
18882 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024
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Abstract—Pansharpening is to fuse a panchromatic (PAN) image
with a multispectral (MS) image to obtain a high-spatial-resolution
MS (HRMS) image. Although the denoising diffusion probabilis-
tic model can generate high-quality image details, its inherent
stochasticity can lead to spectral and spatial distortions in the
pansharpening task, and the adding noise method for fixed-size
images can weaken the generalization of the model at different
scales. To address these issues, a novel pansharpening method based
on prior-guided dual-branch diffusion model (PDDM) is proposed.
First, a dual-branch diffusion model for different information flows
from MS and PAN images is constructed to achieve the spatial
and spectral fidelity, which is developed by a collaborative and
adversarial learning strategy. Then, to guide detail recovery and
reduce the uncertainty of the generated detail information, two
pregeneration modules based on different prior information are
designed for pixel-to-pixel reconstruction. Finally, a focus module is
constructed to fuse the features from the dual-branch and improve
the generalization of the proposed PDDM. Extensive experiments
on multiple satellite datasets demonstrate that the proposed PDDM
has superior performance compared to state-of-the-art methods.

Index Terms—Diffusion model, dual-branch, pansharpening,
pregeneration module.

I. INTRODUCTION

MULTISPECTRAL (MS) images have been widely used
in various fields, such as rescue, navigation, and geo-

logical exploration [1], [2], [3], [4], [5]. However, due to the
current physical limitations of sensors, MS sensors capture
images with low-spatial resolution, which are not conducive to
practical applications [6], [7], [8], [9]. To address this issue,
researchers fuse low-spatial-resolution MS (LRMS) image with
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high-spatial-resolution panchromatic (PAN) image to obtain
high-spatial-resolution MS (HRMS) image, namely, pansharp-
ening. Although great achievements have been obtained in the
field of pansharpening, there are still some challenges [10], [11],
[12]. For instance, how to generate high-quality spatial details
and preserve the similarity to the source images in terms of
spatial and spectral information, are still hot research topics [13],
[14], [15].

Currently, the existing pansharpening methods are mainly
divided into four categories, i.e., component substitution meth-
ods [16], [17], [18], multiresolution analysis methods [12], [19],
variational optimization methods [20], [21], [22], and deep
learning (DL)-based methods [23], [24], [25]. The first three
categories are traditional methods, which use symbolic compu-
tation to generate the HRMS images. Wang et al. [26] proposed a
two-stage approach to generate prior information, which is then
integrated into the pansharpening model to simulate the spatial–
spectral degradation process. Wen et al. [27] developed a spatial
fidelity term with a learnable nonlinear mapping to establish a
nonlinear relationship between PAN and HRMS images. Wang
et al. [28] introduced fog-line priors to correct the fog effect in
source images, and then used a tensor completion technique to
reconstruct HRMS images from the corrected source images.
Traditional methods have the advantage of interpretability and
do not rely on large amounts of data. However, the fusion quality
of the traditional methods depends on the model design, and
the settings of various parameters in traditional methods are
uncertain, which may lead to inaccuracy in the constructed
models [29].

Inspired by the performance of DL technique, Masi et al. [23]
proposed a simple multilayer neural network, called PNN,
extracting feature from the MS and PAN images and fusing
them by convolution neural network (CNN), which is the first
CNN-based solution applied in the field of pansharpening. Sub-
sequently, several improved DL-based pansharpening methods
were proposed. TFNet [24] utilized two encoding structures to
extract features from MS and PAN images, respectively, ensur-
ing that spectral and spatial features are not interfered with each
other during the extraction process. FusionNet [25] absorbed
the idea of detail injection, using a residual network to learn
the injected information between the HRMS and LRMS images,
thereby reducing the learning burden of the network. TDNet [30]
used a multilevel, multibranch, and multidirectional architecture
to fully explore spatial and spectral features. AWFLN [31]
allowed the network to focus on the composite features of
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Fig. 1. Architecture of the proposed PDDM. SPAPM denotes the spatial pregeneration module, SPEPM denotes the spectral pregeneration module, ECM denotes
encoding-MS module, ECP denotes the encoding-PAN module, and FM denotes the focus module.

spectral and spatial information by an adaptive spatial–spectral
interleaved attention structure. Although the CNN methods have
advantages in feature extraction, the significant modality differ-
ence between MS and PAN images makes their results difficult
to preserve spatial information closed to the MS modality [32].

Currently, the denoising diffusion probabilistic model [33]
can generate high-quality image details compared to the CNN-
based model, and shows great potential in image denoising,
generation, and other visual domains. In these studies, Rui
et al. [34] developed a low-rank strategy to calculate the coeffi-
cient matrix, and then used this matrix to build an unsupervised
low-rank diffusion method for pansharpening. Pang et al. [35]
proposed an unsupervised HSI restoration framework called
HIR-Diff, which uses a pretrained diffusion model to decom-
pose the source images into the degraded images for image
restoration. Cao et al. [36] introduced a diffusion model for
pansharpening that effectively integrates high-frequency details
and spectral information. Zhong et al. [37] separated the learning
processes of spatial details and spectral features into distinct
branches, and proposed a spatial–spectral integrated diffusion
model for pansharpening. However, in pansharpening task, in-
herent stochasticity of denoising diffusion probabilistic model
often leads to the loss of spatial and spectral fidelity from source
images [33], and the loss is proportional to information quantity
of learning objects. Furthermore, the adding noise modes in
diffusion models generally aim at fixed-scale images during the
training process, which weakens generalization of model and
fusion performance at different scales. One approach to address
this issue is to divide the test samples into patches and compute
them separately. But this approach can lead to distortion due
to the window effect. Another one is to calculate the average
of the stacked patches using sliding windows [38], which sig-
nificantly increases computational complexity compared to the
original model.

