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Abstract—The need for enhancing image spatial resolution has
motivated the researchers to propose numerous super-resolution
(SR) techniques, including those developed specifically for hy-
perspectral data. Despite significant advancements in this field
attributed to deep learning, little attention has been given to eval-
uating the practical value of super-resolved images in specific ap-
plications. Most methods are validated in application-independent
scenarios, often using simulated low-resolution images, resulting in
overly optimistic conclusions. In this article, we propose task-based
evaluation strategies for hyperspectral image SR and we present
results obtained with various approaches that include pansharpen-
ing, multispectral–hyperspectral data fusion, and single-image SR.
We demonstrate that the proposed framework allows us to highlight
both benefits and limitations of each method and can, therefore,
guide the development of SR techniques suitable for real-world
applications.

Index Terms—Hyperspectral images (HSIs), spatial resolution,
spectral consistency, super-resolution (SR), task-based evaluation.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) contain both spatial
and spectral information, which allows for understanding

the structure, as well as the chemical–physical composition of
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the captured surfaces. This makes HSIs a valuable source of
information that can be exploited in numerous remote sensing
applications [37]. However, especially for acquisitions from
space, their high spectral resolution is commonly achieved at a
cost of reduced spatial resolution. This poses a serious limitation
in those cases that require high accuracy not only in the spectral
dimension but also in the spatial domain [9]. If the problem of
insufficient spatial resolution cannot be solved by employing a
sensor of higher resolution or by approaching the investigated
object, which is often the case in remote sensing, then the
captured images can be postprocessed relying on computational
imaging techniques. In particular, the goal of super-resolution
(SR) is to reconstruct a high-resolution (HR) image from a
low-resolution (LR) observation [55].

In the case of HSI SR, the existing techniques can be roughly
categorized into the following:

1) those that exploit another source of HR information—
either a panchromatic (PAN) [1] or multispectral image
(MSI) [59];

2) those that process a single hyperspectral cube without any
auxiliary data [15].

As capturing an image of high spectral resolution is often sub-
ject to a tradeoff with the spatial resolution, many hyperspectral
sensors are coupled with a PAN camera that captures images at
a higher spatial resolution. This allows for performing spectral
sharpening that consists in enhancing the resolution of spectral
bands relying on HR information. Spectral sharpening that ex-
ploits a PAN image is commonly termed as pansharpening.

While the field of SR has received considerable research
attention [55], most of the techniques are evaluated following
an artificial procedure: a certain image is considered as an HR
reference, which is downsampled to obtain a simulated LR
input image. This is also the case for HSI SR [59], where LR
images are obtained with Wald’s protocol [49] that is supposed
to preserve the spectral properties while decreasing the spatial
resolution of an HSI. Such evaluation often leads to overesti-
mating the actual capabilities of SR techniques—even though
they obtain promising results for the simulated LR images,
their performance is significantly worse when they are fed with
real-world (i.e., not degraded) imagery [5]. Therefore, in an
increasing number of cases, SR outcome is validated using real-
world datasets that contain original LR and HR images showing
the same area of interest [8], [25], [33]. However, such datasets
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would be very difficult to elaborate for HSIs, especially for
satellite imagery. Another option for determining the quality of
super-resolved images is to exploit them for a specific computer
vision task, whose performance can be quantitatively evaluated.
Such task-based evaluation attempts were already reported for
natural [31] and satellite images [40], but they were not proposed
so far for HSI SR.

A. Contribution

In this article, we present a new task-based approach toward
validating SR algorithms, applied to PRISMA and Tropospheric
monitoring instrument (TROPOMI) HSIs. Our contribution can
be summarized in the following points.

1) We propose to evaluate the super-resolved HSIs relying on
three distinct test cases that exploit hyperspectral imagery
for precision farming, estimating the quality of inland and
coastal waters, and assessing air pollution. To our best
knowledge, this is the first attempt to assess HSI SR in a
task-based manner.

2) We report the results of both application-independent and
task-based evaluation for three different approaches to en-
hancing HSIs: single-HSI SR for PRISMA data that oper-
ates without any auxiliary HR information, pansharpening
of PRISMA HSIs, and fusion between HSIs of different
spatial resolution (TROPOMI with higher spectral and
lower spatial resolution and PRISMA with lower spectral
and higher spatial resolution). This overall assesses spatial
and spectral aspects of the super-resolved HSIs.

3) For HSIs acquired within the PRISMA mission, we pro-
vide a comparison between single-HSI SR that operates
without any auxiliary HR information, enhancing the spa-
tial resolution from 30-m ground sampling distance (GSD)
to 15-m GSD and pansharpening that exploits a PAN
image of 5-m GSD. In the latter case, we consider two
variants, in which we enhance the resolution to 5-m GSD
and to 15-m GSD.

In order to ensure the reproducibility of our study, we pub-
lished the source code of the investigated enhancement tech-
niques1 and of the considered test cases along with the trained
models.2

B. Article Structure

The rest of this article is organized as follows. Section II
outlines the state of the art in HSI SR, including techniques
that exploit additional source of HR information and those
that are limited to processing a single HSI. The proposed test
cases alongside the data exploited in our study are presented in
Section III and the SR techniques selected to address these
cases are outlined in Section IV. The results of application-
independent and task-based evaluation are reported in Section V
and they are discussed in Section VI. Finally, Section VII con-
cludes this article.

1[Online]. Available: https://github.com/kplabs-pl/hsi-sr-evaluation
2[Online]. Available: https://github.com/geo-k-devs/PIGEON

II. RELATED WORK

In this section, we present the state of the art in fusion-based
techniques that exploit an auxiliary PAN image or an MSI of
higher spatial resolution (see Section II-A) as well as single-HSI
SR techniques (see Section II-B). Also, in Section II-C, we shed
more light on the commonly adopted approaches to evaluate HSI
SR techniques.

A. Enhancement Based on Auxiliary HR Images

The existing approaches to pansharpening can be roughly
categorized into four groups [7], namely: component substitu-
tion (CS) techniques, multiresolution analysis (MRA), model-
based approaches, and deep-learning-based methods. The CS
approaches employ a suitable technique, e.g., principal compo-
nent analysis (PCA), to decompose an HSI into separated spatial
and spectral components. Subsequently, the projection process
is inverted after substituting the spatial components with the HR
PAN image to generate the super-resolved HSI [41]. Alterna-
tively, in MRA, high-frequency information can be extracted
from the PAN image and injected into the original HSI [34].
The model-based methods are underpinned with an optimization
problem whose solution retrieves the pansharpened image [44].

The recent advancements in the field of pansharpening are
mostly attributed to deep learning. Wu et al. [57] proposed a
triple-branch CNN—in the first branch, a PAN image is fused
with an HSI upsampled by a factor of 4×, while the remaining
branches process an original HSI and the HSI upsampled by a
factor of 2×. A similar approach was proposed in [22], where
a hyperspectral and PAN images are processed at different
scales using a Laplacian pyramid. Bandara et al.[2] utilized
the deep image prior (DIP) to estimate the backbone HR HSI
and afterwards they proposed an attention mechanism in a
transformer-based HyperTransformer architecture for HSI pan-
sharpening [1]. In [63], TNet and PNet networks are introduced.
TNet learns to reconstruct the gradient map from a PAN image
(in both horizontal and vertical directions). PNet, trained after-
wards to perform the pansharpening, is guided during training
by the pretrained TNet, exploited as a component of the loss
function.

