was developed, leverag-
ing on the principles outlined in [7]. We have crafted a more
robust method for computing λQj in (16) by transforming the
sparsity estimation challenge (15) into a maximum a posteriori
(MAP) estimation problem.

In (15), the parameter λ serves as a constant factor balancing
the L1 norm sparse regularization term and the data fidelity
term. Research has demonstrated that employing reweighted
L1 norm sparsity yields results closer to the L1 norm sparsity
compared to using constant weights. This adjustment enhances
the reconstruction of sparse signals, prompting the rewriting of
the L1 norm in (15) as follows:

λ ‖m‖1 =

K∑
i=1

λi|mi|. (17)

Based on Bayesian theory, the MAP estimate of m and y can
be written as follows:

m̂ = argmax
m

{logP (m|y)} . (18)

Equation (18) can be simplified as follows:

m̂ = argmin
m

{− logP (y|m)− logP (m)} (19)

where P (y|m) represents the likelihood function and P (m)
represents the prior information of the target. Assuming that
noise e follows a Gaussian distribution with zero mean and σn

variance, the likelihood function can be written as follows:

P (y|m) =
1

σn

√
2π

exp

(
− 1

2σn
2
‖y −Dm‖22

)
. (20)

The prior distribution of P (m) usually satisfies a Laplacian
probability model with zero means as follows:

P (m) =
K∏
i=1

1√
2γi

exp

(
−
√
2

γi
|mi|

)
(21)

where γi is the variance of mi. By replacing the L1 norm in (15)
with (17), the resultant expression is as follows:

m̂ = argmax
m

‖y −Dm‖22 +
K∑
i=1

λi |mi|. (22)

According to the principle of logarithmic operation, (19) can
be rewritten as follows:

m̂ = argmin − {log [P (y|m)P (m)]} . (23)

By bringingP (y|m) from (20) andP (m) from (21) into (23),
the resultant expression is as follows:

m̂ = argmin
m

−
{
log

K∏
i=1

1

2
√
πγiσn

+ log exp

(
− 1

2σn
2
‖y −Dm‖22 −

K∑
i=1

√
2

γi
|mi|

)}
. (24)

Further simplifying (24) yields the following:

m̂ = argmin
m

− log

K∏
i=1

1

2
√
πγiσn

+
1

2σn
2
‖y −Dm‖22 +

K∑
i=1

√
2

γi
|mi|. (25)

It is apparent that 2σ2
n is a constant that has no effect on the

estimation of m. The first component of (25) is not related to m
and does not influence its estimation.

m̂ = argmin
m

‖y −Dm‖22 +
K∑
i=1

2
√
2σn

2

γi
|mi|. (26)

By matching the coefficients of corresponding terms in (22)
and (26), the iterative equation for the weighting parameter λi

can be derived as follows:

λi =
2
√
2σ̂2

n

γi
. (27)

To ensure numerical stability, we can rewrite the iterative
equation for the weighted parameters λi as follows:

λi =
2
√
2σ̂2

n

γ̂i + ε
(28)

where γ̂i represents the estimate of γi, σ̂2
n represents the estimate

of noise power σn
2, and ε is a constant used to keep the value

stable, respectively. The estimation of noise power σ̂2
n can be

expressed as follows:

σ̂2
n =

1

N
‖y −Dmj‖22 (29)

where mj represents the target scattering estimate for the jth it-
eration. The iterative updating expression of adaptive parameter
based on IRN can be written as follows:

mj+1 =
(
DTD+ diag

(
λ · (mj)

−1
))−1

DTy (30)

where λ = [λ1, λ2, . . . , λk] is calculated from (28) and m0 =
(DTD+ I)−1DTy.
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C. Fast Adaptive L1-IRN Method

In the previous section, the iterative (30) for the adaptive
L1-IRN method was obtained. While this approach offers the
flexibility to dynamically update the regularization parameter
λ, the matrix inverse operation (DTD+ diag(λ · (mj)

−1))−1

required in every iteration poses a significant challenge, resulting
in exceptionally high computational complexity.