To address the issues of denoising diffusion probabilistic
model in pansharpening, a prior-guided dual-branch diffusion

model (PDDM) is proposed for pansharpening. First, a dual-
branch diffusion model structure is constructed, with each
branch focusing on the recovery of spectral information and
spatial information, respectively. The two branches of the dif-
fusion model are guided by a collaborative loss, enhancing the
global perception of spectral and spatial features across these
two branches. Meanwhile, adversarial constraints are supervised
on the outputs of different branches to maintain the spatial and
spectral fidelity. Then, to reduce the uncertainty of generated de-
tail information, two pregeneration modules based on different
prior information are designed for pixel-to-pixel reconstruction.
Finally, a focus module is established, supervised by a joint
multiscale variation detection loss, to fuse the generated features
of two branches and improve the generalization of the PDDM at
different scales. The contributions of this work are as follows.

1) A dual-branch diffusion model, named PDDM is con-
structed for pansharpening, which can collaboratively
generate high-quality details through different informa-
tion streams for adversarial fusion, ensuring the spatial
and spectral fidelity of in each branch.

2) To reduce the uncertainty of the generated detail informa-
tion, two pixel-to-pixel pregeneration modules are estab-
lished based on spatial and spectral priors, which guide
the generation of details in the diffusion process.

3) A focus module is constructed to fuse the generated de-
tail information. In addition, a joint multiscale variation
detection loss is defined to supervise the focus module to
improve the generalization performance of the PDDM.

II. PROPOSED METHOD

In this section, the architecture of PDDM is presented, as
shown in Fig. 1, which consists of a dual-branch diffusion model,
pregeneration modules, and a focus module. In PDDM, each dif-
fusion branch injects condition features through spatial–spectral
information, respectively, which learns from two pregenerated



18884 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 2. Architectures of SPAPM and SPEPM. (a) SPAPM. (b) SPEPM.

pixel-to-pixel modules. Guided by prior information, two dif-
fusion branches are constructed to generate fusion features.
Finally, a focus module is built to generate the HRMS images.
Each component in PDDM is introduced in detail as follows.

A. Construction of Pregeneration Module

To reduce the uncertainty in the generation process of the
diffusion model, two pregeneration modules based on different
priors are designed, as shown in Fig. 2.

The obtained HRMS image M̂ is expected to be unique when
the PAN images and UPMS images M̃ are fixed, which can be
illustrated by the following probability models:

Pn1

(
M̂ |M̃, f

(
M̃, P

))
= Pn2

(
M̂ |P, f

(
P, M̃

))
(1)

f(a, b) = Norm(a) ∗ b (2)

where f(·) is an operation to obtain the features of input images,
Norm(·) is a normalization operation, and ∗ is a Hardman
product. Pn1 and Pn2 are two learnable networks.

Based on the probability model, we construct two pregener-
ated pixel-to-pixel modules according to different interference
ways for the two image features, namely, spectral pregeneration
module (SPEPM) and spatial pregeneration module (SPAPM).
These two modules are used for two diffusion model branches
to generate pansharpening results. The specific process is as
follows.

In the construction of SPAPM, given a pixel Pi,j of PAN
image, where i and j are the positional coordinates of the pixel,
influenced by the pixel M̃i,j at the corresponding position in
the UPMS image, the pixel M̂i,j is generated, as shown in the
following formula:

M̂ spa
i,j = fSPAPM

(
Pi,j , M̃i,j , PMi,j

)
(3)

where fSPAPM(·) is the network for preconstructing pixel M̂ spa
i,j ,

and PMi,j denotes an influence factor that can be obtained by

Algorithm 1: Training Process of the Pregeneration Mod-
ules.

Input: The UPMS images M̃ , PAN images P , GTs, and
epoch numbers.

Output: The parameters of fSPAPM(·) and fSPEPM(·).
for each epoch do

(1) Extract pixel M̃i,j and Pi,j from M̃ and P by
elementwise operation.

(2) Input M̃i,j and Pi,j into SPAPM and SPEPM to
obtain M̂i,j , and then reconstruct M̂i,j to output M̂ .

(3) Calculate Lbase = |GT − M̂ | for each module.
(4) Update parameters of fSPAPM(·) and fSPEPM(·)

modules, respectively.
end for
Return: The parameters of fSPAPM(·) and fSPEPM(·).

the following formula:

PMi,j = Norm
(
M̃i,j

)
⊗ Pi,j . (4)

By elementwise multiplication operator⊗, the interference fac-
tors PMi,j are obtained and used as inputs to the SPAPM to
obtain reconstruction pixels M̂ spa

i,j .

Similarly, assuming that pixels M̃i,j in the spectral channels
are also influenced by Pi,j , an SPEPM is constructed to obtain
the corresponding M̂ spe

i,j by the following formulas:

M̂spe
i,j = fSPEPM

(
M̃i,j , Pi,j ,MPi,j

)
(5)

MPi,j = Norm (Pi,j)⊗ M̃i,j . (6)

The training process of the pregeneration modules is shown in
Algorithm 1. By applying two learnable pixel-to-pixel pregen-
eration modules to the entire image, approximate reconstructed
images Y SPA and Y SPE can be quickly obtained, which are used
to guide the forward process of the diffusion model.

B. Structure of Diffusion Branch

In the construction of pregeneration modules, although the
reconstructed HRMS images Y SPA and Y SPE are close to the
corresponding ground-truth (GT) image, the residual features
between them are different due to the use of simple interactive
interference. Therefore, to increase the consistency of the gen-
erated features in feature interaction, two diffusion branches are
constructed for generating residual features Y SPA

res and Y SPE
res be-

tween Y SPA and the GT image, as well as between Y SPE and the
GT image, respectively, by increasing the interaction between
two image features at different scales, as shown in Fig. 3.

The mathematical derivations of deduction for each branch
adhere to the fundamental version of the denoising diffusion
probabilistic model. During the forward process, the input im-
age X0 is known. At each time step, an approximate standard
normal distribution noise ε ∈ N(0, 1) is added toX0 through the
Markov chain process [39], and at time step t, the noisy image
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Fig. 3. Architecture of the proposed dual-branch diffusion model. ECP and ECM denote the encoding-PAN module and encoding-MS module, respectively.

Fig. 4. Architectures of ECP and ECM. MTF denotes MTF, FPAN denotes the features of PAN images, and FUPMS denotes the features of UPMS images.