Some recent techniques based on deep learning also exploit
the conventional approaches. Deng et al. [11] proposed a tech-
nique that combines CS and MRA approaches—MRA-Net and
CS-Net learn the residuals based on the PAN image, which
is afterwards added to the upsampled LR HSI. A PCA-based
network was introduced by Guarino et al. [18] and a model-based
optimization regularized with a deep prior was proposed in [60].

All of the aforementioned methods were developed and vali-
dated using simulated data in a fully supervised manner. Alterna-
tively, pansharpening networks can be trained in an unsupervised
way without using HR references. A method by Zhou et al. [68]
is based on a generative adversarial network (GAN), which at
first generates the super-resolved HSI using an HSI and a PAN
image, and then, restores the original (LR) HSI and the PAN
image from the super-resolved HSI. Unsupervised learning can
also be performed by exploiting the attention mechanism [39].
Inspired by DIP, Uezato et al. [47] proposed a guided deep

https://github.com/kplabs-pl/hsi-sr-evaluation
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decoder. The features of the PAN image are extracted by the
U-Net architecture at various levels and injected into the DIP
decoder, without needing an HR reference.

Alternatively to a PAN image, an MSI of higher spatial resolu-
tion can be exploited to super-resolve an HSI. Palsson et al. [36]
used 3-D convolutions for this purpose. Ma et al. [32] employed
deep unfolded neural networks to learn both spatial and spectral
priors that are exploited for the fusion. Zhang et al. [67] proposed
to first upsample the HSI to the resolution of an MSI and combine
them to obtain a preliminarily fused image. It is subsequently
processed in a sequential manner by two networks that re-
construct spatial and spectral information. Several techniques
have been inspired by conventional approaches implemented
using deep networks [12], [13]. In [53], the fusion process is
composed of learning the observation and fusion models that
perform opposite mappings between the input HSI and MSI,
and the super-resolved HSI. Xie et al. [58], [59] formulated the
fusion in a form of an optimization problem. The problem can
be solved using an iterative algorithm whose subsequent steps
were unfolded into network layers of the proposed MSI/HSI
Fusion Net (termed MHF-net) [59]. The network has been
later enhanced to improve its interpretability [58]. Commonly,
the existing techniques require the MSI and HSI to be accu-
rately coregistered before proceeding with the fusion. Recently,
Qu et al. [38] proposed to combine the registration and fusion
steps within a single architecture that super-resolves the HSI in
an end-to-end manner without the need for registering MSI and
HSI beforehand.

Similarly as for pansharpening, unsupervised learning was
also explored for fusing HSIs with MSIs. Gao et al. [16] proposed
a self-supervised approach based on adaptive Gram-Schmidt
transformation, which renders a backbone HR HSI that is used
for computing spectral and spatial loss functions.

B. HSI SR Without Auxiliary HR Information

When an auxiliary HR image is not available, HSIs can be
super-resolved in a band-wise manner [35] by employing single-
image SR techniques [61] to enhance each individual channel.
In the reported research, we have exploited a hybrid attention
transformer (HAT) [6] for this purpose. However, enhancing
each band independently does not ensure preserving spectral
consistency between the input image and the super-resolved
one. Therefore, a number of techniques have been proposed
to specifically deal with HSIs in such cases. Li et al. [27]
proposed to train two SR networks (sharing the encoder and
having separate decoders) for enhancing HSIs and natural color
(RGB) images. In this way, the HSI SR is regularized by the
RGB SR network, which makes it possible to exploit RGB data
whose accessibility is much larger. In [45], an HSI is split into
several groups of adjacent bands, each of which is processed
in a recursive manner. Hu et al. [20] proposed to process the
HSI channel by channel. Each channel, along with the adjacent
channel and residual image of those channels, is processed in
a triple-branch architecture. To omit the problem of reference
data deficiency, Sidorov et al. [43] employed DIP to recon-
struct HSIs from a random noise relying on prior knowledge

embedded into the network structure. An interesting approach
combining spectral unmixing with SR aimed at improving image
segmentation capabilities was proposed by Wang et al. [51].
This allows for retrieving land-cover maps at subpixel precision,
benefiting from spatial–spectral correlation. Such SR mapping
can be additionally improved by taking into account the point
spread function [50].

In order to exploit spectral correlations among the neighbor-
ing bands, 3-D CNNs have also been exploited for single-HSI
SR. As the use of 3-D convolutions significantly increases the
number of learnable parameters, Li et al. [28] combined 3-D and
2-D convolutional layers to extract the spatial–spectral features
while keeping the number of parameters at an acceptable level.
To reduce the number of parameters even further, separable
3-D convolutions were used with two orthogonal 2-D kernels
instead of full 3-D kernels. A similar approach was reported
in [52], where features extracted by the 2-D and separable 3-D
convolutions are later fused in the process to obtain the final
result. Fu et al. [15] proposed bidirectional 3-D quasi-recurrent
neural network (Bi-3DQRNN). In this U-Net-like architecture,
the features are processed in both directions along the spec-
tral dimension which helps exploit the correlation between the
bands.

The use of attention mechanism [48] has also been reported
for single-HSI SR. Li et al. [26] utilize band attention in a
generic GAN setup. In [29], group convolutions were employed
to reduce the number of parameters—highly correlated bands
are grouped and processed by a common kernel. The attention
mechanism based on the covariance statistics of features is used
to exploit the spectral prior. Such group convolutions, in this
case for multiple adjacent channels, were also used in [21]. Each
group is processed in a separate branch using 2-D convolutions
with the spectral channel attention mechanism. Features in each
branch are later upsampled, fused, and processed again in the
same manner as in the group branches to obtain the final HR
HSI. Wang et al. [54] also divided the consecutive bands of
HSI into groups with the same number of bands. These bands
are then processed in a recursive manner using a stack of
residual attention blocks. Each block receives the reconstructed
bands along with the embedding from the previous group. The
network is topped with an additional regularization block with
separable 3-D convolutions to obtain the final super-resolved
HSI. Recently, Zhang et al. [64] employed 3-D convolutions
with channel attention to extract spatial–spectral features, whose
diversity is additionally enhanced using a dedicated module.

The advancements in general-purpose SR have been success-
fully deployed into the field of HSI SR. Vision transformers have
been exploited for single-HSI SR by Zhang et al. [65], and Dong
et al. [14] proposed to exploit the denoising diffusion models to
elaborate scale-flexible HSI SR with improved interpretability.

C. Evaluation of SR Outcome

SR models can be evaluated quantitatively or qualitatively [3].
The former is at best performed relying on an HR reference
and the similarity of the reconstructed image to the reference
indicates the SR quality. The similarity in the spatial domain
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is commonly measured with peak signal-to-noise ratio (PSNR),
structural similarity (SSIM) [19], [56], as well as with learned
perceptual image patch similarity (LPIPS) [66]. To verify the
similarity in the spectral domain, the spectral angle mapper
(SAM) [62] is employed. If the reference is not available, which
is often the case when super-resolving original (rather than
simulated) images, then the evaluation can either be carried
out relying on no-reference metrics [4], or the resulting image
can be downsampled back to the original size to verify the
consistency [46]. The qualitative assessment may rely on a mean
opinion score, retrieved throughout a survey, whose partici-
pants provide subjective feedback on the reconstruction quality.
In [25], it was demonstrated that this subjective evaluation aligns
well with the quality assessed with LPIPS. However, while
qualitative evaluation is helpful in inspecting the spatial features,
it can be hardly applied to verify the spectral properties.