A fast implementation approach for the adaptive L1-IRN
method is proposed to mitigate this challenge. It accomplishes
dimensionality reduction of high-dimensional matrices through
QR decomposition, effectively reducing computational com-
plexity while preserving essential information. QR decompo-
sition can decompose a matrix into the product of an orthogonal
matrix and an upper triangular matrix. Assuming B is an m× n
matrix, then QR decomposition is to find an orthogonal matrix
Q̂ of m×m and an upper triangular matrix R̂ of m× n.

To construct matrix Q̂, the initial step involves forming a
random matrix T(N×a), where N is the length of the column
echo signal and a is the target dimension of dimensionality
reduction. Based on the theory in [27], a can be adaptively
determined by the antenna size, wavelength, and scanning range.
Define matrix Y as follows:

Y = DT(N×a). (31)

Then, QR decomposition is performed on the transformed
matrixY to obtain the orthogonal matrix Q̂N×N . Since we want
to reduce dimension to dimensiona, we select the firsta columns
from matrix Q̂N×N to get the matrix Q.

Using the constructed matrix Q to reduce the dimension of
the antenna pattern function D and echo y, it can be obtained
as follows: {

ȳ = QTy
D̄ = QTD.

(32)

After dimension reduction, the computational complexity
of (30) decreases from 4N3 +N to N3 + 3N2a+
N . However, the dimension of the inverse matrix
(D̄T D̄+ diag(λ · (mj)

−1))−1 remains N3 +N2a+N . To
further reduce the complexity, we utilize the Sherman–Morrison
formula [29] to change the order of D̄T and D̄ in the inverse
matrix.

Based on the Sherman–Morrison equation, we can derive the
iterative updating expression of fast adaptive L1-IRN method
from the iterative updating expression of adaptive L1-IRN
method. Suppose U = D̄T D̄+ diag(λ · (mj)

−1). Then, we
have as follows:

U
(

diag
(
λ · (mj)

−1
))−1

= DTD
(

diag
(
λ · (mj)

−1
))−1

+ I. (33)

A new weighting matrix is defined as Wj as follows:

Wj =
(

diag
(
λ · (mj)

−1
))−1

. (34)

Substituting (34) into (33)

UWj = D̄T D̄Wj + I. (35)

Multiply both sides on the right by D̄T as follows:

UWjD̄
T = D̄T D̄WjD̄

T + D̄T . (36)

It can be obtained after reorganizing (36) as follows:

UWjD̄
T = D̄T

(
I+ D̄WjD̄

T
)
. (37)

Since (D̄WjD̄
T + I) is invertible, by multiplying both sides

on the right by it, we can get the following:

UWjD̄
T
(
I+ D̄WjD̄

T
)−1

= D̄T . (38)

Multiplying each side by D̄ followed by adding Wj
−1 yields

the following result:

UWjD̄
T
(
I+ D̄WjD̄

T
)−1

D̄+Wj
−1

= D̄T D̄+Wj
−1

= U. (39)

After tidying up, we have

Wj
−1 = U

(
I−WjD̄

T
(
D̄WjD̄

T + I
)−1

D̄
)
. (40)

Move U to the left side of the equation as follows:

U−1Wj
−1 = I−WjD̄

T
(
I+ D̄WjD̄

T
)−1

D̄. (41)

Then, we have the lower complexity expression for U as
follows: (

D̄T D̄+ diag
(
λ · (mj)

−1
))−1

= Wj −WjD̄
T
(
I+ D̄WjD̄

T
)−1

D̄Wj (42)

where the dimension of the matrix to be inverted is reduced
from N to a. The recurrent representation for the fast adaptive
L1-IRN method is formulated as follows:

m̄j+1 =
(
Wj −WjD̄

T
(
I+ D̄WjD̄

T
)−1

D̄Wj

)
D̄T ȳ

(43)

where m̄0 = (IN×N − D̄T (Ia×a + D̄D̄T )
−1
D̄)D̄T ȳ, I is the

identity matrix. The pseudocode of the algorithm is as follows:

Initialize : m̄0 =
(
IN×N − D̄T

(
Ia×a + D̄D̄T

)−1
D̄
)
D̄T ȳ

for j = 0, 1, 2, · · ·

λ =
2
√
2 1
N ‖y −Dmj‖22

γ̂i + ε

Wj =
(
diag

(
λ · (mj)

−1
))−1

m̄j+1 =
(
Wj −WjD̄

T
(
I+ D̄WjD̄

T
)−1

D̄Wj

)
D̄T ȳ

end
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TABLE I
COMPUTATIONAL COMPLEXITY ANALYSIS