Xt can be obtained using the following formula:

Xt =
√
ᾱX0 +

√
1− ᾱε (7)

where ᾱ is a reparameterization operator for controlling the noise
distribution so that the sampling process is easy to differentiate.

Due to the inherent randomness of denoising diffusion prob-
abilistic model, the information of Xt is reduced to improve the
stability in generated details. Therefore, in different branches,
X0 is replaced with Y SPA

res and Y SPE
res , respectively. In addition,

as a deterministic conditional reconstruction diffusion model,
the reencoded UPMS and PAN image features are injected as
condition injections, guiding the recovery of the learning objects
during the backward process, as shown in Algorithm 2.

In this work, the encoding-PAN (ECP) module and the
encoding-MS (ECM) module are constructed to obtain the
condition injections, as shown in Fig. 4. In these modules,

features of PAN images are first smoothed through a modu-
lation transfer function (MTF) [40]. Then, by calculating the
analogous spectral differences between the features of UPMS
and smoothed PAN images, the spatial features of PAN images
are reassigned to get the condition injections. The specific com-
puting processes are as follows:

cd1 = fECP

(
M̃, P

)
(8)

cd2 = fECM

(
M̃, P

)
(9)

where cd1 and cd2 represent the condition injections of the dual-
branch diffusion model; fECP(·) and fECM(·) denote the ECP and
ECM modules, respectively.

The time embedding step is used to make the network aware
of the current time step t. The noise images at different time
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Algorithm 2: Training Process of the Dual-diffusion
Branch.

Input: The M̃ , P , GTs, epoch number, T , parameters of
fSPAPM(·) and fSPEPM(·).

Output: Generated images X̂b1
0 and X̂b2

0 .
for each epoch do

(1) Sample t ∼ uniform({1, . . . , T}).
(2) Sample ε ∼ N (0, I).
(3) Compute Y SPA and Y SPE by (3) and (5).
(4) Compute residual images Xb1

0 = GT − Y SPA and
Xb2

0 = GT − Y SPE, respectively.
(5) Input M̃ and P into fECP(·) and fECM(·) to obtain cd1

and cd2.
(6) Take gradient descent step on loss Lb1 + Lcol and
Lb2 + Lcol, respectively.
(7) if epoch mod 100 = 0 then

a. Sample Xb1
T and Xb2

T ∼ N (0, I).
b. for t← T to 1 do

Output X̂b1
t−1 and X̂b2

t−1 by using denoising module.
end for

c. Output X̂b1
0 and X̂b2

0 .
d. Take gradient descent step on loss Ladv.
e. Update parameters of fSPAPM(·) and fSPEPM(·)

modules, respectively.
end for
Return: The latest values of X̂b1

0 and X̂b2
0 .

Algorithm 3: Training Process of the Focus Module.

Input: epoch number, X̂b1
0 , X̂b2

0 , and GTs.
Output: pansharpened image Y output.
for each epoch do

(1) Input X̂b1
0 and X̂b2

0 into the focus module and then
output Y output.
(2) Take gradient descent step on loss Lmsv.
(3) Update parameters of the focus module.

end for
Return: pansharpened image Y output.

steps can be used to train a U-shaped denoising network. The
losses of the branches b1 and b2 are as follows:

Lb1(θ) = E
[‖ε− εθ

(√
ᾱtY

SPA
res +

√
1− ᾱtε, cd1, t

) ‖2]
(10)

Lb2(θ) = E
[‖ε− εθ

(√
ᾱtY

SPE
res +

√
1− ᾱtε, cd2, t

) ‖2]
(11)

where θ represents parameters of denoising network. By con-
stantly searching for the optimal network parameters, the dif-
fusion model can generate learning objects from pregeneration
modules.

C. Collaborative and Adversarial Losses

Each branch of PDDM focuses on spatial and spectral infor-
mation, respectively. To interact and complement output details

in both spatial and spectral domains, a collaboration loss and an
adversarial loss are proposed.

First, at each time step t, the diffusion branches from different
information streams learn synchronously. Ideally, each branch
should be able to reconstruct the HRMS image. However, dif-
ferent injection methods make each branch perceive spectral
and spatial information with different intensity and generate
different results. To enhance the interaction of the two branches,
a collaborative loss is introduced during each synchronization
process to perceive different information

Lcol = ||Lb1 − Lb2|| (12)

where Lcol is used in reverse process and works with Lb1 or Lb2

in different branches, promoting interaction and collaboration
between the branches, leading to improved training effectiveness
of the network.

Second, since the approximate reconstruction HRMS image
can be directly obtained by the generation features of the dif-
fusion model adding with Y SPA

res and Y SPE
res , an adversarial loss

is proposed to constrain the fused result. By monitoring the
intermediate results and making them compete with each other,
the ability of the pregeneration module is improved to interact
with different information. The adversarial loss Ladv is defined
as follows:

Ladv = ||Xb1
0 + Y SPA|| − ||Xb2

0 + Y SPE|| (13)

where Ladv is used to adversarially constrain the fused result,
causing the updated residuals to produce an HRMS image.

D. Focus Module

To enhance the generalization of PDDM in the pansharpening
task at different scales, we build a focus module to fuse the
outputs Xb1

0 and Xb2
0 from the two branches. The focus module

is constructed as a U-shaped connection structure. Besides, to
improve the fusion performance of the model across different
scales, a multiscale variation detection loss function is defined
as follows:

Lmsv =
∣∣Downn(GT )− Downn

(
Y output

)∣∣ (14)

where Down(·) denotes a downsampling method, and n is an
integer scale factor for downsampling. This loss is used to guide
the fusion process of the focus module at different scales, im-
proving the generalization of PDDM, as shown in Algorithm 3.