An interesting research direction is to use higher level image
analysis tasks to evaluate the performance of SR outcome.
In [42], the performance of single-image SR [24] applied to
satellite imagery was assessed in terms of detecting vehicles
of different type, while Razzak et al. [40] proposed to evaluate
Sentinel-2 SR relying on building delineation. However, such
task-based evaluation has not been reported for HSI SR so far,
and the motivation for our study was to address this research
gap.

III. PROPOSED EVALUATION TEST CASES

In the research reported here, we investigated a range of HSI
enhancement techniques in the context of different specialized
scenarios. Our aim was to prepare several SR methods and apply
them to existing hyperspectral imagery, then examine how useful
the super-resolved products are in a variety of environmental
monitoring tasks. We have investigated this idea for a set of
experiments that encompass PRISMA and TROPOMI satellite
data.

In Section III-A, we briefly describe the characteristics of
each of the data sources under consideration. In Sections III-B
and III-C, we introduce specific Earth observation use cases that
exploit either PRISMA or TROPOMI imagery. The source code
for all the use cases is available online.3 These use cases are
utilized to validate the models (presented later in Section IV)
that enhance the PRISMA and TROPOMI data. This allows us
to compare the results of applying Earth observation models
before and after subjecting PRISMA and TROPOMI data to
image enhancement processes.

A. Data Source

1) PRISMA Data: PRISMA satellite imagery comprises two
hyperspectral cubes: one for visible and near-infrared (VNIR)
wavelengths and another for shortwave infrared (SWIR) wave-
lengths, alongside a PAN. The VNIR cube features 400–1010-
nm range with 66 spectral channels, the SWIR cube encom-
passes spectral range of 920–2505 nm with 173 channels. Both
subcubes are of 30-m GSD and capture 1000 × 1000pixels

3[Online]. Available: https://github.com/geo-k-devs/PIGEON

Fig. 1. Flowcharts of the task-based evaluation. The precision farming and
water quality scenarios are employed to validate (a) single-HSI SR and (b) pan-
sharpening of PRISMA images, while the (c) air pollution scenario validates the
TROPOMI–PRISMA fusion. The dashed lines indicate the processing pipeline
performed from the original data, whose outcome is treated as a reference. (a)
Single-HSI SR. (b) Pansharpening. (c) HSI–MSI fusion.

covering 900 km2. The PAN channel covers 400–700 nm wave-
length and features 6× finer GSD (5 m) than the HSI cubes. We
exploit the original Level-1 (air pollution scenario) and Level-
2D (precision farming and water quality scenarios) PRISMA
products that have been orthorectified and georeferenced.

2) TROPOMI Data: The TROPOMI sensor is the payload
of the Sentinel-5P mission and it is an imaging spectrometer
covering from ultraviolet to SWIR bands of the electromagnetic
spectrum. In our study, we focus on ultraviolet-visible (UVIS)
band 4 of the TROPOMI data in range 405–500 nm with 497
channels. The instrument operates in a push-broom configura-
tion, with a swath width of 450 pixels spanning around 2600 km.
This setup results in a typical TROPOMI hyperspectral pixel size
of 5.5 km× 3.5 km (along× across track, since 6 August 2019).
The push-broom sensing of TROPOMI covers vast parts of the
globe often spanning both polar poles.

B. Precision Farming Scenario

The precision farming scenario consists in estimating the soil
nitrogen content from original PRISMA Level-2D product at
30-m GSD, from the images enhanced with single-HSI SR [see
Fig. 1(a)] to 15-m GSD, as well as from the pansharpened images
at 5-m and 15-m GSD [see Fig. 1(b)]. While the possibility to
estimate the soil profile from HSIs represents a breakthrough in
terms of costs and scale of representation, the 30-m resolution is
insufficient for practical precision farming applications. There-
fore, on the one hand, exploiting the super-resolved product may
enhance the practical significance of such analysis, but on the
other hand, it is not clear whether the estimation performed from
the SR outcome can be trusted.

To better understand the value of pansharpened images in this
context, the estimation performed from the original PRISMA
images, as well as from the super-resolved ones, has been

https://github.com/geo-k-devs/PIGEON
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Fig. 2. Sites with measurements available from CREA considered to build the
dataset for precision farming scenario.

Fig. 3. Architecture of an MLP employed for retrieving soil nitrogen in the
precision farming test case.

compared with ground-truth measurements provided by Ital-
ian Council for Agricultural Research (CREA). This renders
a quantitative assessment of SR performed from original (not
downsampled) data. The soil profiles dataset consists of 482
samples acquired between 2019 and 2022, which is a reference
operational period of the PRISMA mission. In order to ensure
the reliability of the ground-truth data, we assumed that the
temporal distance between the ground-truth measurement and
HSI acquisition time must be at most two weeks. Considering
the availability of the PRISMA images,4 this limited the dataset
to 55 points overlapping with a set of five PRISMA images (see
Fig. 2; the exact locations are provided in the supplementary
material). Cloudy points were then excluded from this dataset,
reducing the set to 26 samples.

In order to estimate the soil nitrogen content, we have decided
to exploit a multilayer perceptron (MLP), as it was successfully
tested for this purpose [30]. The architecture of the employed
MLP is presented in Fig. 3; it is composed of 17 neurons in
the input layer corresponding to PRISMA NIR bands (43–56)
and red edge bands (40–42), followed with two hidden layers
with 10 and 3 neurons, respectively, and topped with an output
layer with a single neuron that represents the soil nitrogen value
expressed in grams of nitrogen per kilogram of soil.

4We searched the PRISMA catalogue available at https://prisma.asi.it

Fig. 4. Test sites considered to build a comprehensive dataset for water quality
scenarios. Locations shown on the map include both inland and coastal areas.

To have sufficient data for training the neural network that
estimates the amount of nitrogen on the ground, the dataset was
expanded through data augmentation techniques generating a set
of 87 samples. Specifically, for each range of nitrogen values,
synthetic but representative data were created for the variable
being inverted, considering variance and standard deviation for
each of the spectral bands considered. This dataset augmenta-
tion approach allows us to maintain the scientific validity and
statistical robustness of the dataset while increasing the training
and generalization capability of the neural network algorithm.

C. Water Quality Scenario

The water quality test case consists in estimating the
chlorophyll-a concentration, being one of the main parameters
to evaluate water status in aquatic environments. The retrieval
accuracy based on the original PRISMA data volume was com-
pared with the one from the SR images, which reach a significant
increase in spatial resolution, obtaining for each methodology
pixel sizes from 30 to 15 m.

This analysis has been performed for both inland freshwater
and sea coastal saltwater. In order to ensure variability, Italian
coastal areas near seaports and densely populated areas have
been selected, as well as lagoons and lakes of different sizes and
located at different latitudes within the country. The distribution
of the selected areas over the Italian territory can be observed
in Fig. 4 (for exact locations, see the supplementary material).
For the inland application, consisting of fresh waters in internal
lakes and including lagoons, a number equal to ten PRISMA
L2D images for a total of 290 samples were used. As for the
coastal case, 12 PRISMA L2D images were analyzed, finally
giving 270 samples equally distributed within the displayed
scenes. Given the scarcity and high variability of ground-truth

https://prisma.asi.it
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Fig. 5. Architecture of an MLP employed for retrieving chlorophyll-a con-
centration in inland and coastal areas for the water quality test case.

information regarding the concentration of chlorophyll-a in wa-
ters, it was necessary to exploit the available products derived
from the Ocean and Land Color Instrument (OLCI) mounted on
the Sentinel-3 mission. Chlorophyll-a concentrations, retrieved
from Sentinel-3, were collected for each PRISMA image. As
temporal resolution of Sentinel-3 is one image per day, it always
coincides with the day of PRISMA data acquisition. However,
images with cloud cover over the aquatic areas were discarded.
Identifying a long-established satellite product as ground truth
allows for ensuring coincidence of acquisitions over time and a
unique spatial matching for both fresh and sea waters. However,
this could introduce a considerable level of uncertainty that
derives from the large spatial resolution of these products that
present pixels of 300-m GSD.