D. Complexity Analysis

Since Qj is the identity matrix of N ×N , the computa-
tional complexity of λQj is N . The computational complex-
ity of DTD+ λQj is N3 +N , and its computational com-
plexity after inversion is 2N3 +N . In summary, the com-
putational complexity of the initialization equation mj+1 =
(DTD+ λQj)

−1DTy is 4N3 +N .
The computational complexity of operation Ia×a + D̄D̄T

is Na2. Since it is an a× a matrix after operation,
its computational complexity after inversion is Na2 +
a3. Therefore, the computational complexity of operation
IN×N − D̄T (Ia×a + D̄D̄T )

−1
D̄ is 2N2a+ 2Na2 + a3. In

summary, the computational complexity of the initializa-
tion equation m̄0 = (IN×N − D̄T (Ia×a + D̄D̄T )

−1
D̄)D̄T ȳ is

4N2a+ 2Na2 + a3.
The computational complexity of iterative equation m̄j+1 =

(Wj − WjD̄
T (I+ D̄WjD̄

T )
−1
D̄Wj)D̄

T ȳ is 4N2a+
2Na2 + a3 + 5N , the calculation of which is the same as
the computation that we have made before. In conclusion, the
complexity of the proposed fast adaptive L1-IRN method is
O(JN2a).

According to the above derivation, the algorithm complexity
comparison of traditional L1-IRN method, adaptive L1-IRN
method and fast adaptive L1-IRN method is shown in Table I. It
can be seen that the computational complexity has been reduced
from O(JN3) to O(JN2a).

IV. SIMULATION

In this section, point target simulation and surface target sim-
ulation are conducted using the traditional L1-IRN method with
different regularized parameter, the adaptive L1-IRN method,
and the fast adaptive L1-IRN method. The simulation results
of these three methods will be compared to demonstrate the
effectiveness of the proposed fast adaptive L1-IRN method. The
simulation is performed on a 12th Gen Intel Core i9-12900H
processor with 64GB RAM, using Windows 11 and MATLAB

2021.

A. Point Target Simulation

To validate the effectiveness of the proposed method, this
section conducts point target simulation. The simulation envi-
ronment parameters are listed in Table II.

1) Profile Results: The original scene of point targets is
depicted in Fig. 3, where targets with identical amplitudes are
positioned at −1◦ and 1◦. Fig. 4(a) illustrates the echo with
a SNR of 20 dB. Because the beam width is larger than the

TABLE II
SIMULATION PARAMETERS OF THE POINT TARGET

Fig. 3. Original scene of point target.

target interval, the echo energy of the two targets is aliased.
We conducted 10 Monte Carlo tests for each super-resolution
method, with results shown in Fig. 4(b)–(f). When λ = 0.1, the
imaging result of the traditional L1-IRN method is shown in
Fig. 4(b). It can be seen that it has high resolution, but it will
amplify the noise, resulting in many identification errors in the
imaging result. When λ = 10, the imaging result of traditional
L1-IRN method is shown in Fig. 4(c). When λ = 50, the result of
the previous method is shown in Fig. 4(d). It can be observed that
its noise is reduced compared to the previous two parameters, but
the resolution is also decreased. Fig. 4(e) exhibits the imaging
result of the adaptive L1-IRN method, demonstrating superior
resolution and noise suppression compared to the traditional
L1-IRN method. Finally, Fig. 4(f) presents the imaging result of
the fast adaptiveL1-IRN method, indicating that the acceleration
step does not compromise resolution.

2) Quantitative Analysis: MSE is introduced in this article
to measure the performance of the reconstruction quality. The
smaller the value of MSE, the better the performance of the
super-resolution method. MSE can be defined as follows:

MSE =
1

S

S∑
i=1

(m̂i −mi)
2 (44)
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Fig. 4. Point target profile result. (a) Real beam echo. (b) Simulation result of traditional L1-IRN method when λ = 0.1. (c) Result of traditional L1-IRN method
when λ = 10. (d) Result of traditional L1-IRN method when λ = 50. (e) Result of adaptive L1-IRN method. (f) Result of the fast adaptive L1-IRN method.