III. EXPERIMENTAL RESULTS AND ANALYSIS

To assess the efficacy of the proposed PDDM, both subjective
and objective experiments were conducted on simulated and
real satellite datasets, including IKONOS (four bands), Pléiades
(four bands), and WorldView-3 (eight bands). The specific satel-
lite parameters are shown in Table I. In the simulated dataset,
LRMS images were generated based on the Wald’s protocol [40],
[41] using MTF and downsampling operations applied to HRMS
images. The LRMS and PAN images have dimensions of 64×64
and 256 × 256, respectively. For the real datasets, the LRMS
and PAN images have dimensions of 200× 200 and 800× 800,
respectively. In this work, t is set to 500 empirically [33].
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Fig. 5. Comparison of pansharpened images on simulated data from the IKONOS dataset. (a) GSA [16]]. (b) GLP-REG [13]. (c) DRPNN [14]. (d) MSDCNN [19].
(e) PCDRN [42]. (f) TFNet [24]. (g) FusionNet [25]. (h) TDNet [30]. (i) AWFLN [31]]. (j) LRTCFPan [20]. (k) VOGTNet [26]. (l) PLR-Diff [34]. (m) Dif-PAN [36].
(n) PDDM (ours). (o) GT.

TABLE I
SPECIFICATIONS OF THE DATASETS

During the experiments, the performance of the proposed
PDDM was compared with that of state-of-the-art methods.
The comparative methods include GSA [16], GLP-REG [13],
DRPNN [14], MSDCNN [19], PCDRN [42], TFNet [24], Fu-
sionNet [25], TDNet [30], AWFLN [31], LRTCFPan [20],
VOGTNet [26], PLR-Diff [34], and Dif-PAN [36].

Notably, all DL-based methods were retrained using the same
datasets to ensure fairness and were tested on the NVIDIA
GeForce RTX 3090 and INTEL 11700K hardware environment.

A. Experiments on Simulated Dataset

As shown in Fig. 5, the subjective fusion images of various
comparison methods were examined using a pair of images from

the IKONOS dataset. Obviously, the fusion results of FusionNet,
MSDCNN, DRPNN, PCDRN, TDNet, AWFLN, TFNet, and
PLR-Diff exhibit more blurred edges compared to GTs. The
pansharpened images of GSA and GLP-REG perform an over-
injection phenomenon in the edge. The DRPNN and MSDCNN
methods show significant spectral distortion, while our proposed
method produces fusion results that are more closed to GTs.
To provide a clearer demonstration of the differences between
the fusion results and GTs, residual maps were calculated and
displayed by an enlarged local area beneath each result. The
residual maps clearly indicate that the comparison methods suf-
fer from noticeable spectral distortion and loss of spatial details.
In contrast, our method exhibits the least residual information,
further confirming the effectiveness of the proposed approach.

Fig. 6 presents a group of pansharpened images of all compar-
ison methods on the Pléiades dataset. From the figure, it can be
observed that most comparison methods exhibit varying degrees
of edge distortion in their fused results. It is evident that both
VOGTNet and our method successfully reconstruct almost all
curved edges. Compared to the result of VOGTNet, our result
has less residual map and is closer to GT.

Fig. 7 displays a group of pansharpened results from various
comparison methods on the WorldView-3 dataset. It can be
clearly seen from the figure that all methods perform well in
reconstructing the gray areas. However, the fusion results of
FusionNet, MSDCNN, DRPNN, PCDRN, TDNet, AWFLN,
TFNet, and PLR-Diff exhibit varying degrees of spectral and
spatial distortions in the white street areas. In contrast, our
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Fig. 6. Comparison of pansharpened images on simulated data from the Pléiades dataset. (a) GSA [16]]. (b) GLP-REG [13]. (c) DRPNN [14]. (d) MSDCNN [19].
(e) PCDRN [42]. (f) TFNet [24]. (g) FusionNet [25]. (h) TDNet [30]. (i) AWFLN [31]]. (j) LRTCFPan [20]. (k) VOGTNet [26]. (l) PLR-Diff [34]. (m) Dif-PAN [36].
(n) PDDM (ours). (o) GT.

method produces a reconstruction result that is closest to the
GT. Furthermore, our result has the least residues compared to
the results of other methods.

The evaluation metrics, including peak signal-to-noise ratio
(PSNR), root mean square error, relative average spectral error,
universal image quality index (UIQI), Q2n, spectral angle map-
per (SAM), erreur relative globale adimensionnelle de synthèse
(ERGAS), and spatial cross correlation (SCC) were employed to
objectively assess the performance of the different methods [43],
[44]. Table II shows the quantitative evaluation metrics of each
method across all three datasets, where the best results are
highlighted in bold and the second-best results are underlined.

Table II shows that VOGTNet achieves superior objective
results compared to GSA, GLP, and LRTCFPan among the tradi-
tional methods. In DL-based methods, AWFLN, Dif-PAN, and
our PDDM perform better than others. In diffusion model-based
methods, PDDM performs better than PLR-Diff and Dif-PAN.
In summary, the results in Table II indicate that our method
achieves the best performance on all the three datasets.

B. Experiments on Real Dataset

Fig. 8 presents the fusion results of a pair of images from the
IKONOS dataset. To better distinguish the spectral and detail
differences between the fusion results, two small regions were
selected and magnified. As shown in the figure, compared to the

fusion results of other methods, GSA and GLP-REG methods
fail to restore the spatial features of the PAN image adequately.
The results of TFNet, TDNet, FusionNet, PLR-Diff, and Dif-
PAN methods exhibit more serious color distortion than those
of other methods. VOGTNet and our PDDM successfully recov-
ered distinct texture features. However, compared to VOGTNet,
our method presents clearer spatial details.

Fig. 9 shows a set of fusion results of various methods on
the Pléiades dataset. The figure reveals that the results of most
methods exhibit clear spatial texture details. Compared to other
methods, AWFLN, LRTCFPan, VOGTNet, and our PDDM dis-
play abundant color information. However, the color information
presented by PDDM is closest to that of the UPMS image.

Fig. 10 shows a pair of pansharpened images from the
WorldView-3 datasets. As can be seen from the figures, the
results of the GSA method have the problem of over-injection
details and lack of spectral information. Compared with other
results, the results of MSDCNN, DRPNN, and PCDRN methods
display distinct color distortions. It can be clearly observed from
the enlarged areas that our result has more abundant information
than those of other comparison methods.