As in the precision farming test case, here we also devel-
oped an MLP, widely used for retrieval prediction analysis
of bio/physical parameters in waters [23]. Input data to the
model are represented by reflectances of ten bands in the visible
channels with wavelengths included in the range 446–764 nm,
covering both the absorption and fluorescence windows of
chlorophyll-a, having its absorption peaks in the blue (430–
450 nm) and in the red (660–680 nm) regions of the spectrum
and its fluorescence in the red channels, typically around 680–
700 nm [17]. Due to the different aquatic characteristics, as
salinity, turbulence, and transparency of the waters to assess, a
distinct algorithm for inland and coastal areas has been created,
slightly adjusting the selections of the ten bands sensitive to the
chlorophyll-a in the visible range. Models architectures are very
similar between the two, having the same number of input layers,
but using different PRISMA bands, leading to consider the most
sensitive wavelengths to chlorophyll-a depending on the aquatic
environment. The number of nodes in the hidden layers equals
24 and 16 for the inland case, and 30 and 10 for the coastal
one, the final output for both models consists in the value of
chlorophyll-a concentration present in the water. The topology
of the two implemented networks that retrieve chlorophyll-a
concentration from the original data can be observed in Fig. 5.

Standard preprocessing operations were applied to the data.
As for the OLCI products from Sentinel-3, these directly pro-
vide chlorophyll-a concentration values, expressed in mg/m3.
Equally distributed points were chosen within the images in

Fig. 6. Pandonia network sites considered to build the dataset for the air
pollution scenario.

order to ensure consistent heterogeneity of chlorophyll distri-
bution. For what concerns the PRISMA L2D data, after the
coregistration process, the reflectances value for the channels
of the VIS cube sensitive to chlorophyll-a were selected in
correspondence with the locations chosen as ground truth.

D. Air Pollution Scenario

The air pollution scenario aims at retrieving the NO2 column
from fused TROPOMI Level-1B of low spatial resolution and
PRISMA Level-1 images of higher spatial resolution, and the
obtained values are compared against the ground-truth mea-
surements at the surface level [see Fig. 1(c)]. Nitrogen dioxide
(NO2) is a key pollutant that receives significant attention in
assessing air quality, along with particulate matter. NO2 is
closely linked to human activities, such as traffic and industrial
emissions, as well as natural phenomena such as wildfires and
lightning. Nitrogen dioxide emissions are carefully monitored
and regulated to mitigate their impact on air quality and human
health.

The NO2 products with the highest spatial resolution currently
available from space are provided by the Sentinel-5P mission
(3.5 km × 5.5 km). Even though the TROPOMI–PRISMA
fusion allows for obtaining the resolution of 30 m, we obtain a
TROPOMI SR product of 500-m GSD, as it already represents
a very interesting objective to achieve for this first test case
of TROPOMI–PRISMA fusion. To validate the estimation per-
formed from the super-resolved images, we have exploited the
ground-truth data provided by Network for the Pandonia Global
Network (PGN).5 We have matched the PGN sites (shown in
Fig. 6) with available PRISMA data considering the following
conditions:

1) image covering a 3-km radius around the ground instru-
ment;

2) cloud coverage below 0.3;
3) temporal distance between PRISMA image acquisition

and the measurement not greater than 2 h;
4) temporal distance between TROPOMI data acquisition

and the measurement not greater than 2 h.

5PGN data are freely available at http://data.pandonia-global-network.org

http://data.pandonia-global-network.org
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Fig. 7. Architecture of an MLP employed for NO2 column retrieval.

These criteria were met by 76 PRISMA and TROPOMI
images acquired between the year 2020 and 2022.6 To augment
the dataset, we exploited the wide swath of TROPOMI L1B
offline products for extracting additional TROPOMI spectra cor-
responding to the ground truth available for all the sites included
in each of the considered orbits. As a result, we generated 354
samples.

To retrieve the NO2 level, we employed an MLP (see Fig. 7)
with 36 neurons in the input layer. These correspond to 34
radiances of the TROPOMI L1BD4 band, distributed every 2 nm
within the 400–466 nm portion of the electromagnetic spectrum.
This spectral range aligns with the one used in the algorithm
based on differential optical absorption spectroscopy as reported
in the TROPOMI documentation.7 In addition, latitude and lon-
gitude were included in the input vector. Two hidden layers are
composed of 1000 and 500 neurons, respectively, considering a
dropout factor of 0.5. The output layer contains a single neuron
that retrieves the estimated NO2 column.

IV. SELECTED SR TECHNIQUES

In this section, we outline the methods selected for enhancing
PRISMA images without and with PAN image as a source of
auxiliary HR information (see Section IV-A), and for enhancing
the spectra of PRISMA images based on TROPOMI bands (see
Section IV-B). The source code for all the SR techniques is
available online.8

A. PRISMA Image Enhancement

In our study, we explored both pansharpening and single-HSI
SR techniques for enhancing the spatial resolution of PRISMA
images that are aimed at the scenarios outlined earlier in
Sections III-B and III-C.

6The locations for the air pollution test case are reported in the supplementary
material.

7The TROPOMI documentation on NO2 retrieval is available at
https://sentinel.esa.int/documents/247904/2476257/sentinel-5p-tropomi-
atbd-no2-data-products

8[Online]. Available: https://github.com/kplabs-pl/hsi-sr-evaluation

For pansharpening, we selected two methods, namely a simple
well-established approach based on PCA [41] and a state-of-
the-art HyperTransformer model [1]. The PCA-based technique
consists in decomposing an HSI (already bicubically upsam-
pled to the size of the PAN image) into a set of uncorrelated
components [41]. Subsequently, the first principal component
is substituted with the HR PAN image and PCA projection is
inverted to retrieve the super-resolved HSI. This process assumes
that the PAN information is gathered in the first component,
which is not always the case, especially if the spectral range of
an HSI is different from the spectral range of the PAN image.

HyperTransformer utilizes the attention mechanism [48]
within a vision transformer architecture, achieving leading re-
sults in the field of pansharpening. The HyperTransformer ar-
chitecture is composed of two separate convolutional branches
that extract features from PAN images and HSIs. The features
extracted from the original PAN image are used as the value for
the vision transformer that performs pansharpening, the features
extracted from a PAN image subject to downsampling followed
by upsampling (which serves as a low-pass filter) are used as the
key, and the features extracted from an HSI (upsampled to match
the PAN image resolution) are used as the query. These are then
processed through a multihead feature soft-attention module,
the output of which is integrated using a spatial–spectral feature
fusion module to generate the pansharpened image.