TABLE III
MSE VALUES OF THE THREE METHODS UNDER 20 DB SNR

where m is the true value, m̂i is the estimated value of m at
ith direction, and S is the total number of Monte Carlo trials,
respectively. The MSE values of the three methods under 20 dB
SNR are shown in Table III. It is observable that the smallest
MSE value is achieved by the traditional L1-IRN method when
λ = 0.1. However, under this condition, false targets will appear.
The false alarm phenomenon is unacceptable for radar appli-
cations, which is not conducive to subsequent target detection
and recognition. Whereas, the proposed method exhibits a lower
MSE than the traditional L1-IRN method under λ = 10 and 50,
and comparably aligns with the adaptive L1-IRN method. This
indicates that the acceleration process of the proposed method
has little impact on the reconstruction quality.

The performance of the super-resolution method is further
demonstrated by introducing the peak-to-valley ratio (PVR),
which is mainly used to describe the proportional relationship
between the maximum amplitude (peak) and the minimum
amplitude (valley value) of the signal, as depicted by Fig. 5.
The higher the PVR value, the better the ability to distinguish

Fig. 5. Peak-to-valley ratio.

between two adjacent objects. Peak-to-valley ratio can be de-
fined as follows:

PVR = 20log10(Apeak −Avalley) (45)

where Apeak and Avalley indicate the maximum and minimum
amplitude of the signal, repectively. The PVR values of the three
methods under 20 dB SNR are shown in Table IV.

Mirroring the circumstances of MSE, observations indicate
that the traditional L1 method generates a substantial number
of falsified targets in the imaging results when λ = 0.1. Conse-
quently, the miscalculations of peak and valley values hinder the
accurate computation of PVR. The PVR value of the adaptive
L1-IRN method and fast adaptive L1-IRN method is larger than
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TABLE IV
PVR VALUES OF THE THREE METHODS UNDER 20 DB SNR

TABLE V
RUNNING TIMES OF THE THREE METHODS

TABLE VI
SIMULATION PARAMETERS OF THE SURFACE TARGET

the traditional L1-IRN method under λ = 10 and 50, which
proves that its ability to distinguish targets is stronger than
traditional L1-IRN method. The PVR value of the fast adaptive
L1-IRN method is almost the same as the adaptive L1-IRN
method, which indicates that the acceleration process has no
effect on the ability to distinguish between targets. The running
times of the three methods are shown in Table V.

It is apparent that the fast adaptive L1-IRN method ex-
hibits the shortest running time. In summary, this method re-
duces the algorithm’s computational complexity while maintai-
ning the resolution and parameter-free capabilities. The simu-
lation results demonstrate the feasibility of employing the fast
adaptive L1-IRN method for point target scenarios.

B. Surface Target Simulation

To further validate the effectiveness of the fast adaptive
L1-IRN method, we conducted surface target simulation in
this section. The parameters of the simulation environment are
presented in Table VI.

1) Surface Target Results: The original scene of the surface
target is shown in Fig. 6. The echo with a SNR of 20 dB is shown

Fig. 6. Original scene of the surface target.

TABLE VII
MSE VALUES OF THE THREE METHODS UNDER 20 DB SNR

in Fig. 7(a). We have conducted multiple sets of Monte Carlo
experiments, and the results of one set of experiments are shown
in Fig. 7(b)–(f). The simulation result of the traditional L1-IRN
method when λ = 0.5 is shown in Fig 7(b). The simulation
result of the traditional L1-IRN method when λ = 20 is shown
in Fig. 7(c). The imaging result is noticeably superior to those
obtained when λ = 0.5, with false targets eliminated despite
a slight decrease in resolution. The simulation result of the
traditional L1-IRN method when λ = 400 is shown in Fig. 7(d).
It can be observed that with the increase in the regularization
parameter λ, the azimuthal resolution of the imaging gradually
decreases. Therefore, the traditional L1IRN method requires
adjusting an optimal λ to achieve the best imaging result, which
does not facilitate the practical applications.

On the contrary, the simulation result of the adaptive L1-IRN
method is illustrated in Fig. 7(e). It can be seen that the resolution
and noise suppression effect of this method are better than the
traditional method with differentλ. However, this method suffers
a high computational complexity, resulting in a running time
of 76.86 s. Leveraging the dimension reduction strategy, the
proposed fast adaptiveL1-IRN method achieves almost the same
imaging result, which is displayed in Fig. 7(f) with a running
time of 32.81 s. The proposed fast adaptive L1-IRN method
achieves algorithm acceleration with minimal compromise on
imaging quality.