In the absence of GT, nonreference quantitative metrics, Dk
λ ,

Ds, and HQNR [45] are employed to evaluate the similarity
of spectral and spatial details between the fusion images and
source images. Dk

λ quantifies the spectral similarity between the
fusion results and LRMS images, while Ds measures the spatial
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Fig. 7. Comparison of pansharpened images on simulated data from the WorldView-3 dataset. (a) GSA [16]]. (b) GLP-REG [13]. (c) DRPNN [14].
(d) MSDCNN [19]. (e) PCDRN [42]. (f) TFNet [24]. (g) FusionNet [25]. (h) TDNet [30]. (i) AWFLN [31]]. (j) LRTCFPan [20]. (k) VOGTNet [26]. (l) PLR-Diff [34].
(m) Dif-PAN [36]. (n) PDDM (ours). (o) GT.

similarity between the fusion results and PAN images. HQNR
calculates the overall similarity by incorporating both Dk

λ , Ds.
As presented in Table III, the traditional method LRTCFPan

outperforms several DL-based methods, such as DRPNN, MSD-
CNN, PCDRN, TFNet, PLR-Diff, and Dif-PAN, in the QNR in-
dex. Among the diffusion model-based methods, PLR-Diff and
Dif-PAN perform worse than PDDM. One possible explanation
is that the fixed-size noise addition approach in diffusion models
limits the generalization of models at different scales. Among all
comparison methods, our proposed PDDM achieves the highest
QNR scores, indicating its superior ability to effectively preserve
both spectral and spatial fidelity.

In summary, the proposed PDDM achieves advanced perfor-
mance in both subjective visual effects and quantitative metrics
compared with other methods.

C. Ablation Study

To verify the performance of each component of the proposed
method, we conducted some ablation studies on the simulated
IKONOS dataset to explore the effectiveness of the various
components to the overall results.

1) Effect of Structure of PDDM: In the experiments of val-
idating the PDDM structure, five models containing different
modules are tested. Model 0 is only a single diffusion model

with neither any branch nor the proposed module. Models 1–3
are various combinations of the leave-one-out module approach,
respectively.

Fig. 11 shows two examples of the pansharpened images on
five different models. It is obvious that the results of Model 0
(without any proposed component) retain the most residues in
the magnified rectangles. Our results are closer to GT images
than those of other models, as shown in the magnified rectangles.
Furthermore, Table IV shows the quantitative indexes obtained
by the five models. It can be seen that the indicators obtained
by our method with all modules are better than those of Models
0–3. Therefore, the performance of each module is verified.

2) Effect of Loss Functions: Loss functions play a key role
in network training. To prove the performance of each loss
in PDDM, the ablation experiments using different losses are
performed. Model 4 only has the basic loss Lbase, which is
supervised by HRMS images. Model 5 adds a collaborative loss
Lcol to the previous Model 4 and Model 6 adds an adversarial
loss Ladv to Model 5. Fig. 12 displays two examples of the
pansharpened images on different loss functions. It can be seen
that our method with all loss functions can better maintain the
details and spectral features of the source images to the fused
results, and our results have the least residual information. In
addition, Table V shows the objective results on different loss
functions. From the table, we can find that the proposed model
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TABLE II
AVERAGE QUANTITATIVE RESULTS ON THE SIMULATED DATA FROM IKONOS, PLÉIADES, AND WORLDVIEW-3 DATASETS

TABLE III
AVERAGE QUANTITATIVE RESULTS ON THE REAL DATA FROM FROM IKONOS, PLÉIADES, AND WORLDVIEW-3 DATASETS
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Fig. 8. Comparison of pansharpened images on real data from the IKONOS dataset. (a) UPMS. (b) GSA [16]. (c) GLP-REG [13]. (d) DRPNN [14].
(e) MSDCNN [19]. (f) PCDRN [42]. (g) TFNet [24]. (h) FusionNet [25]. (i) TDNet [30]. (j) AWFLN [31]. (k) LRTCF [20]. (l) VOGTNet [26]. (m) PLR-Diff [34].
(n) Dif-PAN [36]. (o) PDDM (ours).

TABLE IV
ABLATION STUDY RESULTS OF THE STRUCTURE OF PDDM ON THE SIMULATED DATA FROM IKONOS DATASET

TABLE V
ABLATION EXPERIMENT OF EACH LOSS FUNCTION ON THE SIMULATED DATA FROM IKONOS DATASET

with all losses obtains the best performance than other models,
which indicates the effectiveness of the loss functions in PDDM.

3) Effect of the Proposed Injection Conditions: The injection
conditions play an important role in the diffusion branches,
which are obtained by ECP and ECM in our work. To demon-
strate the effectiveness of the proposed injection conditions, we
built two other models that use different structures to obtain

injection conditions for comparison. Model 7 directly concate-
nates UPMS and PAN images as injection conditions for the
diffusion model. Model 8 uses convolution residual blocks to
generate injection conditions.

Fig. 13 shows two examples of the pansharpened images on
different injection conditions. It clearly shows that the results of
Model 7 have more spectral and spatial distortions than those
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Fig. 9. Comparison of pansharpened images on real data from the Pléiades dataset. (a) UPMS. (b) GSA [16]. (c) GLP-REG [13]. (d) DRPNN [14].
(e) MSDCNN [19]. (f) PCDRN [42]. (g) TFNet [24]. (h) FusionNet [25]. (i) TDNet [30]. (j) AWFLN [31]. (k) LRTCF [20]. (l) VOGTNet [26]. (m) PLR-Diff [34].
(n) Dif-PAN [36]. (o) PDDM (ours).

Fig. 10. Comparison of pansharpened images on real data from the WorldView-3 dataset. (a) UPMS. (b) GSA [16]. (c) GLP-REG [13]. (d) DRPNN [14].
(e) MSDCNN [19]. (f) PCDRN [42]. (g) TFNet [24]. (h) FusionNet [25]. (i) TDNet [30]. (j) AWFLN [31]. (k) LRTCF [20]. (l) VOGTNet [26]. (m) PLR-Diff [34].
(n) Dif-PAN [36]. (0) PDDM (ours).
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Fig. 11. Comparison of pansharpened images by the models with different structures on simulated data from IKONOS dataset. (a) Model 0. (b) Model 1.
(c) Model 2. (d) Model 3. (e) Proposed. (f) GT.