The original HyperTransformer configuration is not directly
applicable to the PRISMA data due to the differences in the
number of spectral channels and the GSD ratio between the
HSIs and PAN images, compared to those used in the original
study. To adapt the model to the PRISMA data, we modified
the architecture by changing the image upsampling factor from
4× to 6×. Originally, the model performs pansharpening of
HSI cubes in two steps, each of which doubles the image size,
resulting in an overall upsampling factor of 4×. Our modified
version accommodates the hyperspectral versus PAN image ratio
of 6× by employing the factors of 2× and 3× consecutively,
achieving a composite upsampling factor of 6×.

In order to enhance PRISMA images without exploiting any
auxiliary HR information, we selected two different approaches.
The first relies on spatial features and enhances an HSI in
a band-wise manner without considering spectral correlations
between neighboring bands. The second approach analyzes the
entire hyperspectral cube and takes advantage of spatial–spectral
features. In both cases, we employed recent techniques [6], [15]
underpinned with deep learning that we have trained with the
data simulated using Wald’s protocol [49].

For band-wise SR, we adopted HAT [6], which is a state-
of-the-art SISR technique. It employs a vision transformer to
activate more pixels in the receptive field, making it possible
to extract more information concerning the image structure. We
have exploited the original technique without any modifications,
setting the upsampling factor to 2×. After training, we used
HAT to super-resolve the HSI by enhancing every channel
independently.

To exploit the spatial–spectral features, we selected the Bi-
3DQRNN network [15], which is a state-of-the-art solution for
enhancing HSIs. This network utilizes 3-D convolutions, which

https://sentinel.esa.int/documents/247904/2476257/sentinel-5p-tropomi-atbd-no2-data-products
https://sentinel.esa.int/documents/247904/2476257/sentinel-5p-tropomi-atbd-no2-data-products
https://github.com/kplabs-pl/hsi-sr-evaluation
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are particularly effective for extracting both spectral and spatial
correlations simultaneously. However, the use of 3-D convo-
lutions typically results in increased computational demands
and a larger number of parameters. In addition, 3-D convolu-
tions can only process a limited number of adjacent spectral
bands at a time, which is insufficient to capture global spectral
dependencies, especially given that for the encoder–decoder
Bi-3DQRNN architecture, the number of channels increases in
the intermediate layers compared to the input and output. To ad-
dress that problem, Bi-3DQRNN contains a bidirectional quasi-
recurrent pooling module, which processes the intermediate
features bidirectionally along the spectral dimension, enhancing
the network’s ability to manage spectral information effectively.
As the number of input spectral channels is configurable in
Bi-3DQRNN, we could straightforwardly apply it to enhancing
PRISMA images. As in HAT, we set the upsampling factor to 2×.
Bi-3DQRNN requires the input to be provisionally upsampled
to the desired resolution, so we employ bilinear interpolation to
each spectral channel.

B. Fusion of TROPOMI and PRISMA Images

In order to enhance spatial resolution of TROPOMI images
relying on corresponding PRISMA data, we have selected a
state-of-the-art MHF-net [58], [59]. Originally, it was validated
for fusing HSIs with color RGB images that convey HR informa-
tion. MHF-net is underpinned with a comprehensive observation
model that is supposed to reflect the low-rankness of the HR HSI,
from which the observed HR MSI and LR HSI are supposed to
be generated. Reconstruction of HR HSI is achieved by solving
the optimization problem using proximal gradient algorithm,
unfolded into a deep neural network architecture. Even though
MHF-net was tested using MSIs with three channels (RGB),
the number of spectral channels is configurable, so we could
straightforwardly adapt it to our case. However, the ratio be-
tween spatial resolution of HSI and MSI is hardcoded to 32×,
which is inadequate for direct application to our data due to the
significantly higher ratio between TROPOMI and PRISMA res-
olutions. For this reason, we downsample the PRISMA images
to approximately 188 m GSD (160 × 160 pixels)—around 32×
smaller than the TROPOMI’s GSD—and then fuse them with the
TROPOMI data. Subsequently, the super-resolved HSI is further
downsampled to 500-m GSD, which we deemed sufficient for
the air pollution estimation test case.

In order to train MHF-net, we simulate the data from both
TROPOMI and PRISMA images to ensure that HR references
present either the target spectral features (for TROPOMI) or
spatial features (for PRISMA). The data simulation pipeline (see
Fig. 8) was based on the official MHF-net code provided by the
authors. From input HSIs, we extract 3-D patches of 96 × 96
pixels and 63 adjacent spectral channels. Spectral resolution
of the patches results from the number of PRISMA VNIR
channels, which is 66. However, the last three PRISMA bands
are corrupted (containing no data), leaving 63 usable channels.
To match the number of PRISMA spectral channels, a random
subset of 63 adjacent channels out of the 497 TROPOMI chan-
nels are selected during each training step. These 63 spectral

Fig. 8. MHF-net training data simulation pipeline that exploits original
PRISMA and TROPOMI images.

Fig. 9. Spectral curves for a patch in a (a) training set and for a (b) real-world
PRISMA and TROPOMI sample obtained using the original MHF-net.

bands are then averaged to yield three simulated spectral MSI
bands and the spatial resolution of 96 × 96 pixels remains
unchanged. To simulate LR HSI, we employ Wald’s protocol
to decrease spatial resolution by a factor of 32× to a size of
3 × 3 pixels. In addition to standard MHF-net data simulation
procedure, we found it important to apply randomized gamma
correction to each simulated spectral band of HR MSI, which is
justified later in this section. Finally, MHF-net is trained using an
augmented dataset with normalized pixel values. Compared with
the original MHF-net, we have added a SAM-based consistency
component to the loss function (the remaining settings were
left unchanged) that penalizes for a spectral angle difference
between the super-resolved HSI and the input LR HSI. This
component is multiplied by a factor of 0.01 to ensure it is within
the same order of magnitude as the original loss.

To justify the use of gamma-based correction and the SAM-
based loss, as well as to better understand their impact on the
fusion outcome, we demonstrate an illustrative example for a
single pair of real-world TROPOMI–PRISMA images. Since
there is no ground-truth available in such cases, we downsam-
pled the fusion outcome to the resolution of the input TROPOMI
HSI and we verified spatial and spectral consistencies. In Fig. 9,
we illustrate the behavior of original MHT-net for a pair of
simulated images from the training set (a) and for the aforemen-
tioned real-world TROPOMI–PRISMA pair (b). In Fig. 9(a),
all images—the target HR HSI (red), the simulated LR HSI
obtained with Wald’s protocol (orange), the simulated HR MSI
(green), and the fusion outcome (blue)—display a similar global
shape of the spectral curve. However, for the real-world case (b),
the fused image (blue) clearly follows the HR MSI spectrum
(green) rather than the LR HSI spectrum (orange), which would
be actually expected. The process for simulating the training
data, presented in Fig. 8, results in obtaining LR HSI and HR
MSI of similar spectral curves, so during training, the network
does not see HSIs and MSIs with different spectral curves, which
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Fig. 10. Spectral curves for a patch in a (a) training set and for a (b) real-world
PRISMA and TROPOMI sample obtained using the original MHF-net with
random gamma correction applied.

Fig. 11. Spectral curves for a patch in a (a) training set and for a (b) real-world
PRISMA and TROPOMI sample obtained using the original MHF-net with
random gamma correction coupled with SAM-based loss function.