2) Quantitative Analysis: In this section, the MSE values
of three methods at a 20 dB SNR are provided, as shown in
Table VII.

The structural similarity index (SSIM) is introduced to ana-
lyze the performance of image reconstruction. SSIM is an index
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Fig. 7. Surface target profile result. (a) Real beam echo. (b) Simulation result of traditional L1-IRN method when λ = 0.5. (c) Result of traditional L1-IRN
method when λ = 20. (d) Result of traditional L1-IRN method when λ = 400. (e) Result of adaptive L1-IRN method. (f) Result of the fast adaptive L1-IRN
method.

TABLE VIII
SSIM VALUES OF THE THREE METHODS UNDER 20 DB SNR

to measure the visual similarity of two images, which is affected
by the brightness, contrast, and structure of the images. SSIM
can be defined as follows:

SSIM(M,Y) =
(2μMμY + c1) (2σMY + c2)

(μ2
M + μ2

Y + c1) (σ2
M + σ2

Y + c2)
(46)

where M is the matrix of the results of each super-resolution
method, which can be specified as M = [m1,m2, . . . ,mL].
Y is the echo matrix, which can be specified as Y =
[y1,y2, . . . ,yL]. μM is the average value of M, μY is the mean
value of Y, σM is the variance of M, σY is the variance of Y,
and σMY is the covariance of M and Y, respectively. c1 and c2
are constant. The SSIM values of the simulation results of the
three super-resolution methods are shown in Table VIII.

Through comparison, the SSIM and MSE values of traditional
L1-IRN method at λ = 0.5 and 400 are inferior, leading to
unsatisfactory imaging results. Conversely, the SSIM and MSE
value of the traditionalL1-IRN method at λ = 20 exhibit relative
improvement, likely because λ = 20 is closer to the optimal

TABLE IX
RUNNING TIME OF THE THREE METHODS

parameter. Notably, the adaptive L1-IRN method outperforms
other techniques in terms of both SSIM and MSE values, indi-
cating a simulation outcome more similar to the original scene.
Moreover, the SSIM and MSE values of the fast adaptiveL1-IRN
method nearly match those of the adaptive L1-IRN method,
suggesting that the acceleration process does not compromise
imaging quality. Table IX presents the runtime performance of
these three methods.

It can be seen that the fast adaptive L1-IRN method has the
shortest running time. In summary, the fast adaptive L1-IRN
method can greatly reduce the computational complexity of
the algorithm while maintaining adaptability and high azimuth
resolution. The simulation results show that the fast adaptive
L1-IRN method is feasible to the surface target.

V. MEASURED DATA RESULTS

In the previous section, the feasibility of the proposed method
was demonstrated through point and surface target simulation
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Fig. 8. Optical scene.

TABLE X
EXPERIMENTAL PARAMETERS

experiments. To further validate the imaging performance of the
proposed method, two sets of experimental measured data are
utilized.

A. Analysis of Experimental Measured Data 1

1) Imaging Results: The real scene depicted in Fig. 8 reveals
several groups of ships, with notably short azimuthal distances
between two boats highlighted in the red box. Experimental
parameters are detailed in Table X. As illustrated in Fig. 9(a), the
echo image fails to distinguish between the two ships directly.
The super-resolution imaging results, presented in Fig. 9(b)–(f),
exhibit varying outcomes based on different values of λ.

When λ = 0.01, the imaging result of the traditional L1-IRN
method is shown in Fig. 9(b), which contains abundant false
targets. When λ = 0.1, the imaging result of the traditional
L1-IRN method is shown in Fig. 9(c). It can be seen that the
number of false targets has decreased, but the ships are not
clear. When λ = 10, the imaging result of the traditionalL1-IRN
method is shown in Fig. 9(d), where it can be seen that the ships
are more visible, but they are not completely separated. Through
traditional L1-IRN simulation under different parameters λ, it is
observed that continuous adjustment of λ is necessary to achieve
the best imaging result. The imaging result obtained using the
adaptive L1-IRN method is depicted in Fig. 9(e), showing its
ability to distinguish between the two ships. Notably, the result-
ing image is clearer and exhibits higher azimuth resolution. The
imaging result of the fast adaptive L1-IRN method is shown
in Fig. 9(f). Comparing Fig. 9(e) and (f), it can be seen that
a small number of weak targets in Fig. 9(f) are disappeared.
This phenomenon occurs due to the dimensionality reduction