Fig. 12. Comparison of pansharpened images by the models with different loss functions on simulated data from IKONOS dataset. (a) Model 4. (b) Model 5.
(c) Model 6. (d) Proposed. (e) GT.

of Model 8. Our results have the best visual effects and least
residues compared to those of Models 7 and 8. Besides, the
quantitative results are displayed in Table VI. The proposed
injection conditions obtained by ECP and ECM performs better
than Models 7 and 8, confirming its value to the method.

4) Application Experiment: To assess the applicability of
all comparison methods, image classification experiments were
conducted on the fusion results. In [21], the ENVI tool was
employed for classification purpose. Initially, The GT images
are first fed to the classification model to obtain classification
reference images for other methods. As shown in Fig. 14, the
subjective classification results of various comparison methods

were examined, and the residual images of two different selec-
tion regions were displayed at the bottom of each image. It is
obvious that the result of our approach is the closest to the GT.
In addition, the quantitative classification results are presented
in Table VII. It is also evident from Table VII that the proposed
PDDM outperforms the other comparison methods in terms of
classification accuracy.

D. Discussion

One of the primary advantages of our method is its advanced
performance in pansharpening, as assessed both subjectively



18894 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 13. Comparison of pansharpened images by the models with different injection conditions on simulated data from IKONOS dataset. (a) Model 7. (b) Model
8. (c) Proposed. (d) GT.

TABLE VI
ABLATION STUDY RESULTS OF DIFFERENT INJECTION CONDITIONS ON THE SIMULATED DATA FROM IKONOS DATASET

TABLE VII
QUANTITATIVE CLASSIFIED RESULTS OF FIG. 14

and objectively. Through a prior image-guided approach, our
diffusion branches mitigate spatial and spectral distortions aris-
ing from uncertainties when applying diffusion models to pan-
sharpening. In addition, adversarial and collaborative learning
strategies are designed to fully interact spectral and spatial
information across different branches. Furthermore, a focus
module is developed to enhance the generalization of PDDM
at different scales. Moreover, the applicability of our method
has been validated.

Although our method performs exceptionally in pansharp-
ening, there are still certain limitations. The diffusion model
requires separate training of the denoising module, which inter-
rupts the end-to-end training process. In addition, due to multiple
noise sampling steps, more inference time of PDDM is required
compared to traditional DL-based modules. Future research
will focus on optimizing sampling techniques to enhance the
inference speed of the diffusion model.
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Fig. 14. Comparison of classified results of Fig. 5. (a) GSA [16]. (b) GLP-REG [13]. (c) DRPNN [14]. (d) MSDCNN [19]. (e) PCDRN [42]. (f) TFNet [24].
(g) FusionNet [25]. (h) TDNet [30]. (i) AWFLN [31]. (j) LRTCFPan [20]. (k) VOGTNet [26]. (l) PLR-Diff [34]. (m) Dif-PAN [36]. (n) PDDM (ours). (0) GT.

IV. CONCLUSION

In this article, a novel pansharpening method named PDDM
is proposed, which employs a dual-branch diffusion model to
extract different information to improve the spatial and spectral
fidelity. The collaborative and adversarial loss functions ensure
the fusion of complementary information from the source im-
ages. Furthermore, to enhance detail recovery and reduce the
uncertainty of generated detail information, two pregeneration
modules are constructed to leverage various prior information
for pixel-to-pixel reconstruction. In addition, to improve the
generalization capability of PDDM at different scales, a focus
module supervised by a joint multiscale variation detection loss
is designed. Extensive experiments on three satellite datasets
demonstrate that our PDDM outperforms state-of-the-art pan-
sharpening methods.

REFERENCES

[1] Y. Zhang, Z. Guo, Y. Li, and B. Wu, “Structure tensor-driven block-based
adaptive variational pansharpening,” IEEE Geosci. Remote Sens. Lett.,
vol. 21, Jan. 2024, Art. no. 5001005.

[2] K. Zhang et al., “Panchromatic and multispectral image fusion for remote
sensing and Earth observation: Concepts, taxonomy, literature review,
evaluation methodologies and challenges ahead,” Inf. Fusion, vol. 93,
pp. 227–242, May. 2023.

[3] L.-J. Deng et al., “Machine learning in pansharpening: A benchmark, from
shallow to deep networks,” IEEE Geosci. Remote Sens. Mag., vol. 10, no. 3,
pp. 279–315, Sep. 2022.

[4] H. Tao, J. Li, Z. Hua, and F. Zhang, “DUDB: Deep unfolding-based dual-
branch feature fusion network for pan-sharpening remote sensing images,”
IEEE Trans. Geosci. Remote Sens., vol. 62, Dec. 2024, Art. no. 5400417.

[5] J. Zhao, S. Tian, C. Geiß, L. Wang, Y. Zhong, and H. Taubenböck,
“Spectral-spatial classification integrating band selection for hyperspectral
imagery with severe noise bands,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 13, pp. 1597–1609, Apr. 2020.

[6] Z. Li, J. Li, L. Ren, and Z. Chen, “Transformer-based dual-branch mul-
tiscale fusion network for pan-sharpening remote sensing images,” IEEE
J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 17, pp. 614–632,
Nov. 2024.

[7] H. Dai, Y. Yang, S. Huang, W. Wan, H. Lu, and X. Wang, “Pansharpening
based on fuzzy logic and edge activity,” IEEE Geosci. Remote Sens. Lett.,
vol. 21, Jan. 2024, Art. no. 5001205.

[8] C. Chen et al., “MFITN: A multilevel feature interaction transformer
network for pansharpening,” IEEE Geosci. Remote Sens. Lett., vol. 21,
Mar. 2024, Art. no. 5003505.

[9] Y. Yang, J. Wu, S. Huang, Y. Fang, P. Lin, and Y. Que, “Multimodal medical
image fusion based on fuzzy discrimination with structural patch decom-
position,” IEEE J. Biomed. Health. Inf., vol. 23, no. 4, pp. 1647–1660,
Jul. 2019.