TABLE I
QUANTITATIVE SCORES OBTAINED FOR THE REAL-WORLD

TROPOMI–PRISMA SAMPLE RELYING ON DIFFERENT TRAINING SETUPS

may happen in real-world cases (especially if HSI and MSI are
captured using different sensors). As a result, the network appar-
ently learned to follow the LR HSI spectral curve. To address
this problem, we applied gamma correction independently to
each simulated HR MSI spectral band, with a gamma value
randomly selected from (0.5; 1.5). The influence of the random
gamma correction is shown in Fig. 10. In a patch derived from
the training set (a), the simulated HR MSI (green) has, therefore,
a different spectral curve than the remaining images that follow a
similar pattern. In the real-world sample (b), the super-resolved
image (blue) has a spectral signature closer to that of the input
LR HSI (orange), but there is a constant shift between them.
This issue is mitigated with the SAM-based loss component,
which minimizes the spectral angle between the outcome and
LR HSI—this is shown in Fig. 11. The quantitative results for the
real-world image pair are reported in Table I, and they confirm
the observations made in Figs. 9–11.

V. EXPERIMENTAL VALIDATION

In this section, we outline the experimental setup (see Sec-
tion V-A) and we report the results of application-independent

(see Section V-B) and task-based evaluation (see Section V-C).
The results are discussed later in Section VI.

A. Experimental Setup

As the ground-truth data for each of the test cases (outlined
earlier in Section III) were collected for different locations,
also the input HSIs are specific to each test case. Basically,
the precision farming and water quality scenarios operate from
PRISMA images, while for the air pollution scenario, we exploit
TROPOMI images (being the source for the spectral informa-
tion) coupled with the PRISMA images (source of the spatial
information).

1) Single-HSI SR of PRISMA Data: The techniques for
single-HSI SR were trained using ten PRISMA L2D VNIR
images, covering an area of approximately 9000 km2, with LR
counterparts obtained with Wald’s protocol. The original images
(later treated as HR reference) were downsampled by a factor of
2× and blurred using a Gaussian kernel to obtain the simulated
LR HSIs. Each LR image was split into overlapping 64×64
patches (with a step size of 32), each of which coupled with
an HR patch of 128 × 128 pixels. We relied on the training
pipelines provided by the authors of the investigated techniques
and we maintained all settings without modification. The pixel
values were normalized before being fed into the network, and
standard augmentation techniques, such as random rotation and
horizontal and vertical flips, were applied. For model validation,
seven additional PRISMA images were used to identify the
optimal model configuration. The test set was created based on
six PRISMA L2D images (5400 km2) that were exploited in the
precision farming scenario, nonoverlapping with the training
set.

2) Pansharpening of PRISMA Data: In order to train and
evaluate the HyperTransformer network [15], we prepared a set
of simulated images obtained from 70 PRISMA L2D VNIR
scenes. As presented in [69], it is crucial to use level L2D,
at which HSIs and PAN images are orthorectified and fully
coregistered. The original images were treated as HR references,
and LR images were obtained with Wald’s protocol—both HSIs
and PAN images were downsampled by a factor of 6×. The
simulated LR HSIs were split into patches of 50 × 50 pixels,
each coupled with a 6× larger PAN patch and a reference HR
hyperspectral patch with 300 × 300 pixels. For training, we
used 70% of patches and the remaining ones were used as
a validation set. The test set (for HyperTransformer and for
PCA-based pansharpening) was created from the same data as
for single-HSI SR—from nine PRISMA L2D images exploited
also in the precision farming scenario. There was no overlap
between the images in the training and test sets.

3) Data Fusion of TROPOMI–PRISMA Imagery: For the
TROPOMI–PRISMA fusion, MHF-net was trained using a
dataset generated from 51 PRISMA L1 images, covering a
total area of approximately 45 900 km2, and seven TROPOMI
L1B UVIS1/BD4 images, each spanning millions of square
kilometers. This extensive coverage is due to the large pixel
size of approximately 5.5×3.5 km2. Each training batch was
composed of image patches, 50% of which were retrieved from



18958 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

PRISMA images and 50% from TROPOMI images. The valida-
tion set was obtained from a single TROPOMI image and five
PRISMA images. MHF-net was tested on the Pandonia network
sites dataset of 69 paired PRISMA L1 and TROPOMI L1B
UVIS1/BD4 images collected for the air pollution scenario. For
the simulated data setup, the model was evaluated independently
on 69 simulated PRISMA and 69 simulated TROPOMI images,
and the reported values are the averages of all of the obtained
values. For the real-world data setup, the reported values were
obtained for TROPOMI–PRISMA pairs.

4) Task-Based Assessment: For each of the three scenarios
outlined in Section III, we adopted a similar evaluation strat-
egy. Based on the original data coupled with the ground-truth
measurements, we trained MLPs to estimate the values based
on the spectral signature of a single pixel. The trained model is
then applied to process the test data (unseen during training),
and the retrieved values are compared with the ground truth
to determine the R2 (for the air pollution case, we report the
Pearson coefficient instead), root mean squared error (RMSE),
and mean absolute error (MAE). For the test data, we use both
the original data, as well as the data from super-resolved images.
This provides a quantitative insight into the capabilities of the SR
algorithms and helps ensure that the SR process does not affect
the spectral features. The latter is also verified by comparing
the values retrieved from the input images with those extracted
from the super-resolved ones. Furthermore, for each test case,
we rendered the estimated values in a form of the parameter
maps to inspect the spatial distribution. The MLPs were trained
in up to 1000 epochs with an early stopping condition to prevent
overfitting and improve the models’ generalization capabilities.

For precision farming test case, the augmented dataset was
divided into training (52%), validation (28%), and test (20%)
parts, where the original 26 samples were distributed randomly
(the samples derived from the original ones during augmentation
always remain in the same part to avoid data leakage). For both
inland and coastline water quality assessment, the initial input
dataset was divided with 60% of the available dataset dedicated
to the training phase, while the remaining 40% was further
divided into testing (22% of the total dataset) and validation
(remaining 18% of the dataset). In the air pollution test case, the
dataset was split into training (71%) and test (29%) parts.

B. Results of Application-Independent Evaluation

Table II presents quantitative results of task-independent eval-
uation for simulated and real-world data. For simulated data, we
employed reference-based evaluation that consists in measuring
the similarity between the reconstructed outcome and the ref-
erence image relying on PSNR, SSIM, and SAM metrics. For
the original real-world images, we verified spatial and spectral
consistency—the super-resolved images are downsampled back
to the original size to measure their similarity with the input LR
images. For simulated data, the results can be compared between
techniques at the same upsampling ratio. For real-world data,
all techniques at 2× and 6× ratio were tested using the same
input data, so their consistency scores can be compared with
each other. MHF-net was tested using a different dataset and the

TABLE II
APPLICATION-INDEPENDENT VALIDATION OF INVESTIGATED TECHNIQUES FOR

SIMULATED AND REAL-WORLD DATA

SSIM metric cannot be reported for real-world data here, as it
is computed in a kernel whose size is larger than the input HSI
patch.

Figs. 12–14 show examples of pansharpening and single-HSI
SR applied to the simulated (see Figs. 12 and 13) and real-world
(see Fig. 14) images. In all these cases, HSIs are presented
in a form of RGB composites. Due to different upsampling
factors used during simulation, we demonstrate the behavior of
single-HSI SR and pansharpening for different examples, but all
the methods are tested with the same real-world input images,
demonstrated in Fig. 14. For each outcome, we also present its
downsampled version that was used for quantitative evaluation
reported earlier in Table II. Fig. 15 shows an example of fusing
MSI with HSI for simulated and real-world data. In the former
case, we show the HR reference used for quantitative assessment,
while for the latter we show downsampled MHF-net outcome
that is compared with the input LR HSI.