TABLE XI
IMAGE ENTROPY OF THE THREE METHODS

of the echo matrix, which essentially reduces the observation
information used for super-resolution processing. Moderate di-
mensionality reduction only slightly affects imaging quality, and
a good reconstruction can still be achieved for the main target
of interest, as shown in the red box of the ships in Fig. 9(f).
Conversely, excessive dimensionality reduction significantly de-
grades imaging quality, despite providing lower computational
complexity, which is the tradeoff for the “fast” of the proposed
method.

2) Quantitative Analysis: Image entropy is introduced to
quantify the quality of the imaging results of each method.
The higher image entropy means that the distribution of pixel
values is more uniform and the information or complexity of the
image is higher. On the contrary, lower image entropy means
that the distribution of pixel values is more concentrated and the
information is lower. Image entropy can be defined as follows:

H(X) = −
n∑

i=1

pilog2pi (47)

where pi represents the probability of gray level i appearing in
the image. The image entropy of the three methods is shown in
Table XI.

From Table XI, although the traditional L1-IRN method
exhibits lower image entropy at λ = 0.01, the imaging results
in Fig. 9(b) indicate that this parameter introduces more false
targets, resulting in the split scatters for the two ships. This is
actually detrimental to radar imaging. It can be seen that the
image entropy of the adaptive L1-IRN method is lower than
the traditional L1-IRN method under λ = 0.1 and 10, which
indicates that the image information distribution of the imaging
result of this method is more concentrated and the imaging result
is better. The image entropy of the fast adaptive L1-IRN method
is approximately the same as the adaptive L1-IRN method,
which indicates that the acceleration process has little effect on
the resolution. The running time of the three methods is shown
in Table XII.

It can be seen that the fast adaptive L1-IRN method has
the least running time. In conclusion, the fast adaptive L1-IRN
method can greatly reduce the computational complexity of the
algorithm while maintaining the resolution and noise suppres-
sion effect of the adaptive L1-IRN method. The experimental
results show that the fast adaptiveL1-IRN method can be applied
in practice.

3) Profile Analysis: Range bin of 1000 m of the profile results
of the three methods are extracted from Fig. 9, as depicted in
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Fig. 9. Measured data results. (a) Real beam echo. (b) Imaging results of traditional L1-IRN method with λ = 0.01. (c) Imaging results of traditional L1-IRN
method with λ = 0.1. (d) Imaging results of traditional L1-IRN method with λ = 10. (e) Imaging results of adaptive L1-IRN method. (f) Imaging results of fast
adaptive L1-IRN method.

TABLE XII
RUNNING TIME OF THE THREE METHODS

TABLE XIII
3 DB BANDWIDTHS FOR THE THREE METHODS

Fig. 10. The 3 dB bandwidths of real beam echo and these
methods are illustrated in Table XIII.

Observations indicate that the traditional L1-IRN method
achieves the smallest 3 dB azimuthal width when λ = 0.01,

Fig. 10. Profile results of the echo and imaging results from 1000 m range bin
in Fig. 9.

but there will be numerous false targets. When λ = 10, tra-
ditional L1-IRN method has improved the issue of erroneous
targets appearing. However, the 3 dB azimuthal width is wide.
When λ = 0.1, traditional L1-IRN method has found a balance
between the appearance of erroneous targets and reducing the
3 dB azimuthal width, but it requires manual adjustment of user
parameters and has high computational complexity. Whereas,
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Fig. 11. Optical scene.

the proposed method exhibits a lower 3 dB azimuthal width than
the traditional L1-IRN method under λ = 10, and comparably
aligns with the adaptive L1-IRN method. This indicates that
the acceleration process of the proposed method has nearly no
impact on the super-resolution quality.