[10] Q. Cao, L.-J. Deng, W. Wang, H. Junming, and G. Vivone, “Zero-shot semi-
supervised learning for pansharpening,” Inf. Fusion, vol. 101, Jan. 2024,
Art. no. 102001.

[11] G. Hassan, “A review of remote sensing image fusion methods,” Inf.
Fusion, vol. 32, pp. 75–89, Nov. 2016.

[12] B. Aiazzi, L. Alparone, S. Baronti, and A. Garzelli, “Context-driven fusion
of high spatial and spectral resolution images based on oversampled
multiresolution analysis,” IEEE Trans. Geosci. Remote Sens., vol. 40,
no. 10, pp. 2300–2312, Oct. 2002.



18896 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

[13] G. Vivone, R. Restaino, and J. Chanussot, “Full scale regression-based
injection coefficients for panchromatic sharpening,” IEEE Trans. Image
Process., vol. 27, no. 7, pp. 3418–3431, Jul. 2018.

[14] Y. Wei, Q. Yuan, H. Shen, and L. Zhang, “Boosting the accuracy of multi-
spectral image pansharpening by learning a deep residual network,” IEEE
Geosci. Remote Sens. Lett., vol. 14, no. 10, pp. 1795–1799, Oct. 2017.

[15] G. Vivone et al., “A new benchmark based on recent advances in multispec-
tral pansharpening: Revisiting pansharpening with classical and emerging
pansharpening methods,” IEEE Geosci. Remote Sens. Mag., vol. 9, no. 1,
pp. 53–81, Mar. 2021.

[16] B. Aiazzi, S. Baronti, and M. Selva, “Improving component substitution
pansharpening through multivariate regression of MS pan data,” IEEE
Trans. Geosci. Remote Sens., vol. 45, no. 10, pp. 3230–3239, Oct. 2007.

[17] T.-M. Tu, S.-C. Su, H.-C. Shyu, and P. S. Huang, “A new look at IHS-like
image fusion methods,” Inf. Fusion, vol. 2, no. 3, pp. 177–186, Sep. 2001.

[18] Q. Xu, B. Li, Y. Zhang, and L. Ding, “High-fidelity component substitution
pansharpening by the fitting of substitution data,” IEEE Trans. Geosci.
Remote Sens., vol. 52, no. 11, pp. 7380–7392, Nov. 2014.

[19] Q. Yuan, Y. Wei, X. Meng, H. Shen, and L. Zhang, “A multiscale and
multidepth convolutional neural network for remote sensing imagery pan-
sharpening,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 11,
no. 3, pp. 978–989, Mar. 2018.

[20] Z.-C. Wu, T.-Z. Huang, L.-J. Deng, J. Huang, J. Chanussot, and G.
Vivone, “LRTCFPan: Low-rank tensor completion based framework for
pansharpening,” IEEE Trans. Image Process., vol. 32, pp. 1640–1655,
Feb. 2023.

[21] H. Lu, Y. Yang, S. Huang, W. Tu, and W. Wan, “A unified pansharpening
model based on band-adaptive gradient and detail correction,” IEEE Trans.
Image Process., vol. 31, pp. 918–933, Dec. 2022.

[22] S. Parisotto, L. Calatroni, A. Bugeau, N. Papadakis, and C.-B. Schönlieb,
“Variational osmosis for non-linear image fusion,” IEEE Trans. Image
Process., vol. 29, pp. 5507–5516, Apr. 2020.

[23] G. Masi, D. Cozzolino, L. Verdoliva, and G. Scarpa, “Pansharpening by
convolutional neural networks,” Remote Sens., vol. 8, no. 7, Jul. 2016,
Art. no. 594.

[24] X. Liu, Q. Liu, and Y. Wang, “Remote sensing image fusion based on
two-stream fusion network,” Inf. Fusion, vol. 55, pp. 1–15, Mar. 2020.

[25] L.-J. Deng, G. Vivone, C. Jin, and J. Chanussot, “Detail injection-based
deep convolutional neural networks for pansharpening,” IEEE Trans.
Geosci. Remote Sens., vol. 59, no. 8, pp. 6995–7010, Aug. 2021.

[26] P. Wang, Z. He, B. Huang, M. D. Mura, H. Leung, and J. Chanussot,
“VOGTNet: Variational optimization-guided two-stage network for multi-
spectral and panchromatic image fusion,” IEEE Trans. Neural Netw. Learn.
Syst., to be published, 2024, doi: 10.1109/TNNLS.2024.3409563.

[27] R. Wen, L.-J. Deng, Z.-C. Wu, X. Wu, and G. Vivone, “A novel spatial
fidelity with learnable nonlinear mapping for panchromatic sharpening,”
IEEE Trans. Geosci. Remote Sens., vol. 61, Apr. 2023, Art. no. 5401915.

[28] P. Wang et al., “Low-rank tensor completion pansharpening based on
haze correction,” IEEE Trans. Geosci. Remote Sens., vol. 62, May. 2024,
Art. no. 5405720.

[29] Z.-C. Wu, T.-Z. Huang, L.-J. Deng, J.-F. Hu, and G. Vivone, “VO+ Net:
An adaptive approach using variational optimization and deep learning
for panchromatic sharpening,” IEEE Trans. Geosci. Remote Sens., vol. 60,
Mar. 2022, Art. no. 5401016.

[30] T.-J. Zhang, L.-J. Deng, T.-Z. Huang, J. Chanussot, and G. Vivone, “A
triple-double convolutional neural network for panchromatic sharpening,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 11, pp. 9088–9101,
Nov. 2023.

[31] H. Lu et al., “AWFLN: An adaptive weighted feature learning network for
pansharpening,” IEEE Trans. Geosci. Remote Sens., vol. 61, Feb. 2023,
Art. no. 5400815.

[32] C. Zhu, S. Deng, Y. Zhou, L.-J. Deng, and Q. Wu, “QIS-GAN: A
lightweight adversarial network with quadtree implicit sampling for mul-
tispectral and hyperspectral image fusion,” IEEE Trans. Geosci. Remote
Sens., vol. 61, Nov. 2023, Art. no. 5531115.