C. Results of Task-Based Evaluation

Quantitative results for the precision farming and water qual-
ity scenarios are reported in Table III , while those for the air
pollution scenario are shown in Table IV . For precision farming,
the model was evaluated relying on the original images (at 30-m
GSD), as well as enhanced with single-HSI SR and pansharp-
ening techniques. Single-HSI SR increases the resolution 2×,
thus reducing GSD down to 15 m and pansharpening renders an
enhancement of 6× to 5-m GSD. To compare pansharpening
with single-HSI SR, we also downsample the result of the
former to 15 m GSD. For water quality, we report the scores
only for 15 m GSD, as the degree of uncertainty, resulting
from comparison with ground-truth data, with spatial resolution
of 300-m, was considered excessive. Moreover, particularly
for coastal application, it was considered that an increase in
spatial resolution would not add any specific advantage in the
chlorophyll-a estimation, as the variability of the parameter is
not significant enough in its values to be able to spot such
remarkable differences in open aquatic environments. As the



KAWULOK et al.: HYPERSPECTRAL IMAGE SUPER-RESOLUTION: TASK-BASED EVALUATION 18959

Fig. 12. Examples of pansharpening applied to simulated PRISMA images for (a) suburban and (b) coastal areas in a form of an RGB composite. LR HSIs were
simulated from original HSIs (treated as HR reference) with downsampling factor of 6×. For comparison, the outcome of bicubic interpolation is also presented.

Fig. 13. Examples of single-HSI SR applied to simulated PRISMA data for suburban (a) and urban (b) areas in a form of RGB composite. LR HSIs were
simulated from original HSIs (treated as HR reference) with downsampling factor of 2×.

results obtained relying on the original data were rather poor
(R2 of around 0.5), in this case, we decided to train the models
for each data type. The scatter plots showing correlation between
the values retrieved from original and enhanced images are
presented in Figs. 16–18 , for precision farming, water quality,
and air pollution test cases, respectively.

Qualitative results are presented in Figs. 19–21, for precision
farming, water quality, and air pollution sites, respectively. In
Fig. 19, we present nitrogen concentration maps for the Grosseto
site, retrieved from the original and pansharpened images. We
show the concentration level in the relevant area, overlapped
on the RGB composites. Fig. 20 shows the Trasimeno lake
(43.141467N, 12.096280E) with chlorophyll-a concentration
maps retrieved from the original and super-resolved images.
Finally, in Fig. 21, we present the NO2 column over the city
of Brussels retrieved from the TROPOMI image and from the
fusion outcome.

VI. DISCUSSION

In this section, we analyze the results reported earlier in
the preceding Section V. At first, we discuss the results of
application-independent validation (see Section VI-A), followed
by task-based assessment (see Section VI-B), and finally, we
discuss the similarities and differences between these two eval-
uation strategies (see Section VI-C).

A. Discussion on Application-Independent Evaluation

The quantitative results (see Table II) show that for the simu-
lated data, the spatial features are more accurately reconstructed
at a smaller upsampling ratio of 2× (indicated by PSNR and
SSIM scores), but the spectral features are best preserved rely-
ing on pansharpening realized with HyperTransformer (at 6×
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Fig. 14. Examples of enhancing two real-world PRISMA (a) suburban and (b) urban scenes with pansharpening (HyperTransformer and PCA-based methods,
5-m GSD) and single-HSI SR (Bi-3DQRNN and HAT methods, 15-m GSD). For each scene, we show the PAN input image at 5-m GSD (top row) and the input
HSI at 30-m GSD (bottom row), followed with the results obtained using different techniques (top row) and the outcomes downsampled to 30-m GSD. HSIs are
presented in a form of an RGB composite.

Fig. 15. Example of HSI–MSI fusion performed with MHF-net for simulated
and real-world scene. For the simulated pair, HR HSI is used as a reference;
for the real-world pair, the outcome is downsampled (MHF-net↓) to the size of
input HSI.

upsampling), followed by 2× bicubic interpolation and single-
HSI SR with Bi-3DQRNN that exploits spatial–spectral fea-
tures. It is worth noting that HAT which operates in a band-wise
manner achieved worse PSNR and SSIM scores than the bicubic
interpolation, probably because the same model was applied
to reconstruct each spectral channel. For real-world data, it
is not surprising that bicubic interpolation offers best spatial
consistency at 2× and 6× enhancement, but again the spec-
tral features are best preserved relying on HyperTransformer.

TABLE III
QUALITY METRICS FOR PRECISION FARMING AND WATER QUALITY

SCENARIOS OBTAINED FROM THE ORIGINAL AND SUPER-RESOLVED IMAGES

For each metric, we show whether higher (↑) or lower (↓) scores indicate better 

reconstruction.

PCA-based pansharpening obtains very poor scores for both
simulated and real-world data—this may result from the fact that
PRISMA PAN images cover only a small part of HSIs’ spectral
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TABLE IV
QUALITY METRICS FOR THE AIR POLLUTION SCENARIO OBTAINED FROM THE

ORIGINAL AND ENHANCED IMAGES

Fig. 16. Scatter plots of predicted versus actual soil nitrogen content retrieved
from (left) original and (right) pansharpened PRISMA images.

Fig. 17. Scatter plots of predicted versus actual chlorophyll-a concentration
retrieved from original (left) and super-resolved (right) PRISMA images for
(top) inland and (bottom) coastal waters.

Fig. 18. Scatter plot of predicted NO2 values retrieved from the (left) super-
resolved and (right) original TROPOMI images for the air pollution scenario
versus ground truth from the Pandonia Network.

Fig. 19. Example of nitrogen content retrieved from (left) original and (right)
pansharpened PRISMA images (Grosseto site) for the precision farming scenario
presented over a true color composition of original and super-resolved PRISMA
image.

range, so the assumption that the first principal component is cor-
related with the PAN image may not hold in this case. From the
qualitative results (see Fig. 12), it may be seen that PCA-based
pansharpening substantially improves spatial features compared
with the input HSI, as well as with the bicubically upsampled
image. However, the outcome is definitely worse than that of
HyperTransformer. Also, the contrast is increased which may
account for lower scores than for bicubic interpolation (see
Table II). The results for single-HSI SR (see Fig. 13) are coherent
with the scores—Bi-3DQRNN renders visually better result
than HAT. The latter produces some grid-like artifacts, which
is reflected in the scores.

From Fig. 14, it can be seen that both single-HSI SR and
pansharpened outcomes downsampled to 30-m GSD are visually
quite close to the original input HSI, but naturally the pansharp-
ened images are of much higher visual quality, as they exploit
additional source of HR information. Overall, the PSNR and
SSIM scores for the test set are high for all the investigated
techniques, indicating that they were properly trained before
applying them to specific test cases.

From the quantitative scores (see Table II) and qualitative
examples (see Fig. 15), it is apparent that MHF-net exploits
HR information from an MSI and the super-resolved image is
consistent with the input HSI. Clearly, the downsampled SR
outcome (MHF-net↓ in Fig. 15) used for metric calculations
contains significantly fewer pixels in real-world data evaluations
than in the simulated datasets, despite representing the same
geographic area at different spatial resolutions (as shown in
Fig. 15). This difference in pixel density and scale could account
for the discrepancy observed in the SAM metric performance
(see Table II).