B. Analysis of Experimental Measured Data 2

1) Imaging Results: The second set of the measured data was
recorded at the University of Electronic Science and Technology
(UESTC), Ginkgo Road, Chengdu, China, and Fig. 11 shows
the optical image (from Google Earth). The real scene reveals
several groups of ginkgo trees arranged vertically on both sides
of the road. Experimental parameters are the same as in Table X.
As illustrated in Fig. 12(a), the azimuth resolution of echo image
is poor, and neighboring trees further back in the image are
indistinguishable.

The super-resolution imaging results, presented in Fig. 12(b)–
(f), exhibit varying outcomes based on different values of λ.
When λ = 1000, the imaging result of the traditional L1-IRN
method is shown in Fig. 12(b), which contains abundant false
targets. When λ = 10000, the imaging result of the traditional
L1-IRN method is shown in Fig. 12(c). It can be seen that the
number of false targets has decreased, but the trees are not clear.
When λ = 400000, the imaging result of the traditional L1-IRN
method is shown in Fig. 12(d), where it can be seen that the
trees are more visible. However, many weak targets disappear.
The adaptive L1-IRN method’s output, illustrated in Fig. 12(e),
effectively discriminates between trees, offering a clearer image
and enhancing azimuth resolution. The fast adaptive L1-IRN
method, visualized in Fig. 12(f), maintains similar imaging
quality to the former method but with reduced computational
demands.

2) Quantitative Analysis: The image entropy of the three
methods is shown in Table XIV.

From Table XIV, although the traditional L1-IRN method
exhibits lower image entropy at λ = 400000, the imaging results
in Fig. 12(d) indicate that this parameter makes a large num-
ber of targets disappear, which is actually detrimental to radar
imaging. It can be seen that the image entropy of the adaptive

TABLE XIV
IMAGE ENTROPY OF THE THREE METHODS

TABLE XV
RUNNING TIME OF THE THREE METHODS

TABLE XVI
COMPLEXITY COMPARISON BETWEEN ADAPTIVE L1-IRN METHOD AND FAST

ADAPTIVE L1-IRN METHOD

L1-IRN method is lower than the traditional L1-IRN method
under λ = 1000 and 10000, which indicates that the image
information distribution of the imaging result of this method
is more concentrated and the imaging result is better. The image
entropy of the fast adaptive L1-IRN method is approximately
the same as the adaptive L1-IRN method, which indicates that
the acceleration process has little effect on the resolution. The
running time of the three methods is shown in Table XV. The
fast adaptive L1-IRN method demonstrates the shortest runtime
among the compared techniques.

In summary, the proposed approach dramatically lowers com-
putational complexity while preserving resolution and noise
suppression capabilities akin to the adaptive L1-IRN method.
The experimental results support the practical applicability of
the fast adaptive L1-IRN method.

C. Comparison of Complexity Between Adaptive L1-IRN
Method and Fast Adaptive L1-IRN Method

The computational complexity of adaptive L1-IRN method
and fast adaptive L1-IRN method with varying scanning scope
from −4.5 ◦−4.5 ◦ to −36 ◦−36 ◦ is investigated. Correspond-
ingly, N varies from 150 to 1200 (PRF = 1000 Hz and ω =
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Fig. 12. Measured data results. (a) Real beam echo, (b) Imaging results of traditional L1-IRN method with λ = 1000. (c) Imaging results of traditional L1-IRN
method with λ = 10000. (d) Imaging results of traditional L1-IRN method with λ = 400 000. (e) Imaging results of adaptive L1-IRN method. (f) Imaging results
of fast adaptive L1-IRN method.

60◦/s). The running time of adaptive L1-IRN method and fast
adaptive L1-IRN method, referred to as ta and tfa, respectively,
are recorded in seconds in Table XVI. We can observe that
as N increases, the computational savings provided by fast
adaptive L1-IRN method become more significant compared
with adaptive L1-IRN method.

VI. CONCLUSION

In this article, we propose a novel fast adaptive L1 iterative
reweighted imaging method for forward-looking radar super-
resolution. The proposed method adapts effectively to different
environments while maintaining robustness. Unlike traditional
L1-IRN super-resolution techniques, our approach eliminates
the need for manual parameter tuning. Furthermore, compared to
conventional adaptiveL1-IRN, our method significantly reduces
computational complexity from O(JN3) to O(JN2a), making
it especially suitable for wide-area radar super-resolution imag-
ing tasks.
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