[33] F.-A. Croitoru, V. Hondru, R. T. Ionescu, and M. Shah, “Diffusion models
in vision: A survey,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45,
no. 9, pp. 10850–10869, Sep. 2023.

[34] X. Rui, X. Cao, L. Pang, Z. Zhu, Z. Yue, and D. Meng, “Unsupervised
hyperspectral pansharpening via low-rank diffusion model,” Inf. Fusion,
vol. 107, 2024, Art. no. 102325.

[35] L. Pang et al., “HIR-Diff: Unsupervised hyperspectral image restoration
via improved diffusion models,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., Jun. 2024, pp. 3005–3014.

[36] Z. Cao, S. Cao, L.-J. Deng, X. Wu, J. Hou, and G. Vivone, “Diffusion
model with disentangled modulations for sharpening multispectral and
hyperspectral images,” Inf. Fusion, vol. 104, 2024, Art. no. 102158.

[37] Y. Zhong, X. Wu, L.-J. Deng, and Z. Cao., “SSDiff: Spatial-spectral
integrated diffusion model for remote sensing pansharpening,” 2024,
arXiv:2404.11537.

[38] L. Guo et al., “A joint framework for denoising and estimating diffusion
kurtosis tensors using multiple prior information,” IEEE Trans. Med.
Imag., vol. 41, no. 2, pp. 308–319, Feb. 2022.

[39] G. França and J. Bento, “Markov chain lifting and distributed ADMM,”
IEEE Signal Process. Lett., vol. 24, no. 3, pp. 294–298, Mar. 2017.

[40] L. Wald, “Quality of high resolution synthesised images: Is there a simple
criterion?,” in Proc. Fusion Earth Data: Merging Point Meas., Raster Maps
Remotely Sens. Images, 2000, pp. 99–103.

[41] G. Vivone et al., “Pansharpening based on semiblind deconvolution,” IEEE
Trans. Geosci. Remote Sens., vol. 53, no. 4, pp. 1997–2010, Sep. 2015.

[42] Y. Yang, W. Tu, S. Huang, and H. Lu, “PCDRN: Progressive cascade deep
residual network for pansharpening,” Remote Sens., vol. 12, no. 4, p. 676,
Feb. 2020.

[43] G. Vivone et al., “A critical comparison among pansharpening algo-
rithms,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 5, pp. 2565–2586,
May. 2015.

[44] J. Zhou, D. L. Civco, and J. A. Silander, “A wavelet transform method
to merge landsat TM and SPOT panchromatic data,” Int. J. Remote Sens.,
vol. 19, no. 4, pp. 743–757, Nov. 1998.

[45] X. Guan, F. Li, X. Zhang, M. Ma, and S. Mei, “Assessing full-resolution
pansharpening quality: A comparative study of methods and measure-
ments,” IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens, vol. 16,
pp. 6860–6875, Jul. 2023.

Changjie Chen received the B.S. degree in electronic
information science and technology from Nanchang
Hangkong University, Nanchang, China, in 2016.
He is currently working toward the Ph.D. degree in
management science and engineering with the Jiangxi
University of Finance and Economics, Nanchang.

His research interests include image fusion and
deep learning.

Yong Yang (Senior Member, IEEE) received the
Ph.D. degree in biomedical engineering from Xi’an
Jiaotong University, Xi’an, China, in 2005.

From 2009 to 2010, he was a Postdoctoral Re-
search Fellow with Chonbuk National University,
Jeonju, South Korea. He is currently a Distinguished
Professor with the School of Computer Science and
Technology, Tiangong University, Tianjin, China. His
research interests include image fusion, image super-
resolution reconstruction, medical image processing
and analysis, and deep learning.

Dr. Yang is an Associate Editor for IEEE ACCESS and an Editor for the KSII
Transactions on Internet and Information Systems.

Shuying Huang (Member, IEEE) received the Ph.D.
degree in computer application technology from the
Ocean University of China, Qingdao, China, in 2013.

She is currently a Professor with the School of
Software, Tiangong University, Tianjin, China. Her
research interests include image and signal process-
ing, and pattern recognition.

https://dx.doi.org/10.1109/TNNLS.2024.3409563


CHEN et al.: PDDM: PRIOR-GUIDED DUAL-BRANCH DIFFUSION MODEL FOR PANSHARPENING 18897

Hangyuan Lu received the Ph.D. degree in man-
agement science and engineering from the Jiangxi
University of Finance and Economics, Nanchang,
China, in 2021.

He is currently a Professor with the Jinhua Uni-
versity of Vocational Technology, Jinhua, China. His
research interests include remote sensing image fu-
sion and deep learning.

Weiguo Wan received the B.S. degree in mathemat-
ics and applied mathematics from Jiangxi Normal
University, Nanchang, China, in 2014, and the Ph.D.
degree in computer science and engineering from
Jeonbuk National University, Jeonju, South Korea,
in 2020.

He is currently a Lecturer with the School of
Software and Internet of Things Engineering, Jiangxi
University of Finance and Economics, Nanchang.
His research interests include computer vision, deep
learning, face sketch synthesis and recognition, and

remote sensing image fusion.

Shengna Wei received the B.S. degree in software
engineering from the East China University of Tech-
nology, Nanchang, China, in 2015. She is currently
working toward the Ph.D. degree in electronic infor-
mation with Tiangong University, Tianjin, China.

Her research interests include image fusion and
deep learning.

Wenying Wen (Member, IEEE) received the
Ph.D. degree in computational mathematics from
Chongqing University, Chongqing, China, in 2013.

She is currently a Professor with the School of In-
formation Technology, Jiangxi University of Finance
and Economics, Nanchang, China. Her research inter-
ests include image processing, multimedia security,
and artificial intelligence security.

Shuzhao Wang received the master’s degree in
mechanical manufacturing and automation from
the Jiangxi University of Science and Technology,
Ganzhou, China, in 2014. He is currently working
toward the Ph.D. degree in electronic information
with Tiangong University, Tianjin, China.

His research interests include image fusion, deep
learning, and smart and intelligent mining.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