B. Discussion on Task-Based Evaluation

For the precision farming scenario, nitrogen content has been
estimated at high accuracy both from the original data and from
the pansharpened ones at 5-m GSD (Table III and Fig. 16). The
best R2 and RMSE were obtained for the original data, while the
best MAE was retrieved from the HyperTransformer outcome.
At the resolution of 15-m GSD, HyperTransformer was the best,
followed by single-HSI methods and PCA-based pansharpening.
It is worth noting that in this case the PCA-based pansharpening
does not offer any gain over bicubic interpolation both at 5-
and 15-m GSD. Even though pansharpening retrieves similar
quantitative results, the qualitative assessment (see Fig. 19)
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Fig. 20. Example of chlorophyll-a concentration retrieved for the Trasimeno lake for the water quality scenario: (a) RGB PRISMA image, (b) concentration map
retrieved from original PRISMA data, and from the (c) outcome of Bi-3DQRNN single-HSI SR.

Fig. 21. Example of NO2 column concentration retrieved from (center) orig-
inal and (right) super-resolved TROPOMI images for the air pollution scenario
over the city of Brussels (left).

indicates that the nitrogen concentration maps present more
valuable details compared with those obtained from the original
data. This result is of particular importance in the context of the
precision agriculture case study, especially considering the need
for greater precision in small agricultural fields, such as those
typical of the Italian countryside.

From Table III, it is clear that estimation of chlorophyll-
a is improved relying on pansharpening for both inland and
coastal waters. The largest gain has been achieved with the
PCA-based pansharpening that can also be appreciated from
the scatter plots in Fig. 17. However, it is surprising that the
results obtained from bicubically upsampled images are quite
high for inland waters (better than from images enhanced using
single-HSI SR). Also, PCA-based technique appears to be bet-
ter than HyperTransformer, and Bi-3DQRNN is outperformed
in both cases with HAT that was shown to be less effective
in preserving spectral features (see Table II). There may be
several reasons for that. First of all, the ground-truth reference
values may suffer from noisy measurements, as they were re-
trieved from Sentinel-3 OLCI product with 300 m of spatial
resolution. Furthermore, the variability of the chlorophyll-a
parameter could be greater in open water environments, due
to the increased movement of water masses while maintaining
in salt waters concentrations values very low and this could
considerably affect the concentration identification moving from
a pixel to its neighborhood. From the visualized concentration
maps (see Fig. 20), it can be observed that the distribution of
chlorophyll-a concentration appears higher along the coastlines
and in the southern part of the lake (both for the original and

super-resolved images). The concentration variability for the
super-resolved case is smaller, showing concentration values
in a more uniform range than the retrieved values for the
original case, which instead shows less compact values with
a greater differences in terms of concentrations. However, it
is clear that the results obtained relying on the super-resolved
data are well-correlated with those obtained from the original
data, confirming the observations made in the precision farming
scenario.

The quantitative results for the NO2 column estimation
(see Table IV) indicate that enhancing spatial resolution helps
achieve more accurate estimations compared to ground-based
measurements, which have a higher reliability in the vicinity
of the ground instrument location. Also, the scatter plots (see
Fig. 18) show significant correlation between the estimated val-
ues and measurements considered as ground truth, confirming
that the MLP represents a suitable approach to estimate trace
gases from TROPOMI L1B data, as reported in [10]. A visual
example (see Fig. 21) confirms that the values are estimated with
much greater precision in the spatial domain.

C. Comparison of the Evaluation Strategies

In general, the increase of spatial resolution is reflected in im-
proved scores for both application-independent and task-based
evaluation. For PRISMA images, it is HyperTransfomer [1] that
offers the best qualitative and quantitative results (especially
considering spectral features captured with the SAM metric),
and it also renders consistently good results in task-based evalua-
tion aimed at specific remote sensing applications. Surprisingly,
PCA-based pansharpening that achieved rather low scores in
application-independent assessment, occurred to be the best for
inland and coastal water quality scenarios. This may be attributed
to the fact that the MLP trained for estimating the chlorophyll-a
level exploits a small subset of PRISMA bands that fall within
the visible spectrum covered by the PAN image. As PCA-based
pansharpening is underpinned with the assumption that the first
principal component is highly correlated with the PAN image,
the reconstruction may be expected to work better in that part
of the spectrum. This also shows that it may be challenging
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to identify the most suitable technique relying exclusively on
application-independent validation.

Application-independent validation is challenging for real-
world (not degraded) HSIs, as usually there is no ground-truth
available in such cases. However, comparing the quantitative
scores against the performance in specific use cases, it appears
that the ability of reconstructing spectral features and preserving
their consistency (for real-world data), here captured with the
SAM metric, is a more important indicator than the metrics
capturing spatial features (PSNR and SSIM). It is important
to note that single-HSI SR is not better in the specific test
cases investigated here than bicubic interpolation, and this is
also reflected in the SAM scores (see Table II). Finally, SAM
was relatively low for MHF-net, which was also reflected in the
improved scores for the air pollution scenario.

This study also underlines the importance of qualitative as-
sessment. For the precision farming test case, pansharpening
renders comparable scores to those retrieved from original im-
ages. However, the nitrogen content maps allow for appreciating
that they are much more detailed when retrieved based on
pansharpened data. Also, qualitative inspection in application-
independent evaluation helps understand the difference between
the results obtained with single-HSI SR and pansharpening,
compared with bicubic interpolation.

VII. CONCLUSION

In this article, we proposed a new approach toward evaluat-
ing different types of super-resolved HSI products in specific
applications. Two remote sensing test cases concerned with
precision farming and water quality were employed to evaluate
four pansharpening [1], [41] and single-HSI SR techniques [6],
[15] for enhancing PRISMA images. As discussed in this article,
the results clearly indicate that the pansharpened images at 5-m
GSD lead to quantitatively better results that single-HSI SR
performed without any auxiliary HR information. Importantly,
this is consistent with the SAM scores obtained within the
application-independent evaluation performed for the simulated
data, as well as with the subjective qualitative assessment of both
the reconstructed images and nitrogen content estimation maps.
The air pollution test case has also confirmed that the HSI–MSI
data fusion [59], applied to combine selected PRISMA spectral
bands with a TROPOMI HSI of low spatial resolution, allows for
obtaining highly valuable super-resolved products that improve
the analysis outcome (both qualitatively and quantitatively).

It is worth noting that the elaborated test cases primarily
exploit the spectral features, so the scores obtained based on the
data enhanced using pansharpening and HSI–MSI fusion indi-
cate that SR of HSIs may also increase their value in terms of the
spectral information. However, while single-HSI SR improves
the images in the spatial domain (as shown qualitatively and
quantitatively in Section V-B), they are more likely to distort
the spectral features—as a result, the scores for single-HSI
SR in the precision farming test case were worse than rely-
ing on the original data. This clearly suggests that the future
research regarding single-HSI techniques should be focused on

improving their capabilities in terms of preserving the spectral
information.

Overall, the reported analysis exposes the importance of
applying task-based evaluation, as application-independent as-
sessment may be insufficient to properly assess the value of
super-resolved products in specific applications. However, task-
based evaluation is challenging due to several reasons. At first,
it requires large-scale ground-truth data that may be difficult
to collect. Furthermore, it may be time-consuming, especially
when the spatially enhanced data are used for training and vali-
dating the task-specific models. Finally, the models may be quite
selective and focused on specific features, leading to poor gen-
eralization. Therefore, in our opinion, more future work should
be focused on developing a battery of specific use cases to better
understand the correlation between application-independent and
task-based assessment. This, in turn, should help in proposing
new SR techniques for enhancing the value of hyperspectral
data.
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